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Summary

something about what one should know when dealing with circuits (and systems)
described by a smooth vector field and working at periodic steady state

 Modified Nodal Analysis Formulation (this is for circuits)
 Periodic Steady State Analysis (time-domain shooting method)
e Periodic small signal analysis

e Floquet Theory (stability)
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Summary
extension to circuits described by a “non-smooth” vector field

 Hybrid dynamical systems (in a nutshell)

e Saltation matrix

* Details in the switching scenario
* General formulation

e A simple case study
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 Modified Nodal Analysis Formulation (this is for circuits)
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Modified nodal analysis (MNA)

Modified nodal analysis allows to derive the mathematical model of an electric
dynamical circuit described by

e topological equations (Kirchhoff’s voltage and current laws) and

e constitutive equations of the components making up the circuit itself.

This model can be profitably used to describe the circuit behavior.

The unknowns of the MNA model are the circuit node potentials (with respect to
a reference node) and the edge currents of both those components that are not
voltage controlled (e.g., independent voltage source) or that have current as a
state variable (e.g., inductor).

The MNA model of non linear dynamical circuits is a set of Differential and
Algebraic Equations constituting a DAE. It becomes simply algebraic for non-
dynamical (resistive) networks

MNA is crucial to systematically described an electric circuit and to study its
behavior from a numerical stand point (viz., through a circuit simulator).
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The MNA model of non linear dynamical circuits is a set of Differential and Algebraic
Equations constituting a DAE but ... we will focus on the Ordinary Differential Equation
(ODE) scenario only.
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.

The MNA model of non linear dynamical circuits is a set of Differential and Algebraic
Equations constituting a DAE but ... we will focus on the Ordinary Differential Equation
(ODE) scenario only.

We can do that without loss of generality since:
1. it would be much more complicated but possible to directly work on DAEs;

2. in general a transformation always exists that allows to reformulate a circuit
in such a way that DAEs naturally becomes ODEs (we should adopt two-port
ideal power transferitors and gyrators).

p

< fau(@(t) + frr(a(®)) + Buyi(t) = 0

xRN
uyr € RY B e RN*P
\ fQ@afVI:RN%RN
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Presenter
Presentation Notes
Equazioni del giratore: i_1 = gamma v_2 and i_2 = -gamma v_1


[ Can(e )+ fri(a(t) + Buyi(t) = 0

. PN N '
. foa, fvr :RY =R !n gengral we assume to deal with non
linear links between charge and voltage
and magnetic-flux and current.

N

4 Q

I'ga t-fv(t) + fvr(xz(t)) + Buy(t) =0
| Foe € RV*N In this case, as (ijn otur examlple, capacitors and
\ det(FQ@) £ 0 inductors are linear.

Fab | Fao Syt + fui(x(t) + Buvi(0] =
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 Steady State Analysis (time-domain shooting method)
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Smooth Circuit/System

)

(&= f(x,t)
CU(to) = X0

{ z(t)eU CRY

f:RNFL L RY

| feCRY

Goal: efficiently find a
periodic steady state
solution of the ODE,
i.e., a limit cycle (say y)

xs(t) =xs(t+T)
zs(to) = To €

Efficiently means that we do not want to
perform a long lasting transient analysis
to obtain the steady state behavior but

we aim at directly find it.

This is not a whim!

For instance, if we design a high-Q
oscillator that long lasting transient
analysis could take hours!
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Smooth Circuit/System

)

(&= f(x,t)
LL‘(to) = X0

{ z(t)eU CRY

f:RNFL L RY

| feCRY

If a first shot misses the target, the gunner will

Goal: efficiently find a change the tilt of the cannon, evaluate how
periodic steady state much closer or farther he gets from his
solution of the ODE, objective and finally adjust the tilt in order to
i.e., a limit cycle (say #) (hopefully) hit the target with the next shot.
Ls (t) — L (t + T) The key of the gunner’s method is the
Tq (tO) =T €7 perturbation of the initial guess and evaluation

of the sensitivity of the solution (the arrival
position of the cannonball) to this perturbation.
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Smooth Circuit/System

)

(&= f(x,t)
I(to) = X0

We are not gunners ... we play with a
boomerang since we are looking for a

periodic trajectory (the initial point must

coincide we the final one)

{ z(t)eU CRY
f:RNFL L RY
f e CHRNTY

Aerodynamic recession
Irﬂ g reater at rque
s &
pin angular 3;:: :yﬂgular Spin angular
velocﬂy velocty
Dlrectlon of
throw py
Returning
path

Do not worry! Shooting method is hopefully
easier than throwing a boomerang ... even if

we do need some math!
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Goal: efficiently find a
periodic steady state
solution of the ODE,
i.e., a limit cycle (say )

zs(t) = xs(t+7T)
Ts(to) = To € ¥




In our basic example ... (Van der Pol oscillator)
lINL = x? — 0.1331
1F il = X9 — (x?—lel)
2’}1(0) = 0.5

.’L’Q(O) = —0.5

L1

~
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01t
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-0.4}

-0.5

04  -0.2 0 02 04 06
xt‘ xt‘

Transient analysis Shooting method (T= 6.28715s)
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We can formulate the problem “to locate the periodic steady
state” as a Boundary Value Problem (BVP)

Let’s assume that the circuit is autonomous (it does not ix('r) _ Tf(:}:('r))
explicitly depend on the t independent variable) and dr
normalize the t time w.r.t. the unknown T period (7= t/T) z(0) = xg

So doing the period becomes 1.

z(7) = ¢ ((0),T) i.e., we introduce the state transition function from 0 to 7. Y.

0.5f
0.4}
0.3+

0.1}

0.1
0.2}
0.3}
0.4t

-0.5

-/{ .’f?l = T[.CL‘Q = (.T? — 013"1)\

0.2/

/// AN r(z(0),T) = ¢ (2(0),T) — z(0) # On

ba — Ty Am | able to understand how | should modify
{ 21(0)=0.5 \ the initial condition and the period that |
\ ?95: —0.5 \ guessed in such a way that the residue is null?
z(1) = (’01 (2(0),5) | The sensitivity of the Ia§t -p-oint of the
— / trajectory w.r.t. to both the initial one and the
— V. period should be available!
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0.2}
0.3t
0.4

-0.5

: To locate the initial condition and the
$1(0) = —0.1879. period such that ...

;2(;))6;8%’150 r(2(0),T) = ¢'(x(0),T) — z(0) = On

f ... is a problem that admits infinite solution
each one sliding on top of the others!
z1(0) = 0.2677
x2(0) = —0.2533
T = 6.2871
-014 -0:2 0 012 0:4 0:6

-

Let it be s(x(0),T") = 0 a proper “phase condition” that guarantees a unique
solution of the BVP ... it is a non linear algebraic equation depending on ((0),T)

r(@(0),T) = ¢! (2(0), T) — 2(0) = O
s(z(0),T) = 0 Y

... the overall BVP becomes ... {

Mllano —a.a. 2018-2019 16



Things are easier if the circuit is non autonomous and, in particular, if it is periodically
driven by voltage and/or a current sources.

In this case the phase condition is not necessary since the input signal gives itself a
time reference and the T period is no longer an unknown.

We do not need to normalize the t time w.r.t. the T period.

oy ;

S-a(r) =T f(x(7)) —o(t) = f(x(t), )
z(0) = o z(ty) = xo
autonomous non autonomous

(the initial time can be
arbitrarily fixed to 0)

| will present the theory in the autonomous case (the more general) but |

will not show you how the phase condition can be chosen ... if you are
interested in it | can provide you with some references. /
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) = On41

This BVP depends on N+1 unknowns and it is
a set of N+1 non linear algebraic equations
that can be numerically solved for instance
using the iterative Newton’s method.

r(@(0),T) \ _ po., 3
( s(x(0),T) ) = F(2(0),T) = On41
( F(y) = Ogn~+1

F(y) :RN—I—l N RN+1
F e Cl(RN“)
\ {JF} ke 3y F(y)

Newton’s method

At the p-th iteration of the method one has
yp — (ygfa °°°ay%+1)

which is an approximation of the solution
* * *
Yy = (yla"'ayN+1)

We assume that

yr=yP+ e = + e,y F L)

hence
F(y119 + 6%137 "'ay%+1 + EIJDV—I—I) - (DN-l—l
F(yP +¢) = F(yP) + Jr|,_» €

—1
& == (Jrlyep) F)
yp+1 — yP + €P
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At fourth iteration:
2.3869 - 10~

—\ —1.7674-10"%

At tenth iteration:

3.3051 - 108
—2.4479 - 1078
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kD (0) = 2(F) (0) + Az (0)
TO+D) (o) 4 AT (z)(0), T(k))]
k=k+1
?“(J:(k)(()),T(k) x(k)(O)
S(&S(k) (0)’ T(k)) < E€prel T(k) + €abs
Are you
satisfied with
current
Trajectory sensitivity w.r.t
initial conditions
4 N )
00" (@(O)T) _ 1. 09 (2(0).T)
| (A:r;(’“)(()) ) - dx(0) N aT (T(x(k) (0), T(’“)))
AT (k) am(g)’T) 88(%3),1”) S(QZ(k)(O),T(k))
\_ T=1,z2(k) (0),T(k) )
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The original idea by Aprille and Trick (1972)

r(@(0),T) = " («(0),T) — 2(0) = O

Let’s assume to know the r-th entry of x(0) at the p-th
iteration of the Newton method and define:

k k k k
y® = 20), ..., 2,0, 7® 2 (0),..., 2 (0))

T

r(y™) = et (y™) — z(0) = Op

7=1,2(k)(0),T (k)

gD Z AR 4 (B) 2FHD(0) = 2 (7))
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O™ (2(0),T)

9p" (2(0),T)

Am(’“)(o) ) oz(0) J Iy oT
(k) - 0),T) 9s(x(0),T)
AT 1 0z(0) oT

2

x (k) (0),T (k)

Oy (2(0),T)

T=1,

z(0) = 0x(0)
A
o d o0 (
G—%Ex = T%Tf(x(’r)) » <
1, o,
8—33037(0) = a—xoﬂfo \

Linearized problem
Linear and time-varying ODE 9

Milla
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0x(T)

0x(0)
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( 8_x _ TJf(:c('r))@ Be careful th.is is a .LTV OD-E that we war-lt -tc-)
< 0xg 0x solve N times with N linearly independent initial
ox conditions! (the N columns of the identity matrix)
8—(0) =1y
\ o
L1 _ .3
/ lINL == 0dn { i1 =x2 — (2§ — 0.1z1)
I To = T
— H3 |42
T o | ~Gei-01) 1 O 5
I 1 0| 0dzg =~
( Z11 Zor | _ T —(329 —-0.1) 1 =11 =221
< Ho1 o9 1 0 o1 S22
—n |10
\ “(0) _ 0 1 ]
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Linear Time-varying Differential Equations

é — B(t)f + /8(?5) If B(t) and f(t) are continuous in the [t,, t,] interval
S(to) =& € RN then the problem admits one and only one solution.

The set of all the solutions of the homogeneous ODE

é = B(t)f associated with the original problem is an N-dimensional
subspace.
-
t) = AN N (t A fundamental matrix contains by definition a basis
o) [61( ) . ( ) ] of that subspace. The determinant of that matrix,
det(o(t) # 0) Vt > tg must be different from zero.
_ J

-

o(t)C It is a fundamental matrix too.

Mllano —a.a. 2018-2019
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{ { $=B)¢ It’s unique solution is given by &s(t) = @(t)d™ 1 (t0)éo

[ ®(t,to) = d(t)d H(to) ®(to,to) = Ly Itis the canonical fundamental matrix.

J

é = B(t)¢ + B(t) ®(t,to) = B(t)2(t to)
{ {(to) = o » { P (to,to) = 1In

Lagrange’s formula

4

)= Bto)g  +D(L k) ] (7, to)B(r)dr

¢free(t)2free response

to
foreed pyLorced response /
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Steady State Analysis (time-domain shooting method)

Trajectory sensitivity w.r.t initial conditions is provided by
the fundamental matrix computed along the trajectory
(during each iteration of the Newton method)

(O Oz 9T _ g(r,0) -
e = TJf(x(T))ﬁ_xo Iz ®(7,0) =T J¢(z(7))®(7,0)

ox — 1y
a_xo(o) — 1y » ®(0,0) =1

... once the periodic steady state solution has been found ...

( x(0) — x5(0)

dr Tf(z(r)) T — T,
#(0) = o Y 2(t) = 24(t) = 2.t + T0)
| Tr(z(t) = Jp(zs(t) = Ji(t) = Ji(t + Ts)

(I)(t, O) — ®° (t: 0) (The solution of a PLTV it is not
L D° (TS, 0) #+ P (O, O) necessarily periodic)
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The variational system

From a practical point of view the fundamental matrix can be obtained by performing a
Forward Sensitivity Analysis (FSA) of the system trajectories with respect to the initial conditions
or, in other words, solving the variational problem:

(5 1) Ci= f(e )"
' x(to) = Xy

b(t,to) = JrB(t, to)
q)(tO)tO) — ILN

If X, (t) is the solution then it is possible to
. compute (at first order) the effect Ax(t) on
{1+3,13) the solution produced by a small

o perturbation AX, of the initial conditions
(*) Note: | removed the multiplication by T
since the t time is considered and not . AXS(t) = CD(t,tO) AXO(tO)
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Some properties of the fundamental matrix

Composition property Mapping property

O(1,1) <

fix.t)= (D(r;,rl,}}f'(i‘fm t)
f(x,2)=D(1,1 )f(x,)

D(t, )= D(t,1 ), )D(t,1)
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Summary

 Periodic small signal analysis
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Analysis of the system in the neighborhood of the solution

Once the periodic steady state solution has been located, it is possible to resort to the
linearization of the original system, in the neighborhood of the solution itself, to determine the
effects of small periodic signals perturbing it (periodic small signal analysis PAC).

u(t) =u(t+Ty,)

ml,=n1,="1T

n,m € 7
$(t0) = X Ly, (t — Ts (t) + C(t)

~ 8
% m
t
J/ﬂ
%%
22
8
e
\_-/g\_/
I
=
o
_|_
oy

(1) + () = F(as(D) + THOCE) + O(ICI?) +u(t)
< Flaa(®) + THOC() + u(t) { O = O a0

C(to) = Co
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{ C(t) = J(E)¢(t) + u(t)
¢

C(t) (o + D°(t, to) / (®°(, to))_l u(T)dr

to

It is available as a byproduct of the
shooting method

and
if you know it in [t,, t; +T] then,

owing to the composition property,
you know it for t=0 (think about it!).

Mllano —a.a. 2018-2019
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b = —19 — (23 — 0.1 t
i; = xlxz (331 xl) " u( ) L1 Ing =z} — 0.1z,
21(0) = —0.1879 |

25(0) = 0.3150

| =

u(t) =u(t+T,) ()

T, = 6.2871

t
t) =10 sin | 2m—
u(t) sm(a’rT)

u
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!

“Small signal” trajectory
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Summary

something about what one should know when dealing with circuits (and systems)
described by a smooth vector field and working at periodic steady state

* Modified Nodal Analysis Formulation (this is for circuits)

* Periodic Steady State Analysis (time-domain shooting
method)

* Periodic small signal analysis

* Floquet Theory (stability)
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Floquet Theory

Floquet (1883)

( B(t,tg) = P(t,tg)el (t—to)
P(t,to) = P(t + Ty, to)
P(to,to) = P(Ts +to,t0) = 1n

| det(P(t,ty)) #0 Vt,to

Monodromy matrix
( (I)(TS + 1o, to) — ol'Ts

\ 1
F = Tlog(q)(TS —+ to,to))

\ S

Millan

Let’s assume that
( F=UDU!
D = diag(n;),
| {mi} = eig(F)
Floquet exponents (Hp. N distinct)
{ni} = eig(F)
Floquet multipliers

eig(®(Ts + to,tg)) = eig(]leFTS) =

i=1,---,N

N

Decomposition

O (t + to,to) = PAt, to)UeD(t—fo@
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At +to, tg) = P(t, to)UePt—t0) It’s a fundamental matrix ...

[ P(t,t0)U = [A(t), -, AN(D)]
N(t) = Ni(t+Ts), i=1,---,N

A(t +tg, tg) = [e(t—to)m Ai(t), -, elt—to)ny )\N(t)]

\

The solution of the original problem can be expressed, by definition, as a linear combination
of the columns of the fundamental matrix.

— cyelt—to)n . (t—to)nn The ¢, constants depends
& (t) e o Al(t) T Tene ’ AN(t) on the initial conditions.

Periodicity: a null exponent (¢ 1 — (1; — at least a multiplier equal to 1)

Stability: all the other exponents must have negative real part (viz., multipliers in the unit
circle in the complex plane)
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Let’s go back to our very problem ...

(dx(T) ( z(0) — z4(0)
dr Tf(e(r)) T — T,

z(0) = xo » < x(t) — xs(t) = xs(t + Ts)
®(7,0) = TJ¢(x(7))®(T,0) Jr(z(t)) = Jy(ms(t) = J3(t) = J5(t + Ty)
$(0,0) =1y [ ®(t,0) — 5(¢,0)

Once a periodic solution is obtained, the variational equation becomes a LTV ODE with
periodic coefficients and consequently each one of its columns can be written as

(I)ij (t) — Cl’je(t—to)’ﬂl A\ (t) S Cl’Ne(t—to)T)N AN (t)

The eigenvalues of the monodromy matrix are the Floguet multipliers and can be used to
study the stability of the periodic steady state orbit.

As a matter of fact, if we apply a small perturbation at any point of that periodic orbit, the
destiny of such perturbation depends on the Floquet multipliers.

Mllano —a.a. 2018-2019 37



The stable periodic steady state solution of an autonomous ODE always exhibits a multiplier
equal to 1 whereas in the non autonomous case all the multipliers are within the unit circle
in the complex plane.

Autonomous case

(&= flz.t zs(t) =xs(t+T) d. d
i(to{(:xa:o) » { s(to) = &0 € aie = gl (%)

{ z(t)eU cRY
f:RNFTL L RN d ‘ |

| feCHRNT 2 Ts = Jp (@) (@)

It is a solution of the
linearized problem!
. _ n t—t ;
Ts(t) =D g c;eltto)m: Ai(t)

Since % 4(t)is periodic at least
one exponent must be 0, viz., a Floquet
multiplier is 1.

Non autonomous case: you can try!
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_ A.’I}(t) = ¢° (t, to)A.ﬁ'}g
{.rf +53:f 1 )

( ®3(t,tg) = P(t, tg)el =)
P(t,to) = P(t + T, to)
P(to,to) = P(Ts +to, t0) = 1y

| det(P(t,t0)) #0 Vi, tg

Ax(t) = crelttoIm )\ (t) + - 4+ eyelt—t)MN Xy (1)

If all the exponents have negative real part
(viz., multipliers in the unit circle in the
complex plane) the effect of the perturbation
vanishes ... if there is a multiplier equal to 1
the effect of the perturbation does not vanish!
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0.4
0.3}
0.2f
01}

0.1f
0.2}
0.3
0.4}

-0.5

-0.4 -0.2 0 0.2 0.4

X

Shooting (T= 6.28715s)

0.6

(T + to, to) = [

629((1)(T -+ to, to)) = |:

Millan
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”~

Ci’l = —T9 — (.’E? — 01331)
L.’J-Z'Q = T

21(0) = 0.5

{L’Q(O) = —0.5

C =

L=1

0.69171 0.22836
0.21417 0.84136

0.5330692592213689
0.9999999999861733

|
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... SUumming up ...

p—

e Shooting method
The fundamental matrix is crucial for — * Small signal analysis

* Stability analysis

—

Variational system

(&= f(x,t) The Jacobian matrix of the

) z(to) = @0 f vector field must exist for

B(t,to) = Jp(w(t)B(t, o)
®(to, to) = Iy every X and for every t.
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What happens if ...

L1 lINL ::1::{’ — 0.1z1 + 0.1sign(xq)
O ( Ciy = —x9 — (23 — 0.121 + 0.1sign(z,))
—1 L9 .
L L Lzo = x4
z1(0) = 0.5
{
{172(0) = —05
C=1
\ L =1

The constitutive equation of the non linear resistor becomes piecewise smooth
and the dynamics of the circuit can be described by resorting to two vector fields
according to the value of X;:

Ciy = —x9 — (23 — 0.1zy +0.1), x1 >0 The event x,=0 rules the
Lxy = x4 switching between the two
vector fields and the 2D state
‘ space is partitioned by a surface
{ C.CL’l — — I — (.’B‘% — 01.’,!71 — 01), T < 0

Lio = 1 h(xy,20) =21 =0

Mllano —a.a. 2018-2019 42



( C&Cl = —T9 — (I‘i’ — 015(,'1 + 01), xr1 > 0
CQ'-J'l = —T9y — (l‘? — 01113‘1 — 01), T < 0
L.’).S'Q = T
§ 1 (O) = 0.5 Let’s try to perform a transient simulation
33’2(0) = —0.5 looking for the zero crossings of x;
C=1
\ L =1 0.6f
0.4}
In correspondence with the
commutat[ | 0.2}
the sti. T
continuous . = of
longer smc. y
tange ot
di.
-0.4
-0.6 |
0 5 10 15 20
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If we plot the result of our transient
simulation and we plot the
trajectory in the state space, | dare
say that we should be convinced
the a periodic steady state solution
is admitted ...

Could we use the shooting
method and do everything as
we did in the smooth case?

a4



T = f(:l?,t)

m(to) =Ty

b(t,t) = Jr (L, to)
P (to,t0) = 1In

i1 = —x9 — (23 — 0.1z1 +0.1), 1 >0
i‘l = —XI2 —(.T?—lel —0.1), I <0
jZ‘Q = I

P(to,t0) = In It is not valid in X;=0

(I)(ta tO)

Let’s apply the shooting method as we did before ...

Mllano —a.a. 2018-2019
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... It converges ...

O(T + to, tg) =

[ 0.3197 —0.1883
| —0.2800  0.2909

02{ T-=6.39755 eig(P(T + to,t0)) =

0.5353344555722719
0.07521750280842560

... but the monodromy
matrix is wrong!

0.2 0.4 0.6
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The switching system with the Jacobian that is not defined across the
discontinuity is such that the Newton method succeeds. In fact, if the
Jacobian is not “too wrong” the Newton method is able to correct such
“small” mistakes owing to its iterative nature and robustness. In this
case the discontinuity is moderated and so we found the limit cycle.

But we got it just thanks to the numerical method ... the properties of
linearization are completely lost.

We must do something better if we want to retain all the
properties we derived in the smooth case (and also
guarantee the convergence if the Jacobian is really “wrong”)

Mllano —a.a. 2018-2019

a7



Hybrid dynamical systems

“Hybrid systems are made up of dynamical continuous/discrete time evolution

processes interacting with logical/decisional processes”
Peters, K., & Parlitz, U. (2003). Hybrid systems forming strange billiards. International Journal of Bifurcation and Chaos in Applied

Sciences and Engineering, 13(9), 2575— 2588.

“Switching” dynamical systems
Discontinuous vector field but no discontinuity
in the state (Filippov system)

(.‘IU! IU) ;I(.Jf) =(

(Continuous but not
differentiable vector fields)

Mllano —a.a. 2018-2019

“Impact” systems
The state exhibits discontinuity in time

/—\

{x*,f__} =M(x7,7)

(7.1,)

h(x)=0

('.,ru, [) f

0
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For hybrid dynamical systems the
variational problem is not defined at

switching/impact points since at ;.
i . . t = f(z,t)
those points the trajectory is not (t ) N
differentiable. L) = Lo
{
This problem can be overcome by t to JM t to
resorting to a proper correction \ to, tg) = In

factor, the saltation matrix,* to be
used at switching/impact points.

*M. DI BERNARDO, C.J. BUDD, A.R. CHAMPNEYS,
AND P. KOWALCZYK, Piecewise-smooth Dynamical
Systems, Theory and Applications, Springer-Verlag,
London, 2008.
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To = T

Z1 =

21(0) = 0.5
$2(0) = —0.5

Millan

o0—a.a. 2018-2019
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Saltation Matrix

First goal

At = At (Axo)
(at first order)

t+ ALy
0 1)

Unperturbed IC

(x4,

I

Perturbed IC @
(x +Ax .1 )

Second goal

{f_,;t]_+A-£($U) _ {ptl-i-At(:L,U + ASEO) —

= S [p" (z0) — ¢" (w0 + Ao)]

(at first order) G



.\q:}I o jr(xu i f’[])
. VA,

x | | | The purple point is approximated by an
U ""ﬁ)*‘f;)_("}‘ P ‘f,r) expansion centered in the blue point

h (Pr;+-_‘l.r(xu_|_® (Ptl + At (x()) —

\ = " (z9) + fa (' (z0)) Al + O(AL7) =
OI(x +Ax 1) ~ @' (z0) + fa(z1) At
0 00

fl(fL‘l)-l- 5
+J5, (1) (9" (w0 + Azo) — 21) + O((" (x0 + Azg) — 1)7)

The red point is app
expansion centered in the green point
et (zg + Azg) =

= o' (xo + Axg) + AL+ O(A17) =

approximated by an ~ o' (zo + Axg) + f1(z1)At

expansion centered in the blue point
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ti+AY
O (x 1)

Pl A @o) & " (w0) + fa(@1) Al

ol

J, Y 7 V=(x
~_ - .,‘.”),IE)—(J.E, I‘;) ”‘t1+At($0 + A[,Uo) ~ "50'51 (mo -+ Amo) + fl (Q‘L‘l)Af
h(X) (-P +_1.(,£ .ﬁL‘L” f“)
“\\\\
(xrx’t ) (P”(xu_l_&xu’-’fu)

x +Ax 1) , . . . e . o .
L Let’s consider now the linearization of the manifold at first in the red point ...

0=h [({)t]—i_At (3:0 + A.L‘(])] ~ h [({Jtl (;’L‘[] + AZL‘[]) -+ fl (azl)A{] ~

and then in the green one ...

~ VIR (o' (z0) + Jf, (¢ (z0)) Azo] =
= V7Th[z + Jf, (x1)Axzp] =~
~ VTh(.’L'l)
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(pi' i +:_‘|E'('-xu : {U)
(Vh

X
1

X0u)=(x . 1)

i 1 A 4
O (x FAX L2 )

0% 0

(x,7) O(x TAX 1)

0~ VTh (1) [p" (20 + Azo) — @™ (20)] + VT h (1) fr(w1) Al

VTh(xl)

At (Azg) ~ — VTh(zy) f1 (w1

) (0" (zo + Azg) — " (20))
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P TA (20) = @' (o) + fa(z1) At

P (3o + Az)
VTh(xl

= @' (zo + Axo) + fi(z1) Al
B )
VTh(zy) fi(z1)

At = (" (o + Azg) — " (0))

phHTA () — @A (g + Azg) = 9" (20) — " (0 + Azo) + (fa(x1) — fi(z1)) At

A () — @A (20 + Azo) =

=||1+

(F2(21) = fi(@1)) VEh(z1) (0" (o) — " (w0 + Axo))

VTh(z1) f1(21)

t+ A
QT 1)

Saltation matrix S

h(x)=0 . (X FAX 1)

LR

(x,1) @(x TAx 1 )
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switching vector field and time-varying manifold

fa(x1,t1) = fi(zr, 1)

S: ]l—|— VTh(letl)
VTh(z1) fi(wn,t) + G2
(x_,t)
RN (D
)
&
.ﬁ r’f L (1)
hx,t)=0 3
St ,t) f,
L ,
(xn.,rn)

O, )=D(r,7)S (¢, )
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impact and time-varying manifold

Jacobian of the mapping function

o fM (2=, t) T o (e t) o,
M Y P Y e S N Vo)

(x,1)
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The most gener al case (switching, impact and time-varying)

N fo(M(z™,t1)) — I (2™, t1) fr(z™, t1)

S =Jy(x,t
M( 1) VTh(x_’tl)fl(x_7tl)+ %LX:

_3t1

X, 1 | |
p (x,. 1) (x7,1)=M((x",1)
‘ O(t,t)
oo AV
o . , E(I.JL" 1)

(.‘xu’ ’f'u) b ;“'} f]
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In our example the Saltation matrix is given by ...

1= w2 — (2 = 0.121) = 0.121 Ry, 29,2) =21 =0 Vh=[1,0,0]"
.’i’g = I _ _ _ -
) 21=0 zy 2
21(0) = 0.5 zy | =M(xy,x5,20) = | a3
22(0) = —0.5 |z |~z
| 21(0) = sign(x1(0
1(0) = sign(a: (0)) Lo
The variable z; plays the role of Jy = 0O 1 O
a digital state variable 0 0 =1
M(xz—,t1)) —J 1 1 _
S _ JM(.'L'_,tl) 4+ fl( (x ’ 1)) M(‘T ) 1)f1($ 1)vTh(x 3tl)

VTh(IE_, tl)fl(w_itl) + %_]1; ’a:_,t1

ry —0.1(—27) 1 0 O xy — 0.1z
0 —10 1 0 0
0 0 0 -1 0

Ty — 0121
[1,0,0] 0

[1,0,0]

S O =
o = O
|

HOO
T
+

0

Mllano —a.a. 2018-2019 59



Or depending on the model we choose by ...

( T1 = —T9 — (Z% - O-1$1) — O.ISign(:}_f;l)
jz2 0 xl h/ — p— O
) x1(0) = 0.5 (x1,22) = 21
\ 515'2(0) = —0.5 —— [I’O]T

(f2(x1) — f1(z1)) VTh(fff'l)

S =1+ VTh(z1)f1(x1)
N [ (1) (1) ] + [ 5 _0.1§ign($l+) ] _ { T2 _Oll(JSign(xl_) ] 1, 0]

1,0] [ T, — 0.1§ign(:c1_) ]
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Summary
We will study the dynamics of a DC-DC switching converter
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1. Introduction

The elementary DC—DC' converters buck, boost
and buck-boost are a family of Power Electronics
(PE) circuits that allow the conversion of electrical
energy from one level to another without taking
into account, theoretically, losses in the compo-
nents. They are extensively used in power supplies
for electronic circuits and in the control of the flow
of energy between DC to DC systems, and in any
industrial application where there is a need of stabi-
lizing an output voltage to a desired value. They are
also widely used in small spacecrafts such as satel-
lites where DC power is generated by solar arrays.
Figure 1 shows the three basic power converters
buck, boost and buck-boost.

The operation of DC—DC converters is mainly
based on the switching between different linear con-
figurations. This must be implemented with an
appropriate control of the switches. In a noise per-
turbation free environment, given the desired out-
put voltage, the switching frequency can be selected
and the switches can be turned ON and OFF
according to a fixed pattern; this is referred to as
the open loop system. In contrast, in industrial
applications, noise and perturbations are always
present, and also the parameters of the circuits may

w3, LR
o i
VT ApD =
(L, R:)
VTV
Iy

[}’N_.__ {LJ RS} l'iL

-+

— ¥ R

Fig. 1. The three basic power electronic converters buck,

boost and buck-boost.
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be affected by external disturbances. Thus the use
of

We
will refer to the ON phase when the switch S is
closed and diode D is open; the OFF phase refers
to when the switch S is open and diode D closed.
A third phase (OFF’) that takes place when both
switches are open is also possible. The operation
mode when this topology takes place is called Dis-
continuous Conduction Mode (DCM). Otherwise, it
is called Continuous Conduction Mode (CCM).

(periodic evolution with the same
period as the modulating signal).

Switching DC—DC' converters are variable
structure systems (VSS) that are highly nonlinear.
During each phase the electrical switches select the
corresponding configuration of the circuit making
the energy flow from the input to the output in
agreement with the driving signal. The form of this
driving signal gives operating flexibility to the cir-
cuits and allows, for example, regulation in front
of its parameter variations, a task that cannot be
done with a rectifier implemented with only diodes.
However this switching gives rise also to switched
waveforms which can result in a great electromag-
netic noise emission.

However, due to their switching action and
feedback they are able to present a great variety of
nonlinear behavior such as bifurcations and chaos.

A canonical cell of first order with a capac-
itor in parallel with the load to filter the out-
put ripple is a second order circuit, and its state
variables are the inductor current i; and the
capacitor voltage ve. The signal driving the elec-
trical switch presents different intervals per cycle:
for each interval, the circuit takes a specific con-
figuration delivering energy during some intervals
and absorbing it within others. As it can be shown,
the dynamics of DC—DC converter circuits working
in continuous conduction mode (CCM) may be

Milano —a.a. 2018-2019 4



described by two independent and first order differ-
ential equations for each switch position.

These systems are therefore

piecewise linear (PWL). During the {first phase, the
state space evolution is given by a system of linear

equations, i.e.:
=AMz +B (1)

where A; and B; are constant matrices and x is
the vector of the state variables composed by the
voltage and current of the energy storage elements
like capacitors and inductors. This model follows

the evolution of the system for some time and-
ewitehes to another linear set of equations i 1he
following form

&=Aw+ By (2)

with, generally, new constant As and By matrices.
the dynamical behavior of the sys-
tem can be described by

Az + By ifcr(a:,t) = ()
Asx + Bs ifO'(LE,t) <0

fb:f(xat):{ .

As the A’s and the B’s matrices and vectors are
generally different we have a PWL discontinuous
vector field f. Other systems can be modeled by
similar PWL but continuous vector field f [Freire
et al., 1998; Freire et al., 2002]. In general, these
discontinuous changes in the constant matrices are
responsible for inducing nonlinear effects. However,
as the system is PWL, we can solve the time evolu-
tions exactly. In other words, we can find the map-
ping function that takes the state space variables
just after one switching instant up to their values
just before the next one. Let us assume that when
the switching occurs the value of the variable z
takes on certain value x(tg) at the switching instant

which as we know, requires
at least one more state space dimension. For feed-
back systems, as for most of DC—DC switching
converters, the switching instant depends on the
history of the state variables themselves. Therefore,
we effectively have a nonlinear system. Hence this

Milano —a.a. 2018-2019 5



Table 1. The A’s and B’s matrix for the basic converters
during phases ON, OFF and OFF’.

Converter Aon Aorr Aorrr Bon Borr Borr

boost Ay Ao Ac Ba Ba
buck-boost A, Ag Ac B, By,

kind of piecewise model, at least in principle, may
present nonlinear phenomena such as bifurcations
and chaos.

The differential equations, modeling each one of
the three configurations that use each converter, can
be derived by using the standard Kirchoff’s laws.
Let us define the matrices A,, Ay, A., B, and B,
as follows:

1 L
Aa: he ¢ ) Ab: i ’
) o B
L L L
1

1 0

Acz RC 3 Ba= Vin |

0 0 T

Mllano —a.a. 2018-2019

where R is the output load resistance, L is the
inductance which is supposed to have an Equivalent
Series Resistance ESR Rg, C' is the capacitance,
and Viy is the input voltage. During each phase
(ON, OFF and OFF’), and until a switching condi-
tion is fulfilled, the dynamics of the system is
described as:

x=Az+ B (6)
x = (vo,iz)! is the vector of the state variables
and the overdot stands for derivation with respect
to time ¢ (& = dx/dt). Table 1 shows the A’s and B’s
matrices for the three basic converters buck, boost

and buck-boost during each phase.



State equations of the buck converter

u(t) Y, (L, R:)

f‘"‘-.f’:-.f"“w
5 'EL + I UD ZD:O,UD <0
S Ap == <p D vp = 0,1p > 0
_ ZD[

this is referred to as the closed loop system. We
will refer to the {ON phase when the switch (S (is
closed and diode (D (is open; the OFF phase refers
to Wl.’lel'l the switch S is open and diode D closed. { VIN — LZL — ZLRS — Vo = 0
A third phase (OFF’) that takes place when both . ve

switches are open is also possible. The operation CUO — L+ ‘R 0

mode when this topology takes place is called Dis-

continuous Conduction Mode (DCM). Otherwise, it

is called Continuous Conduction Mode (CCM).

1 1
Vo L ~ RC (o] (Ve 4 O
ir | | _1 _Rs L VIN
L L
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State equations of the buck converter

u(t) Y, (L, R:)

TV

S 'iL + I UD 1p = 0,vp <0

S Ap == <p D vp = 0,1p >0
_ ZD[

this is referred to as the closed loop system. We
will refer to the ON phase when the switch S is
closed and diode D is open; the OFF phase refers
to When the switch S is open and diode D closed. { _LiL — ZLRS — Vo = 0
A third phase (OFF’") that takes place when both . ve
switches are open is also possible. The operation CUC — L+ R — 0
mode when this topology takes place is called Dis-

continuous Conduction Mode (DCM). Otherwise, it

is called Continuous Conduction Mode (CCM).

1 1
= +
i 1 Rs 1 0
L L
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State equations of the buck converter

u(t) Y, (L, R:)

.-""ﬁ.-":-.-"'“‘-.
5 'EL + I VD ZD:O,UD<O
v.—  AD Cc=/—wn<pg D vp =0,2p >0
_ ZD[

this is referred to as the closed loop system. We
will refer to the ON phase when the switch S is
closed and diode D is open; the OFF phase refers

to when the switch S is open and diode D closed. i =0

A third phase (OFF’) that takes place when both 1, =0

switches are open is also possible. The operation : ve
Cvue + n = 0

mode when this topology takes place is called Dis-
continuous Conduction Mode (DCM). Otherwise, it
is called Continuous Conduction Mode (CCM).

1

-1 ]
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A case study

3

g‘ﬁ'

|

II

o

]

|1

If

o
AN

y

Y o Vcon
F s —\f/ vmp _]>1— r‘:'-;lv'
AV

0

+F—+

Famp

Fig. 8. Schematic diagram of a voltage controlled buck
PWM DC-DC' converter.

6.2.1. FExample 1: PWM voltage controlled
buck converter

Let us consider the PWM controlled buck converter
represented in Fig. 8 with the same value of param-
eters in [Hamill et al., 1992]: R =22, L = 20mH,
C=47TuF, Rg =08, T = 400 us. If a ramp signal
with lower value V; = 0V and upper value V,, =1V
is used, the corresponding control parameters are:
k, = 1.9091, k; = 092, Vi = 22.4364 V. The matri-

Input Disturbances
Feedforward

|
Nominal l Control l Output
)

Reference signal u(t)
—)| Controller |—————p Power Circuit

T Feedback Loop

Fig. 3. Block diagram of a DC—DC converter with feedback
and feedforward.

u(f)

U T

Fig. 4. Control signal o(t), sawtooth ramp signal vramp(t)
and driving signal u(t).
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