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Abstract: This paper presents the software tools developed for the research project Advanced Modelling for Power System
Analysis and Simulation (AMPSAS) funded by Science Foundation Ireland from 2016 to 2021. The main objective of AMPSAS was
the development of novel analytical and computational tools to understand, efficiently design, and optimise ever-changing modern
power systems and smart grids, through model-based approaches. In particular, the paper discusses: (i) stochastic differential
equations for modelling power systems which are subject to large stochastic perturbations (e.g., wind and solar generation);
(ii) the effect of controller and modelling imperfections, e.g., delays, discontinuities, and digital signals, on both local and area-
wide regulators in power systems; and (iii) the stability analysis and dynamic performance of power systems modelled through
stochastic, delay and hybrid implicit differential-algebraic equations. The software tool developed during the execution of AMPSAS
integrates areas of applied mathematics, automatic control, and computer science. Several implementation features and open
challenges of this software tool are also discussed in the paper. A variety of examples that illustrates the features of this software
tool are based on a dynamic model of the all-island Irish transmission system.

1 Introduction

1.1 Motivations

A combination of technical innovation and the increasing presence
of renewable and non-conventional generation in actual electrical
networks all over the world highlights the necessity of studying
several aspects related to the modelling, regulation, and stability of
power systems [1, 2].

Among the several factors affecting the behaviour of the electri-
cal energy supply, it is worthwhile mentioning the volatility of some
primary energy sources, such as wind and solar. This volatility is
mainly due to the stochastic nature of the weather conditions that
determine the wind speed and solar radiance. Moreover, the power
consumed by a consumer is intrinsically affected by uncertainty. In
most cases, this volatility can have a negative impact on the quality
of the power supply and can reduce network security. As a matter
of fact, the power fluctuations of wind power plants can potentially
even help stabilise the system [3]. Proper modelling of stochastic
processes can lead to surprising and counterintuitive conclusions.
For these reasons, a systematic approach that properly considers
stochastic models is highly desirable [4].

An immediate consequence of the presence of intermittent gen-
erators in transmission and distribution networks is the need to
improve existing controllers and, in most cases, install new local
and/or area regulation systems (see, for example, [5]). While local
regulation is typically appropriate to maximise electrical energy
production from renewable sources (e.g., the maximum power
point tracker), area regulators are intended for advanced control of
resources (e.g., smart grids), minimising the negative effects of the
volatility previously described. The goal is that all network users,
i.e., generators and consumers, can be regulated in order to guaran-
tee the maximum cost effectiveness, quality, security, and stability of
the electrical energy supply. Any control strategy, in particular with
the case of area controllers, requires a communication network that
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Fig. 1: Architecture of the proposed software tool for power system
analysis.

can send the measured signals to control centres. These communica-
tion processes can be affected by delays, noise, discontinuities (e.g.,
gaps and discretisation of digital signals) and/or loss of information.
In particular, delays and loss of information, just like the stochastic
variations present in wind speed and solar radiance, are sources of
instability and significantly increase the nonlinearity of the equations
that describe the power system [6].

The knowledge of the behaviour of power systems, real-world
data, measurements and mathematical theory form the conceptual
and practical bases of this paper (see Fig. 1). These are translated into
efficient software tools through which all modelling, stability anal-
ysis, and control design are implemented and tested. Figure 1 also
shows the three strands of the developed software tool: (i) Stochastic
Differential-Algebraic Equations (SDAEs); (ii) Delay Differential-
Algebraic Equations (DDAEs); and Hybrid Differential-Algebraic
Equations (HDAEs), respectively.

This paper aims at defining a methodological paradigm for the
modelling, stability analysis and control of power systems and
smart grids. The paper also discusses the formalism to describe
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the diversity of phenomena and events that compose an electrical
power system. The result is the proposal of a power system model
based on stochastic, functional, hybrid implicit differential-algebraic
equations.

1.2 Literature Review

This section describes the state of the art, at the time of the begin-
ning of the initial development of the software tool, of each strand,
namely formalism for stochastic, functional and hybrid differential
algebraic equations.

1.2.1 Stochastic Differential-Algebraic Equations (SDAEs):
Power system variables evolve in different time scales. To take into
account this behaviour, power systems are traditionally modelled as
a set of Differential-Algebraic Equations (DAEs). Due to the stiff-
ness of this model, implicit numerical methods should be used in
simulations to avoid numerical instability. On the other hand, if
Stochastic Differential Equations (SDEs) are used to model random
perturbations in power systems, the system model becomes a set of
SDAE. Therefore, solving SDAE models involves dealing with both
stochastic terms and stiffness. Observe that the numerical integration
of SDAEs is much more complex and computationally demanding
than in the case of SDEs. With this regard, in [7], the adequacy of
different implicit fixed step size numerical methods for SDAEs is
discussed. In the context of electronic circuit simulation, [8] shows
that implicit numerical methods with fixed step size used to solve
SDEs are also suitable for being applied to SDAEs.

For the reasons outlined above, the literature on power system
analysis is mostly limited to SDEs. Traditionally, the focus has been
on modelling load behaviours [9–11]. In [12] SDEs are used as a
planning tool for power systems. In particular, SDEs are used to
model small perturbations in both system loads and transmission
line parameters. A similar approach is used in [13] and [14] to
analyse power system dynamics, where discrete perturbations are
considered in switching events due to the operation of tap-changing
transformers. The effect of stochastic processes on power system
voltage stability is studied in [15–17]. In [18], both load and wind
power production are modelled with SDEs to address the problem
of power system supply-demand balance in an hourly time frame.
More recently, in [19] random loads are modelled through SDEs
which are included directly in the algebraic equations of a power
system model. The problems related to the appearance of singular-
ities in the model resulting from this approach are investigated in
[20]. Finally, stochastic transient stability is discussed in [4], and the
application of SDEs to wind speed modelling is analysed in [21].
In the same context, in [22] an implicit variable step size scheme
for SDAEs is proposed. More recently, an implicit fixed step size
method for SDAEs with stiffness in both the deterministic and the
stochastic parts of the model has been proposed in [23].

1.2.2 Delay Differential-Algebraic Equations (DDAEs):
Time delays arise in a wide variety of physical systems and their
effects on stability have been carefully investigated in several engi-
neering applications, such as signal processing and circuit design
[24, 25]. Nevertheless, thus far, research has been lacking on the
effects of time delays on power system stability. As a matter of
fact, time delays are generally ignored. An exception to this rule is
[26], which presents a model of long transmission lines in terms of
DDAEs.

In recent years, wide measurement areas and the recent appli-
cation of Phasor Measurement Unit (PMU) devices make remote
measurements necessary, which has led to some research on the
effects of measurement delays. For example, [27] and [28] present
a robust control scheme, considering the effect of time delays, for
wide-area Power System Stabilisers (PSSs), and [29] tackles the
issue of time domain integration of DDAEs. The effects on small
signal stability of delays due to PMU measurements are studied in
[30], based on a probabilistic approach.

Existing studies on stability and control of delayed power system
equations can be divided into two main categories: (i) time-domain
methods, and (ii) frequency-domain methods.

Time-domain methods: These methods are based on Lyapunov-
Krasovskii stability theorem and Razumikhin theorem. The appli-
cation of time-domain methods allows for the definition of robust
controllers (e.g., H∞ control) and the capability to deal with uncer-
tainties and time-varying delays. However, the conditions of the
Lyapunov-Krasovskii stability theorem and Razumikhin theorem are
only sufficient and cannot be used to find the delay stability margin.
Moreover, it is necessary to find a Lyapunov functional or, accord-
ing to Razumikhin theorem, a Lyapunov function that bounds the
Lyapunov functional. Hence, in the nonlinear case, the applicability
of time-domain methods strongly depends on the ability to define a
Lyapunov function (i.e., the same limitation as in the case of DAE
systems). The application to power system analysis are limited to
small linearised test systems [31, 32]. If the DDAE is linear or is lin-
earised about an equilibrium point, finding the Lyapunov function,
in turn, implies finding the solution of a Linear Matrix Inequal-
ity (LMI) problem [33, 34]. A drawback of this approach is that
the size and computational burden associated with LMIs drastically
increases with the size of the DDAEs. As a matter of fact, LMI-based
analysis has become computationally tractable only in the last two
decades [34]. However, despite their large computational burden, in
recent years, LMI-based approaches have been applied to several
practical problems (see, for example, [6]).

Frequency-domain methods: These methods mainly involve the
evaluation of the roots of the characteristic equation of the retarded
system [30, 35, 36]. This approach is in principle exact but due to the
difficulty in determining the roots of the characteristic equation, the
analysis is limited to one-machine infinite-bus systems. Although
an exact explicit analytic method based on the Lambert W func-
tion can be applied to simple cases [37], the analytic solution of the
eigenvalue problem of delayed systems cannot be found for practical
power systems. Thus, frequency-domain methods rely on approxi-
mated numerical techniques. A possible approach is based on the
discretisation of the solution operator of the characteristic equation
[38]. Other methods estimate the infinitesimal generator of the solu-
tion operator semi-group [39], and the solution operator approach
via linear multi-step time integration of retarded systems without any
distributed delay term [40]. Yet other approaches apply a discretisa-
tion scheme based on Chebyshev nodes [41, 42]. These methods are
based on a discretisation of the Partial Differential Equation (PDE)
representation of the DDAEs. The implementation of such discreti-
sation is surprisingly simple while results proved to be accurate. The
idea is to transform the original DDAE problem into an equivalent
PDE system of infinite dimensions. Then, instead of computing the
roots of retarded functional differential equations, one has to solve
a finite, though possibly large, matrix eigenvalue problem of the
discretised PDE system.

1.2.3 Hybrid Differential-Algebraic Equations (HDAEs): An
area that appears of particular relevance for power systems that
heavily rely on telecommunications is the study of the effect of
discontinuities (e.g., breaker operations, tap changer positions and
power electronics switching) on power system behaviour. Pioneer-
ing work in this field was provided by Hiskens, which outlines a
formalisation of grazing bifurcations [43, 44].

The study of HDAEs, i.e., dynamic equations with both con-
tinuous and discrete variables, can be roughly divided in to two
categories: (i) equations with discontinuous right-hand side, where
the discrete variables are due to structural changes, such as the hard
limits of the controllers; and (ii) behavioural models, i.e., equations
where the discrete variables approximate a complex model whose
details and dynamics are not relevant for capturing the overall system
dynamic, i.e., the modelling of mosfets as simple switches.

Differential equations with discontinuous right-hand side: The
analysis of differential equations with discontinuous right-hand sides
has been a subject of intense research, and well-established tech-
niques were developed in this area in the second half of the past
century (see, for example, [45–47]). In particular, some fundamental
work in this area was the formalism introduced by Filippov in [46]
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for dynamic systems with switching manifolds. Filippov equations
are a powerful tool to define discontinuities as well as the imperfect
behaviour of measured control signals (e.g., gaps and loss of infor-
mation). Attempts to introduce the rigorous formalism by Filippov
into power systems have not been conducted thus far. The implemen-
tation of a software tool with this capability will allow for a better
understanding of the behaviour of the impact of discontinuities on
power system operation.

Behavioural models: The well-assessed formalism based on
Discrete-Events systems (DEVS) and the resultant extensions to
hybrid continuous and discrete-event systems has formed the source
of an extremely vast and diverse literature [48, 49]. A similar
approach, based on behavioural variables is that used in elec-
tronic circuit analysis and hardware description languages (HDL),
e.g., Verilog HDL [50] and, notably, Verilog-A that mixes analog
and digital models [51]. Discrete-events and/or behavioural mod-
els are a convenient and efficient way to describe digital systems.
Recently, experts in DEVS have been studying power systems and
their implementations using the DEVS formalism [52, 53]. A rele-
vant example is the software tools implemented at the Oak Ridge
National Laboratory, USA, as well as references in [54].

1.3 Contributions

This work proposes the formulation of power systems as a set of
Stochastic Functional Hybrid Implicit Differential-Algebraic Equa-
tions (SFHI-DAEs) and describes a variety of modelling and efficient
simulation techniques to integrate, study the stability and design
robust controllers for this kind of dynamic models. The main
contributions of this paper are the following.

• To provide a novel paradigm for the analysis and simulation
of power systems. This goal is achieved by modelling power sys-
tems as a set of discrete-event, behavioural, stochastic, functional,
discontinuous implicit differential-algebraic equations as opposed
to the conventional classical model that is based on deterministic
continuous differential-algebraic equations.
• To remove some conventional simplifications and hypotheses that
were assumed in power system models several decades ago and then
seldom discussed again. These are, for example, the effect of dis-
continuities, digital signals, stochastic processes, etc. Apart from
technical complexity, there is also the challenge to make practi-
tioners aware of common simplifications that are made and of the
importance of re-evaluating commonly-accepted models.
• To combine concepts from applied mathematics (e.g., fractional
calculus) and nonlinear control theory (e.g., utilization of delays
to improve the stability of the system), as well as concepts from
computer science and, in particular, modern modelling & simulation
techniques to reformulate the architecture and the basis on which
power system simulators are built.
• To discuss modelling limitation, implementation challenges and
numerical issues of the proposed SFHI-DAE formulation, as well as
a vision for future work in the field of power system modelling and
simulation.

All contributions are supported with simulations based on a
dynamic model of the All-Island Irish Transmission System (AIITS).
These simulations are obtained with the software tool Dome [55].

1.4 Organisation

The remainder of this paper is organised as follows. Section 2
describes the proposed power system model as a set of SFHI-DAEs.
Section 2 also provides relevant remarks on the proposed model,
including methodological approaches, challenges encountered dur-
ing the development of the software tool and open questions and
unresolved issues for future implementation and research. With this
aim, this section provides relevant references where the interested
reader can find additional examples and case studies carried out
by the authors that illustrate the techniques discussed in this paper.

Section 3 presents a variety of case studies, based on the AIITS
that illustrates the various features and capabilities of the proposed
SFHI-DAE-based power system model. Finally, Section 4 sum-
marises the main conclusions and the lesson learnt from the project
AMPSAS and draws relevant recommendations for future work.

2 Modelling

The conventional power system model for transient stability analysis
consists of a set of explicit DAEs [56–58]:

ẋ = f(x,y, t) ,

0 = g(x,y, t) ,
(1)

where x ∈ Rn and y ∈ Rm denote the state and algebraic variables,
respectively; and f and g are non-linear differential and algebraic
equations, respectively.

Equations (1) represent the model that, with various degrees of
simplifications and with various techniques, has been utilised for
more than a century for the transient stability analysis of power
systems. This models is specifically designed to account for the
time scales of the electromechanical dynamic response of syn-
chronous machines and their primary controllers while neglecting
electromagnetic transients.

Model (1) is often referred to as Root-Mean Square (RMS) or
Quasi-Steady State (QSS) model because voltages and currents are
assumed to be slowly varying phasors. This is one of the main
idiosyncrasies of (1), namely the fact that the frequency is assumed
to be constant in the definition of admittances and impedances, but
phasors have variable (algebraic) phases and synchronous machines
rotor angles and speeds are state variables. This apparent inconsis-
tency often confuses researchers coming from circuit analysis and
control theory but is, in effect, a very sensible approximation for
conventional power systems whose dynamics are dominated by the
synchronous machines and their primary controllers [59].

2.1 Intepretation of Algebraic Variables and Equations

2.1.1 Singular Perturbation Approach: There are various
ways to interpret the algebraic equations and variables in (1). Prob-
ably the most intuitive one is to consider y as demoted state
variables, i.e., states with a infinitely fast response. This might be
often the case, especially when thinking of the voltages and cur-
rent in transmission lines as these, in principle, are the states of the
shunt capacitive charging and series inductive elements, respectively,
of the lines. This interpretation justifies the singular perturbation
approach [10, 60]:

ẋ = f(x,y, t) ,

ϵ⊙ ẏ = g(x,y, t) ,
(2)

where ϵ ∈ Rm is a vector of small positive numbers and ⊙ is the
element-by-element product. This interpretation, however, does not
take into account “auxiliary” variables, i.e., variables and equations
that are introduced in the model only to simplify the formulation, for
example, in rectangular coordinates, it is often needed to define the
magnitude of the voltage, hence the equation:

0 = v2r − v2i − v2 , (3)

where vr and vi are the real and imaginary components of the QSS
voltage phasor and v its magnitude. Of course, one can invent a
dynamic for this equations by defining:

ϵ v̇ = v2r − v2i − v2 , (4)

but this dynamic is not physical and constitutes, in effect, an arbitrary
modification of the overall system dynamic behaviour. This might
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not be an issue if ϵ is sufficiently small but using very small values
for ϵ also contributes to the stiffness (i.e., the spread of the time scales
of the dynamics of the system) of the differential equations and, in
turn, can make more challenging their numerical integration.

2.1.2 Algebraic Equations as Constraints: Another, often
useful interpretation of g is as constraints of the differential equa-
tions. According to this interpretation, the purpose of algebraic
variables y, thus, is that of reducing the domain of x to a subset
X ∈ Rn which is not known a priori but depends on the equations
g. This interpretation has its natural ally in the implicit function,
which suggests that – at least in theory – the algebraic equations can
be expressed as:

y = g−1(x, t) , (5)

which allows rewriting (1) as a set of Ordinary Differential Equa-
tions (ODEs):

ẋ = f(x, g−1(x, t), t) . (6)

In practice, as it has to be expeced, (5) can almost never be found
explicitly. Interestingly, from the numerical point of view, being able
to find g−1 is not necessary nor, in fact, desirable. This can be easily
understood considering a linear system in the form:

ẋ = Fx x+ Fy y ,

0 = Gx x+Gy y .
(7)

This system can be obtained as an approximation of (1) or, more
commonly, its linearisation at a stationary point. In the latter case,
the variables are effectively the variations around the stationary point
rather then the actual variable of (1). If Gy is not singular, y can be
expressed as a function of x and (7) can be written as:

ẋ = Fx − Fy G
−1
y Gx x = A0 x , (8)

While apparently the resulting system has smaller size then (7),
from the numerical point of view, (8) is often more computationally
demanding because G−1

y and, hence, A0, tends to be dense, even if
all original matrices are very sparse. This is the common situation in
power systems. In turn, for what concerns numerical performance,
the order of the system is much less important than the sparsity of
the (Jacobian) matrices that describe the system itself. This appraisal
is one of the rationales for the proposals of an implicit formulation in
this paper. In the other hand, the discussion above does not imply that
one should arbitrarily define auxiliary algebraic variables just for the
sake of increasing sparsity. The optimal balance between the size of
m and the sparsity degree of the Jacobian matrices of the system is
still an open question and, for now, is often solved heuristically, e.g.,
by trial and error.

2.1.3 Singular Differential Equations: A third and more math-
ematical way to interpret (1) is as singular differential equations, i.e.,
differential equations for which some of the coefficients of the time
derivatives are null. In the case of (1), the null coefficients are those
that multiply the vector ẏ, namely:

1⊙ ẋ = f(x,y, t) ,

0⊙ ẏ = g(x,y, t) ,
(9)

This is the approach utilised in some monographs on differential
equations and, very recently, on matrix pencils, which often do not
distinguish between states and algebraic variables [61]. This inter-
pretation promotes the utilisation of the set of DAEs in (1) as is,
thus preserving the total order of n+m of the system. This is the
approach utilised in this paper.

One can argue that (1) is the stiffest system possible as it includes
infinitely fast dynamics, but this is in fact not a major problem
if the DAEs are integrated simultaneously rather then sequentially.
Moreover, this interpretation allows assigning an index to the DAE.

Simply stated, ODEs are index 0, whereas DAE are index 1 if the
first time derivative of g leads to well defined ODEs, as follows:

ẋ = f(x,y, t) ,

0 = gx(x,y, t) ẋ+ gy(x,y, t) ẏ ,
(10)

where gy = ∇T
y g and gx = ∇T

xg. Equations (10) can be rewritten
implicitly as:

ẋ = f(x,y, t) ,

ẏ = −g−1
y (x,y, t) gx(x,y, t)f(x,y, t) ,

(11)

which, of course, can be defined only if g−1
y is never singular. If

g−1
y , then one can derive the second of (10) again. The index is

in turn the number of times the DAEs have to be derived to obtain
a set of ODEs. It is important to note that the actual calculation
of (11), even if possible, is not needed and is never efficient (for
the reason discussed above on the dense nature of g−1

y ). The for-
mal definition of 11, on the other hand, is crucial for the ability of
numerical methods to integrate efficiently (1).

Interestingly, the non-singularity of gy always holds in practi-
cal computer implementations and is assumed in all developments
discussed in this paper. The statement “gy is full rank in practice”
is based on the experience of the authors, despite the relative large
number of works that has focused on the discussion of the points at
which gy is singular (e.g., [62] and [63]). In the numerical analy-
sis of power systems, in fact, the singularity of gy is really never
encountered by accident during a time domain simulation or at an
equilibrium point. This is principally due to the representation of
floating point numbers. Moreover, anyone that has ever implemented
an Newton-Raphson algorithm knows that the golden rule whenever
the factorisation of a matrix is involved, is to add to its diagonal a
small number (10−24 works well for 64-bit floating point number
qrepresentation) to avoid numerical issues. For this reason, in the
remainder of this paper, gy is always assumed to be full rank.

2.1.4 Semi-implicit and Implict Formulations: Equations (10)
can be rewritten as:

ẋ = f(x,y, t) ,

−gy(x,y, t) ẏ = gx(x,y, t)f(x,y, t) ,
(12)

or equivalently:[
In 0
0 −gy(x,y, t)

] [
ẋ
ẏ

]
=

[
f(x,y, t)

gx(x,y, t)f(x,y, t)

]
, (13)

or, equivalently:
T(z, t) ż = ψ(z, t) , (14)

where z = (x,y) and T and ψ are the left and right terms that
appear in (13). Equations (14) which is a semi-implicit form of (1).

It is important to note that one can write any device model in a
semi-implicit form and that this does not imply necessarily having to
differentiate the algebraic equations g. This is thoroughly discussed
in [64], which also discusses how the semi-implicit formulation can
be useful to increase the sparsity of the Jacobian matrices of the
system without introducing any simplification.

It is also important to note that T, which can be interpreted as a
sort of generalised mass matrix, does not need to be full rank for (14)
to be integrated using a simultaneous implicit integration scheme
such as the Implicit Trapezoidal Method (ITM) or the Backward Dif-
ferentiation Formulas (BDFs). In [64], in fact, the semi-implicit form
(14) is obtained without calculating the Jacobian matrices of g and
without the need to introduce ẏ. Instead, ẋ is utilised to simplify the
expressions of f and g.

The concept above is better illustrated through an example. Let us
consider the double lead-lag shown in Fig. 2. A conventional explicit
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Fig. 2: Series of two lead-lag transfer functions.

formulation of the DAEs that describe this double lead-lag is:

ẋ1 = (u− x1)/T2 ,

ẋ2 = [T1(u− x1)/T2 + x1 − x2]/T4 ,

0 = T3[T1(u− x1)/T2 + x1 − x2]/T4 + x2 − y .

(15)

whereas the semi-implicit form can be written as:

T2 ẋ1 = u− x1 ,

T4 ẋ2 − T1 ẋ1 = x1 − x2 ,

−T3 ẋ2 = x2 − y .

(16)

Equations (16) are, overall, “simpler” than (15) as the input u does
not propagates through all equations and there are less terms. More-
over, no division by the time constant is needed in (16), which allows
downgrading state variables to algebraic ones simply by setting to
zero the time constnats for which they are multiplied. Finally, the
Jacobian matrices of (16) are also sparser than those of (15) at the
price, however, of a non-diagonal and non-symmetrical matrix T.

The property of the implicit formulation to increase the sparsity
of the equations and their Jacobian matrices is particularly useful
when one utilises techniques that involve series of several lead-lags
such as the typical approximations utilised to represent fractional
order derivatives [65] (see Section 2.3) or the Padé approximants of
delayed variables [66]. In the specific case of lead-lag series, for
example, the implicit formulation leads to a tridiagonal Jacobian
matrix (number of non-zeros elements 3n− 2, where n is the order
of the matrix), whereas the explicit formulation leads to a triangular
one (number of nonzero elements n(n+ 1)/2).

In general, it is not even necessary that the time derivatives are
separated from the right hand side, which leads to the implicit form:

0 = φ(z, ż, t) . (17)

It is relevant to complete this discussion by observing that the
differentiation of (17) at a stationary point leads to:

0 = φz∆z +φż∆ż = Az +E ż , (18)

which leads to the matrix pencil:

A+E s . (19)

where s is the variable of the Laplace transform. A relevant appli-
cations of the pencil (19) is the small-signal stability analysis of
the linear(ised) set of implicit DAEs, which is the solution of the
generalised eigenvalue problems:

det(A+Eλ) = 0 , (20)

which offers some benefit (sparser matrices) and some drawbacks
(very few available solvers and libraries able to treat the general
problem with A and E both asymmetric [67]). The interested reader
can find a comprehensive discussion on the utilisation of matrix
pencils and eigenvalue problems, including dual, nonlinear and sin-
gular ones, for power system small-signal stability analysis in the
monograph [68].

The implicit form (17) is the formulation utilised in the proposed
power system model and in all cases studies. We further elaborate on
this form in Sections 2.4.

2.2 Specialised Models

Before introducing the proposed model, we discuss some relevant
specialised models, namely models that have been proposed in the
literature and focus on a specific modelling detail of the more general
model proposed in this work. Every model presented in the remain-
der of this section, thus, can be viewed as a special case of the model
given in Section 2.4.

2.2.1 Frequency Dependent Model: An ongoing debate in
the power system community is the discussion whether the utili-
sation of model (1) is adequate at all given the numerous drastic
changes in the dynamics and controls that have been introduced in
the last couple of decades in power systems [1, 2]. Power system
converters are much faster than synchronous machines and, while
do not provide inertia, they are also exempt from technical con-
straints such as the relatively slow dynamics of the governors of
conventional power plants.

Among the various proposed approaches are multi-scale models
[69, 70], dynamic phasors [71, 72], and EMT models with integra-
tion methods optimised for the simulation of large power systems
[73]. Here, we do not engage in this debate, nor judge the merit of
each approach. In the experience matured by the authors, however,
we have found that high order harmonics are rarely any issue for the
overall dynamic behaviour of the system and, in any case, these har-
monics can be studied separately. This observation applies to large
interconnected power systems, not to microgrids, whose dynamics
behaviour constitute a world apart and should not be mixed up with
that of transmission systems.

In this work, we consider exclusively the frequency dependence
of the various components of the system and a selection of fast
dynamics through the concepts of frequency divider [74] and Park
vectors [75].

The frequency divider is a continuum-approximation-based tech-
nique to estimate the frequency variations at the buses of the grid
based on synchronous machines rotor speeds. This approach has
been utilised in [76] and some results are briefly discussed in Section
3.1. The main limitation of the original definition of the frequency
divider is the assumption that only synchronous machines are able to
modify/impose the frequency at their point of connection. This has
been demonstrated not to be the case in more recent works by the
same authors [77, 78]. This limitation can be solved, case by case,
by patching the frequency divider formula for devices other than
synchronous machines. This has been done, for example, in [79].

The Park vector, on the other hand can be viewed as the simplest
approximation of dynamic phasors, in that it retains only the fun-
damental frequency. However, it also retains the fast dynamics of
transmission lines and of the magnetic fluxes of rotating machines.
Park vector are compatible with the average models of power elec-
tronic converters [80] and makes possible to study the dynamic
interaction of the DC and AC sides of the converters [81]. In [82],
the two concepts of frequency divider and Park vectors are combined
to allow a precise, analytical definition of the frequency variations
at grid buses. This, however, comes at the price of introducing a
new quantity, namely the complex frequency that can be involved
to calculate.

2.2.2 Stochastic Differential-Algebraic Equations: Stochas-
tic differential equations have been utilised in power systems since
the 1908s, at least in academic works, but with the strong limitation
of including perturbations only in the differential equations. This is
limitation is a consequence of the fact that it is not known how to
include stochastic processes in algebraic equations or, which is the
same, to singular differential equations [83, 84]. Early attempts to
include noise in the algebraic variables have utilised the singular
perturbation approach which, as said above, consists in assigning a
fictitious dynamic to algebraic variables [10, 85].

More recently, the first author has proposed a general model in
[86] that is able to include additive noise to both state and algebraic
variables. Since parameters can always be made algebraic variables
with a dummy equation, say 0 = α− y, also parameters can be
thus made vary stochastically. The model proposed in [86] is the
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following:
ẋ = f(x,y, η̇) ,

0 = g(x,y,η) ,

dη = a(η, t)dt+ b(η, t)⊙ dw(t)

(21)

η ∈ Rq are the states of the stochastic processes; dw ∈ Rr are the
Wiener process increments; a and b are the drift and the diffusion
terms of the Wiener processes, respectively.

The stochastic processes η are expressed in terms of variational
equations rather then differential equations that describe determin-
istic dynamic models. This is because stochastic processes are
conceptually different from conventional ODEs and also require a
specific integration scheme. In [86], the Euler-Maruyama method is
utilised, which is the simplest first order integration scheme but is
equivalent to higher order schemes, e.g., the Milton one, if the diffu-
sion term is constant. A positive aspect of the integration of SDEs is
that the diffusion term is integrated separately and is delayed by one
step with respect to the drift. This means that the integration scheme
of the deterministic part of (21), namely the first two equations and
a, can be different from the one utilised for the diffusion b. This
delay, however does not impact on the accuracy as, in general, a and
b do not depend on x and y.

It is worth noticing that, in (21), only first time derivatives of the
stochastic processes appears in the differential equations f [86]. The
rationale for this is readily explained. If noise is additive, then

x = x̃+Uη , (22)

where x̃ is the deterministic part of the vector of randomly per-
turbed state variables x and U is a n× q matrix that defines the
weights of the stochastic processes onto the differential equations.
The differentiation of (22) yields:

dx = f̃(x,y, t)dt+U dη

= f(x,y, η̇, t)dt ,
(23)

where f̃ is the deterministic part of the differential equations f .
Equation (23) is expressed in an explicit form but can be conve-
niently rewritten in a semi-implicit form:

dx−U dη = f̃(x,y, t)dt , (24)

which is computationally more convenient than using the expres-
sions of dη into f .

The properties of stochastic processes that the SDEs that define
variables η have to reproduce are probability distribution, auto-
correlation and correlation with other processes. The probability
distribution also implies the mean, the standard deviation and higher
order momenta of the process. Since the Wiener process has zero
expectation, the mean of η, say ⟨η⟩, is the vector that satisfies
the condition a(⟨η⟩) = 0. Imposing the standard deviation is more
involved as it is intertwined with the probability distribution and
the autocorrelation. References [87–89] discuss various methods to
impose these properties considering arbitrary probability densities
and/or autocorrelation functions and the reader is referred to these
works for details on the implementation of these techniques. A com-
mon feature of all techniques is to have bounded standard deviation
in stationary conditions. This property is observed in measurement
data and is generally imposed through a mean-reverting process,
such as the Ornstein-Uhlenbeck process [86].

While mean, standard deviation and probability distribution are
relatively well-understood concepts, more involved (and much less
commonly found in works on SDEs) is a discussion on the effects
of the autocorrelation. This can be interpreted as an equivalent for
stochastic processes of the time constant of a deterministic dynam-
ics. The autocorrelation, in turn, defines how fast or slow a process
can vary from one time lag to another and, in turn defines the har-
monic content of the process itself. For this reason, two processes
with identical probability distribution but different autocorrelations

may have significantly different effects on the dynamic response of
a system [90].

The last property, namely correlation among processes is yet
another aspect of SDEs that has not been fully discussed in the
literature on power system dynamic performance. To account for
correlation, one has first to determine the correlation matrix, say
R ∈ Rr×r of the r stochastic processes. R is symmetric and has
1’s on its diagonal, as follows:

R =


1 R1,2 R1,3 . . . R1,n

R2,1 1 R2,3 . . . R2,n
R3,1 R3,2 1 . . . R3,n

...
...

...
. . .

...
Rn,1 Rn,2 Rn,3 · · · 1

 . (25)

Note that if the processes are fully uncorrelated, then R is the
identity matrix. The correlation matrix must then be decomposed,
through Cholesky decomposition, into a matrix C that satisfies the
following equation [91]:

R = CCT , (26)

and, the correlated processes are computed as

dζ = C dw(t) . (27)

Finally, the (21) are modified by substituting dw with dζ:

ẋ = f(x,y, η̇) ,

0 = g(x,y,η) ,

dη = a(η, t)dt+ b(η, t)⊙ dζ .

(28)

The effect of correlation is that of increasing the probability that pro-
cesses have similar trajectories. That is, if two processes are strongly
correlated the probability that they increase (or decrease) at the same
time is high. This means that correlated processes are more likely
prone to create stability issues than two fully uncorrelated processes
with same probability distribution.

The stochastic processes discussed so far are generated based
on Wiener processes and are, thus, continuous. There are, however,
some random events that are better modelled as jumps, such as load
consumption variations [13, 92], the effect of tap-changer-under-
load transformers [14, 93], and the effect of clouds on the active
power generation of PV panels [94]. Random jumps can be also cor-
related as their continuous counterparts [95]. In mathematical terms,
stochastic jumps have a similar expression as continuous stochastic
processes and the two processes can be combined together [96]:

dη = a(η, t)dt+ b(η, t)⊙ [C dw(t)]

+ c(η, t)⊙ [K dȷ(t)]

= a(η, t)dt+ b(η, t)⊙ dζ + c(η, t)⊙ dκ ,

(29)

where dȷ ∈ Rs are the jump increments; K is a q × s matrix that
defines the correlation among the jumps and is obtained using same
procedure as matrix C; dκ are the correlated jump increments; and
c is the diffusion terms of the Poisson stochastic processes.

From the implementation point of view, jumps are impulsive
events that, when integrated lead to a staircase function. These events
are slightly more involved to implement than Wiener processes. The
terms dȷ in (29) can be obtained through the combination of a Pois-
son process that determines how many events happen in a given
period; a uniform distribution that determines the times at which the
events happen in the given period; and a random process (e.g., Gaus-
sian) that imposes the probability distribution of the amplitude of the
events. Note that the parameter λ that defines the Poisson distribu-
tion – which is both the expected value and the standard deviation of
the Poisson process – functions as the autocorrelation coefficient for
the continuous stochastic processes.
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2.2.3 Delay Differential-Algebraic Equations: As discussed
in Section 1, another modification to the conventional model (1) that
has been considered in the literature is the inclusion of delays. These
are typically included in the system as index-1 Hessenberg forms,
namely, the algebraic equations do not depend on delayed algebraic
variables [29, 97]:

ẋ = f(x,y,xd,yd, t) ,

0 = g(x,y,xd, t) ,
(30)

where xd = x(t− τ) and yd = y(t− τ), with τ > 0 are the
delayed variables. The notation of (30) is for one delay, but it can
be easily extended to multiples delays, as follows:

ẋ = f(x,y,x1d, . . . ,x
µ
d ,y

1
d, . . . ,y

µ
d , t) ,

0 = g(x,y,x1d, . . . ,x
µ
d , t) ,

(31)

where τ1, . . . , τµ are the µ delays of the system. To simplify the
notation, in the remainder of this paper, the vectors of state and
algebraic variables with multiple delays are indicated as xd and yd.

In the context of the project AMPSAS and in the general model
proposed in Section 2.4, we extend the analysis to non-index-1
Hessenberg DDAEs, which are of the form:

ẋ = f(x,y,xd,yd) ,

0 = g(x,y,xd,yd) .
(32)

In [98], the algebraic equations in (32) are viewed as constraints
and this complicates significantly the small-signal stability analysis
as throughly discussed in [98]. To explain this point, let us consider
a stationary solution (xo,yo) of (32). This satisfies the conditions:

0 = f(xo,yo,xo,yo) ,

0 = g(xo,yo,xo,yo) ,
(33)

where it has been used the fact that, in steady-state, xd,o = xo and
yd,o = yo. The differentiation of (30) at (xo,yo) yields:

∆ẋ = fx∆x+ fy∆y + fxd
∆xd + fyd

∆yd (34)

0 = gx∆x+ gy∆y + gxd
∆xd + gyd

∆yd (35)

where gy is assumed to be full rank. Reference [98] shows that the
characteristic equation of (32) linearised at the stationary point is
given by:

∆ẋ = A0 ∆x+A1 ∆xd +

∞∑
k=2

[Ak ∆x(t− kτ)] , (36)

where

A0 = fx − fyg
−1
y gx ,

A1 = fxd
− fyd

g−1
y gx + fy N ,

Ak = [fy M+ fyd
]Mk−2 N, k ≥ 2 ,

with
M = −g−1

y gyd
,

N = −g−1
y gxd

−M g−1
y gx .

The first matrix A0 is the well-known state matrix that is com-
puted for standard models in the form of (1). The other matrices are
not null only if the system include delays. The matrix A1 is found in
any Delay Differential Equations (DDEs), while matrix A2 appears
in (30) if both fyd

and gxd
are not null [97]. For index-1 Hessen-

berg forms, the term for k > 2 are null as gyd
and, hence, M are

null. For non-index-1 Hessenberg forms, on the other hand, since
gyd

is not null in general, there are infinitely many non-null matri-
ces Ak. Each delay τ generates thus a characteristic equation with
infinite delays kτ , k = 1, 2, . . . ,∞. This clearly further complicates
the numerical calculations of the roots of the characteristic equation
of (36). It is relevant to note, in fact, that this characteristic equation
has infinite solutions even for single-delay index-1 Hessenberg form.
The characteristic equation of single-delay non-index-1 Hessenberg
forms, on the other hand, has infinite infinite delays, each of which
leading to infinite solutions. Finally, it is important to note that (36)
can be studied only if the series converges, which happens if and
only if, as demonstrated in [98], the spectral radius of M is strictly
lower than 1.

The power system model proposed in this paper provides a more
elegant way to study non-index-1 Hessenberg form DDAEs by con-
sidering an implicit formulation. This leads, after linearisation, to
a generalised eigenvalue problem for which the calculation of the
inverse of gy is not required. Let us define zd = (xd,yd) as the
delayed generalised state vector z = (x,y). Using an implicit for-
mulation and considering for simplicity a single delay, the delayed
version of (17) becomes:

0 = φ(z, ż,zd, t) , (37)

and linearising at a stationary point zo that satisfies żo = 0 and

0 = φ(zo,0,zo) , (38)

one obtains:

0 = φz∆z +φż∆ż +φzd
∆zd , (39)

which can be expressed in the form of (36), as follows:

E∆ż = A0 ∆z +A1 ∆zd . (40)

where E = −φż , A0 = φz and A1 = φzd
. The implicit form,

thus, does not lead to matrices Ak for k ≥ 2 and does not intro-
duce fictitious delays kτ . Of course, this simplification is obtained
at the cost of having a singular pencil (E is certainly singular) which
complicates the numerical determination of the eigenvalues [68].

A special case of DDEs are Neutral Delay Differential Equa-
tions (NDDEs), i.e., DDEs that include the first time derivative of the
delayed variables. Considering again for simplicity the single-delay
case, one has:

0 = ψ(x, ẋ,xd, ẋd) , (41)

which, using, a descriptor model transformation [99], can be equiv-
alently rewritten as:

ẋ = y ,

0 = ψ(x,y,xd,yd) .
(42)

Equations (42) are a set of non-index-1 Hessenberg form DDAEs.
Thus, if one defines z = (x,y), (42) can be rewritten in the same
form as (37), whose linearisation leads to (40). Reference [100]
discusses the small-signal stability of (41) using the transformation
above with applications to circuits and systems.

While the small-signal stability analysis is significantly compli-
cated by the presence of delays, numerical time domain integration
methods can include delays in a relatively straightforward way. The
only requirement is to store in some vector the past values of each
delayed variable, for a time at least as big as the delay with which
such a variable appears in the equations and then interpolate the
value of the delay variables at the points evaluated by the integration
scheme. It is worth noticing that, for implicit integration schemes
that require the calculation of the Jacobian matrices of the system
only the Jacobian matrices with respect to the current variables,
namely fx, fy , gx and gy , are required, not the Jacobian matrices
with respect to delayed ones, thus resulting, in effect, in a sparser
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matrix to factorise [29, 97]. This fact has been exploited in EMT
analysis, for example, by utilising the inherent delays of long trans-
mission lines to decouple the integration of circuits [101] or to take
advantage of the different time scale of electromagnetic transients
and controllers [102]. More recently, an application of the decou-
pling property of delays has been proposed during the development
of the project AMPSAS for the transient stability analysis of power
systems [103].

So far, we have considered exclusively constant delays. Com-
munication systems however are characterised by variable, partially
random delays [104]. Figure 3 shows a realisation of a realis-
tic model of a Wide Area Measurement System (WAMS) delay,
which is composed of a constant, a sawtooth and Gamma-distributed
jumps. A communication delay is thus a relevant example of a phys-
ical process that combines stochastic, functional and discontinuous
DAEs.
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Time [s]
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Fig. 3: Realistic model of a WAMS delay [104].

The implementation in a time integration tool of time-varying
delays has almost same complexity as that of constant delays. This
makes the numerical time-domain integration the best tool avail-
able for the analysis of the impact of time-varying time delays on
power system dynamics. However, numerical integration schemes
are known to be potentially able to modify the stability properties of
the DDAEs [41]. It is, thus, desirable to have an alternative method
to compare results.

During the development of the project AMPSAS, a considerable
effort has been dedicated to the implementation of methods for the
small-signal stability analysis of DDAEs with time-varying delays.
This analysis is relevant because of the quenching phenomenon
[105], namely the phenomenon for which “a system that is unsta-
ble with inclusion of a constant delay τ ∈ [τmin, τmax], can become
stable for a time-varying delay τ̃(t) that varies in the same interval
[τmin, τmax], and vice versa” [106]. A breakthrough is provided by
the work [107], that recognises that sufficiently fast varying delays
are equivalent, from a stability point of view to distributed delays.
Since distributed delays can be modelled as a series of infinitely
many constant delays, this allows using available tools, e.g., PDE
approximation followed by a Chebychev discretisation, for small-
signal stability analysis of DDAEs [97, 108]. The computational
burden of this analysis, however, increases as each time-varying
delay yields infinitely many constants delays, each of which yields
infinitely many roots of the characteristic equation of the linearised
set of DDAEs.

Due to their negative effect on the dynamic performance of the
system where they appear, delays have been largely studied in con-
trol theory. In the context of power system control, a conventional
application is the design of controllers that are robust against the
delays that appear in the system [6, 27] or techniques that com-
pensate measurement delays [109]. As a final note on DDAEs, it is
interesting to note that delays do not necessarily always create stabil-
ity issues. An emerging application is the introduction – on purpose
– of delays to improve the stability of the controllers. A pioneering
work in this direction with applications to power systems is [110].

2.2.4 Hybrid Differential-Algebraic Equations: As discussed
in the introduction, the ability to properly characterise discontinu-
ities and behavioural models is an important aspect of power system
modelling. These discontinuities and behavioural models lead to the
inclusion of a vector of discrete variables in the set of DAEs. For
each variable, an equation has to be added to the system but there is
no unique nor well-accepted method to set-up these equations.

A relevant approach is the combination of a hybrid automaton and
Petri nets proposed by Hiskens [111, 112]. The hybrid automaton is
described by a finite set of discrete states; a collection of dynamical
systems, one per each value of the discrete states; and a finite set of
events. The Petri nets, in the other hand, are utilised to characterise
unambiguously the discrete event activities. The approach described
in [111] and several other papers by the same author is rigorous
but requires to defines a large number of impulsive state variables,
namely, variables that normally have ż = 0 and that change value,
through a Dirac impulse, defined by a set of rules expressed in
the form of conditional equations. Thus, this approach leads to
singular Jacobian matrices (e.g., the row of the Jacobian matrix cor-
responding to equation ż = 0 is identically null all times), apart from
increasing significantly the state space of the system itself.

During the execution of the project AMPSAS, we have adopted a
different but equally rigorous approach based on the Filippov theory
for differential equations with discontinuous right-hand side [46].
The starting point is common to the hybrid automaton approach, that
is a switched dynamical system, which for generality, we assume to
be in implicit form and function of the variables z:

0 =

{
φ1(z, ż) , when h(z, ż) < 0 ,

φ2(z, ż) , when h(z, ż) > 0 ,
(43)

where h is an event function. Note the utilisation of the word when
as opposed to the more common if in equation (43). This notation is
inherited from the when-clause of the Modelica language and is sub-
stantially a time-driven if -clause [113]. The equations of the kind of
(43) are particularly useful to define the status of the discrete vari-
able an infinitesimal instant before and after a switch, often denoted
as h− and h+, respectively. This formulation, thus, facilitates the
calculation of the saltation matrix which is required to properly
obtain the fundamental matrix solution and trajectories sensitivities
[114, 115].

Based on (43), the state space Rn+m can be split into two regions
R1 and R2 separated by a hyper-surface Σ where R1, R2 and Σ are
characterised as:

R1 = {z ∈ Rn+m | h(z) < 0} ,

R2 = {z ∈ Rn+m | h(z) > 0} ,

Σ = {z ∈ Rn+m | h(z) = 0} ,

(44)

such that Rn+m = R1 ∪ Σ ∪R2, assuming that the gradient of h
at z ∈ Σ never vanishes, hz(z) ̸= 0 for all z ∈ Σ.

The vector field on Σ is defined by Filippov continuation
approach, known as Filippov convex method [46]. This method states
that the vector field on the surface of discontinuity is a convex
combination of the two vector fields in the different regions of the
state-space:

0 =


φ1(z, ż) , z ∈ R1 ,

co{φ1(z, ż),φ2(z, ż)} , z ∈ Σ ,

φ2(z, ż) , z ∈ R2 ,

(45)

where co(φ1,φ2) is the minimal closed convex set containing φ1
and φ2.

The added value of the Filippov theory is that it provides a sys-
tematic approach determine is what happens when the trajectory of
ż = φ1(z), with z(0) = zo reaches at Σ in finite time. In turn,
thus, the Filippov theory provides an alternative to the Petri nets
utilised in [111] and other works by Hiskens.
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The possibilities considered by Filippov are three: (i) transversal
crossing, (ii) attractive sliding or repulsive sliding and (iii) smooth
exit. Filippov formulated a first order theory to decide what to do
in such kind of situation. The details of the general theory can be
found in [46] and several illustrative examples that utilise circuits
and power system models can be found in [116–119]. A particu-
lar advantage of the definition of the event functions h is that they
can represent any nonlinear equation. This is particularly relevant
when modelling control limiters with variable limits, such as the cur-
rent limiters of the Voltage Sourced Converters (VSCs) utilised in in
power-electronics based devices [120].

So far, we have discussed equations with discontinuous right-hand
side, which are particularly adequate to model the hard limits of the
controllers. Behavioural models (e.g., under-load tap-changer trans-
formers) can also be formulated using Filippov theory (or hybrid
automata and Petri nets) but this is a kind of overshooting. In the
experience of the authors, it suffices to define simple when-clause
rules that determine the values of the discrete values according to
some event functions, as follows:

u =

{
u1 , when h(z, ż, t) < 0 ,

u2 , when h(z, ż, t) > 0 ,
(46)

where, for generality, h is assumed to be function not only of time
and the current value of the states but also of the first time derivative.
The resulting set of HDAEs able to take into account discontinuous
right-hand side models as well as behavioural models is as follows:

0 = φ(z, ż,u, t) ,

0 = k(z, ż,u, t) ,

ς = h(z, ż, t) ,

(47)

where u ∈ Rp are the discrete variables; k are the switching equa-
tions (46) that, in general, depend on all variables of the system and
on time; and h are the event functions that decide the sign of the
auxiliary variables ς ∈ Rξ . It is relevant to note that equations k are
formally introduced here exclusively to account for the discrete vari-
ablesu. These equations are, in effect, algebraic equations, however,
they differ from the equations g in that the Jacobian matrices of k do
not form the matrix pencil of the linearised system and do not gen-
erate sensitivities, in the same way as no sensitivities with respect to
the discrete variables u can be defined. In practice, equations k are
implemented as if - or when-clauses.

The switching conditions of the discrete variables can be time-
or state-driven. Time-driven events are straightforward to implement
as it suffices to force the time domain simulation to evaluate a point
right before and a point right after the event itself. That is, if an event
is scheduled to happen at time t, the time domain simulation has to
calculate a point at t− ϵ and another point at t+ ϵ. This is possi-
ble if the numerical integration scheme allows a variable time step.
Otherwise some sort of interpolation is required. The interpolation is
the typical solution for EMT simulations, which typically use a fixed
time step. IN our experieince, however, variable time steps are more
convenient for the transient stability analysis of power systems.

If the event is state-driven, then the identification of the exact time
at which this event occurs is more involved. Functions h are evalu-
ated during the whole time domain integration and so the sign of the
elements of vector ς are determined. Whenever a switching condi-
tion is identified, i.e., a change of sign of an element of ς occurs,
then proper actions are taken, i.e., the solver launches a Filippov
theory-based procedure or switches a discrete variable.

With this regard, there are two relevant ways to proceed, either
time-stepping or event-driven approaches [121]. These refer to the
approach with which an event is treated during the iterations required
to solve each step of the time domain integration (when using an
implicit integration scheme). The time-stepping approach checks the
signs of ς at each iteration and switches the variables as soon as a
change of sign is identified. The event-driven approach consists in
completing the iterations and determining the point. Only then the
event functions are evaluated and if any ς has changed sign then

the variable that is associated to the condition that shows the largest
variations of the element of ς is switched, the state variables are reset
to the previous point and the calculation of the time step is repeated.

Both methods offer advantages and drawbacks. The time-stepping
approach can be – slightly – more time consuming than the event-
driven one if there are few events actually occurring during a simula-
tion and the size of the event functions is large. On the other hand, the
event-driven approach is more time consuming if many event occurs,
especially if multiple events occur in the same time step. However,
which method leads to the best performance of a given network and
scenario can be hardly known a priori. In the experience matured in
the execution of the project AMPSAS, the best solution is to have a
software tool that can handle both approaches.

There is, however, a more crucial issue: the inclusion of discrete
variables transforms the integration of DAEs from a deterministic
problem into a combinatorial one. For example, if the system include
p Boolean variables u, then the system is characterised by 2p possi-
ble combinations of the vector u. It has to be expected that at least
some of these combinations satisfy all the equations of the system
– including constraints k – and are thus feasible solutions. In turn,
there might be a variety of different feasible solutions of the system,
even if all equations and rules that defines the discrete variables are
deterministic. This conclusion does not arrive unexpected as, non-
linear equations are known to potentially have multiple solution and,
in turn, discrete variables introduce a peculiar nonlinearity in the
equations.

Another way is to interpret the stationary points of a set of HDAEs
is as the optima of an optimisation problem. We note, in fact, that the
stationary point of a set of DAEs can be viewed as the solution of an
optimisation problem having as objective:

min. :
1

2
żT ż ,

s.t. : 0 = φ(z, ż, t) .
(48)

Then the determination of the equilibrium point of a set of HDAEs
is equivalent to a mixed-integer optimisation problem, which is cer-
tainly not convex due to the discrete variables. In other words, thus,
the multiple solutions of a set of HDAE are local minima – and so
are the solutions of a set of nonlinear DAE – no matter how rigorous
is the procedure to determine the switching of the discrete variables.

A consequence of the existence of (potentially many) feasible
solutions leads is to a (probably unsolvable) implementation issue
that is common to both time-stepping and event-driven approaches:
the occurrence of untimely/unnecessary switches of discrete vari-
ables. The main issue is that a given event is identified by the change
of sign in the vector ς but the exact time at which such event
happens is not known unless one solves a special problem called
zero-crossing problem, which can be formulated as follows:

0 = φ(z, ż,u∗, t) ,

0 = hi(z, ż, t) ,
(49)

where hi is the i-th event function that is binding and u∗ is the
vector of discrete variables that is frozen for the solution of the zero-
crossing problem. This problem has n+m+ 1 equations and 2n+
m+ 1 unknowns, namely z, ż and t. In stead of solving (49), thus,
one can solve the following problem:

0 = χ(z,zt,u∗, t) ,

0 = hi(z, ż, t) ,
(50)

where χ is a function that depends on the numerical integration
scheme (see for example [64]) and zt is the value of the states at
the previous step.

The solution of the zero crossing problem (50) tends to be time
consuming and may require to have to cut the time step until the
change of sign of only one element of ς occurs. Due to its nonnegli-
gible computational burden, the solution of a zero-crossing problem
is generally the last resource that is utilised, for example, when the
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time-stepping or event-driven approaches fail or produce chattering.
In the software tool utilised in the simulations shown in Section 3,
the time-stepping approach is utilised for most discontinuous right-
hand side equations, whereas the event-driven approach is mostly
utilised for behavioural models.

As a final note on time- and state-driven approaches, we cite the
Quantised Integration Methods (QIMs) that had some hype about a
decade ago [122]. These numerical methods work by quantising the
increments of the states rather than time. The advantage is that the
points that the integration method evaluates impose a given state,
which make unnecessary the solution of a zero-crossing problem.
In turn, the difference between a conventional time-driven integra-
tion method and QIMs is very similar to that that exists between
the perpendicular intersection and the local parameterisation method
utilised for the corrector step of a continuation power flow analysis
[59, 123]. As any other method, QIMs have advantages and draw-
backs. In the experience of the authors, the main issues with the
QIMs are two: (i) no A-stable integration method equivalent to the
ITM or the BDFs is available for QIMs; (ii) QIMs are really efficient
only for linear circuit-like DAE and if not too many events occur in
a simulation. But, of course, most integration methods are efficient
in these conditions. In particular, QIMs become awfully slow for
SDAEs, which has to be expected as continuous Wiener processes
can be viewed as a sequence of infinitely many events in the unit of
time. It is also for this reason that stochastic processes require ad hoc
integration schemes.

2.3 Fractional-Order Differential-Algebraic Equations

The last specialised model that we discuss here considers Fractional-
Order Differential-Algebraic Equations (FO-DAEs). Fractional cal-
culus deals with the problem of the differentiation and integration
operators dγ/dtγ ,

∫t
0 d

γ(τ) for γ ∈ R. This is an example of
advanced mathematical techniques and their applications to power
system analysis and control that have been explored during the
execution of the project AMPSAS.

The first problem to solve is which theoretical definition to use.
There are in fact many different ways to define fractional derivatives
[124–130] but only few of them are adequate for an implementation
in a software tool. In this work, we consider the definition proposed
by Caputo in [128], which reads:

x(γ)(t) =
dγx

dtγ
=

1

Γ(µ− γ)

∫ t
0

x(µ)(τ)

(t− τ)γ−µ+1
dτ . (51)

The Laplace transform of (51) is:

L{x(γ)(t)} = sγX(s)−
µ−1∑
j=0

sγ−j−1x(j)(0) . (52)

Equation (52) requires the knowledge of the initial conditions
x(j)(0), j = 0, 1, . . . , µ− 1, which in this case are of integer order.
This property effectively allows for the solution of initial value
problems. Then, it remains to implement the term sγ in (52). This
is typically approximated using appropriate rational order transfer
functions. Also in this case, various techniques are available, e.g.,
[131]. In practice, the most commonly utilised continuous method
is the Oustaloup Recursive Approximation (ORA) [132]. The gener-
alised ORA of a fractional derivative of order γ is defined in Laplace
domain as [126]:

sγ ≈ ωγ
h

N∏
k=1

s+ ω′
k

s+ ωk
, (53)

where ω′
k = ωbω

(2k−1−γ)/N
v , ωk = ωbω

(2k−1+γ)/N
v , and ωv =√

ωh/ωb, with [ωb, ωh] being the frequency range for which the
approximation is designed to be valid and N the order of the polyno-
mial approximation. The block diagram of ORA is shown in Fig. 4.

This is, for now, the implementation utilised in the software tool
developed for the project AMPSAS but the implementation allows
implementing any other approximation available in the literature.

uin
ω
γ
h

yNy1 y2 yN−1s+ ω
′

1

s+ ω1

s+ ω
′

2

s+ ω2

s+ ω
′

N

s+ ωN

Fig. 4: Oustaloup’s recursive approximation block diagram [65].

In the context of the project AMPSAS, an effort has been done to
provide a comprehensive introduction to fractional order calculus for
power system modelling and control and small-signal stability anal-
ysis in [65, 133–135]. In fact, while fractional order derivative do
not have really a physical meaning, they find applications in control.
Being ultimately converted into a series of leads-lags, from the con-
trol design point of view one has to define only very few parameters
and the order of the fractional derivatives.

2.4 Proposed General Model

We are now ready to present the proposed general SFHI-DAE-based
model for the transient stability analysis of power systems. This
combines the implicit, frequency-dependent power system model
with inclusion of stochastic processes and jumps, delays and discon-
tinuous right-hand sides and behavioural models. Merging together
(28), (29), (37) and (47), one obtains:

0 = φ(z, ż,zd,η, η̇,u, t) ,

dη = a(η, t)dt+ b(η, t)⊙ dζ + c(η, t)⊙ dκ ,

0 = k(z, ż,zd,u, t) ,

ς = h(z, ż,zd, t) ,

(54)

where all variables and functions have the meaning indicated in the
previous sections.

The implementation of a software tool that embeds all the features
discussed so far and effectively implements (54) in a meaningful and
consistent way has been a titanic task. This has required, in effect,
the last 12 years of work of the first author and the combined effort
of several students and post-doctoral researchers, not limited to the
co-authors of this paper. The effort is so vast that the methodological
approach adopted for the implementation of the code is as important
as the theoretical foundations themselves. The key aspects of this
methodological approach are briefly outlined in the reminder of this
section.

2.4.1 Modularity: Modularity is one of the most important con-
cepts of modern programming techniques. It is the foundation of
object-oriented programming, servlets, multi-threading, and, more
recently, micro-services. It is thus natural that modularity is also an
important concept for the development of a software tool for power
system simulation. In this context, modularity arises at two different
levels. At the device level, one can expect that most device that com-
pose a power system do not include all features that are accounted
for in (54). Assuming that every device is implemented as a class∗,
not all devices will include stochastic processes, delays and events.
These features should thus conveniently implemented in separated
methods and be called only if and when needed. A similar princi-
ple applies at the system level. The device models available in the
libraries of the software tool are not always utilised altogether in
simulations. The code of the devices that is not part of a system
model should thus not be called during a simulation. This concept
is called just in time (jit) compilation and belongs to the more gen-
eral concept of laziness, which is a virtue when it refers to computer

∗The interested reader can refer to [136] for a gentle introduction to

object-oriented programming for scientific computing.
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programming as it increases the efficiency and performance of the
code.

2.4.2 Acausality: Acausality is a fundamental concept of phys-
ical system modelling. It refers to the fact that the quantities that
appears in a physical law should not be interpreted as one the cause
of another, but a condition that each quantity contributes to satisfy
[137]. This concept is better explained through an example. Let us
consider again the double lead-lag shown in Fig. 2. Control theory
suggests that u is the input and y is the output, thus implicitly assum-
ing that u causes y. But this interpretation is not included in the
equations that define the transfer function of the double lead-lag and
should not affect how these equations are written. The implicit for-
mulation helps foster acausality when writing DAEs. For example,
the equations (16) of the double lead-lag of Fig. 2 can be rewritten
as:

0 = T2ẋ1 + x1 − u ,

0 = T4ẋ2 − T1ẋ1 + x2 − x1 ,

0 = T3ẋ2 + x2 − y ,

(55)

which are perfectly symmetric and do not allow distinguishing
between inputs and outputs.

2.4.3 Separation of the solvers from the power system
model: All algorithms and techniques implemented throughout
the execution of the project will be defined in general terms,
i.e., without any particular device or system model in mind. This
approach is recognised as a necessary feature of large-scale projects
that involve the simulation of physical systems [54]. Direct advan-
tages of this approach is that the implementation of the algorithm
can be conducted in parallel with and independently from the imple-
mentation of physical models. Another major advantage is that
no hypothesis is imposed on the device models, thus allowing an
unconstrained development of the system model. This approach is
seldom applied to power system analysis. A relevant example of an
algorithm that heavily constrains device models is the well-known
fast decoupled power flow analysis, which is certainly efficient, but
can be applied only to a specific (and very restrictive) model of the
transmission system, loads and generators [138].

2.4.4 Focus on large-scale systems and real-world data:
Every technique and algorithm should be tested using “large-scale
power systems”. This point is crucial as the computational burden
tends to grow quickly when dealing with nonlinear systems. Any
technique that does not prove efficient or scalable will be discarded a
priori. On the other hand, parallelisation will be exploited whenever
possible. Moreover, it is crucial to base and test all techniques on
a real-world system. The case study presented in Section 3 is an
application of this methodological principle.

2.4.5 High performance computing: The model (54) pro-
posed in this paper can have a heavy computational burden, espe-
cially for large systems. Thus, the implementation of algorithms and
techniques based on high performance computing and, in particular,
parallel programming that are able to exploit multi-threaded com-
puter architectures is a key aspect of the proposed model. Parallel
programming for power system analysis is a relatively recent topic
[139–146], although there are also pioneering works dated back in
the late 70s [147]. Needless to say, the simulation proposed model
(54) can significantly benefit from parallelisation. An obvious appli-
cation is the study of the effects of stochastic processes through a
Monte Carlo method. This is an obvious parallelisation as each real-
isation of the processes and each simulation of the Monte Carlo
analysis are fully independent and can be thus solved on different
processors without any particular coordination [86]. Another, less
trivial, example of technique that can foster code parallelisation is
the one-step delay decoupling technique described in [103].

3 Case Study

This section illustrates the dynamic performance of the proposed
SFHI-DAE model through a variety of examples based on the All-
Island Irish Transmission System (AIITS). The base-case scenario
of this grid consists of 1,479 buses, 1,851 transmission lines, 245
loads, 22 conventional synchronous power plants with Automatic
Voltage Regulators (AVRs) and turbine governors, 6 PSSs, one Auto-
matic Generation Control (AGC) that coordinates the synchronous
machines, and 176 wind power plants.

The topology and the steady-state operation data of the grid were
provided by the EirGrid Group, the Irish TSO (see Fig. 5). Dynamic
data, on the other hand, are defined based on the technology of
the generators and do not represent any actual operating condition.
We have, however, duly tested the dynamic response of the base-
case scenario in order to match, at least in the first second after a
large contingency, that of the real-world system [148, 149]. Figure
6 shows the dynamic response as measured by the EirGrid Group
as well as the system setup for the AMPSAS project following the
outage of the largest in-feed, namely the East West Interconnec-
tor (EWIC) occurred on the 28th of February 2018. On this date, the
VSC-HVDC link EWIC [20] that connects the AIITS with the Great
British transmission system (GB), was tripped. At that moment, the
AIITS was exporting 470 MW to GB. Due to the loss of the EWIC,
the frequency in the Irish grid rose to 50.42 Hz. Over frequency
protections were triggered and several wind farms were curtailed.

The examples below were developed during the execution of the
project AMPSAS and illustrate the impact on the AIITS dynamic
performance of frequency-dependent models (Section 3.1); corre-
lated stochastic processes of wind speeds (Section 3.2); WAMS
communication delays (Section 3.3); PI controller limiters on the
VSCs of the EWIC (Section 3.4); and a fractional order AGC
(Section 3.5). All simulations were carried out using the software
tool Dome [55].

Verification of the results has been obtained by cross checking all
results and running a large number of sensitivity studies. We observe
that, besides the AIITS, we have also thoroughly tested the models
proposed in the manuscript with a large variety of test and bench-
mark systems. The interested reader can find additional simulation
results and tests in the various references emanated by the project
AMPSAS and duly cited in the following sections.

3.1 Frequency Dependent Model

This example is taken from [76] and illustrates the relevance of
considering the frequency dependency of the device models in a low-
inertia system. Figure 7 shows the transient response of the AIITS
following the outage of the EWIC. This contingency is chosen on
purpose as it is the most severe power unbalance that can be trig-
gered by a single event in the AIITS and, thus, leads to significant
frequency variations.

The notation utilised in Fig. 7 is the following:

• The Transient Stability Model (TSM) considers constant reac-
tances and susceptances everywhere in the grid. This is effectively
the conventional model as in (1).
• The Frequency Dependent Model (FDM), which was proposed
in [76] and is discussed in Section 2.2.1, considers the dependency
on the frequency in all loads, branches and generators. In particular
loads are modelled as steady-state full-load induction motors [150].
• A balanced fundamental-frequency Dynamic Phasor Model
(DPM) – based on Park vectors – that includes machine flux and
line dynamics.

The trajectories shown in Fig. 7 indicate that the DPM and the FDM
show similar information. The DPM also show some fast flux and
electromagnetic dynamics but these damp quickly and do not modify
the overall behaviour of the grid, as expected. On the other hand, the
TSM is conservative, as it shows a frequency nadir that is about 100
mHz lower and larger voltage variations than those obtained with
the other two system models. From a computational point of view,
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Fig. 5: Scheme of the All-Island Irish Transmission System (cour-
tesy of EirGrid Group, available at www.eirgridgroup.com).
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Fig. 6: Frequency response of the AIITS following the outage of the
largest in-feed [149].

the TSM, FDM and DPM take 14, 7.5, and 165 s, respectively, to
complete the simulations. The bigger time required by the DPM is
due to its heavier computational burden and to the need to use a
smaller time step (0.002 s vs. 0.01 utilised for the other two models)
needed to account for fast electromagnetic dynamics.

We note that these results have been “dramatised” by the utilisa-
tion of load models that heavily depend on voltage and frequency
variations. Without this dependency, the differences between the
TSM and the other models reduce significantly. On the other hand,
one may argue that in a scenario with extremely low or even zero
inertia, frequency variations can be much higher than those that are
possible in the current system. It has to be expected, thus, that the
relevance of frequency dependent models will increase in the near
future.

3.2 Correlated Stochastic Processes

This example, which is taken from [76], illustrates the impact of
volatility and correlation of stochastic perturbations of loads, bus
voltages and wind speeds on the dynamic performance of the AIITS.
We first group the loads and wind power plants of the AIITS into
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Fig. 7: Rotor angular speed of a synchronous machine (top panel)
and voltage magnitude at a load bus (lower panel) of the AIITS fol-
lowing the outage of the largest in-feed [76].

areas and then consider three scenarios with same properties of the
stochastic processes except for the correlation, as follows.

• S1 considers model (21), i.e., a scenario where all Wiener pro-
cesses are fully uncorrelated.
• S2 considers model (28), with a low level of correlation among
processes that belong to the same area, i.e. Ri,j = 0.4.
• S3 considers model (28) with a high level of correlation among
processes that belong to the same area, i.e. Ri,j = 0.8.

In all scenarios, the elements of the correlation matrix for i and j
belonging to two different areas are assumed to be Ri,j = 0. Finally,
the contingency is, also in this example, the disconnection of the
EWIC, which occurs at t = 10 s.

Figures ??, ?? and ?? show the voltage magnitude at bus-bar
Woodland obtained with 1,000 Monte Carlo simulations, for S1, S2
and S3, respectively. The black solid lines represent the mean value
of the 1,000 trajectories. Since the stochastic processes are designed
to have zero expectation, the black lines represent the dynamic
response of the deterministic case, i.e., the case for which the dif-
fusion terms of models (21) and (28) are b = 0. While the expected
value is always within the voltage limits (indicated with the dashed
line), depending on the correlation of the processes, each scenario
shows a different probability of violating this limit, namely 24% for
S1, 7% for S2 and never for S3 in the interval t ∈ [10, 30] s.

We have selected on purpose this example as it is fully counter-
intuitive and shows results that are opposite to the expected ones.
In most cases, in fact, the higher the correlation among the pro-
cesses, the higher the probability to drive the system to instability
(see for example [95]). This can be readily explained considering
load consumption: if two loads are strongly correlated, their energy
consumption, if it increases, will increase at the same time, thus
reducing the loading margin of the system. On the other hand, the
variations of fully uncorrelated loads will more likely average out.
In the simulations shown in Fig. 8, however, exactly the opposite
behaviour is observed: the higher the correlation the lower, statisti-
cally, the variations of the voltage. These results could not predicted
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Fig. 8: Impact of stochastic processes on the voltage magnitude of the bus-bar Woodland [76].

a priori and are due to the combined effect of correlated stochastic
wind generation and correlated load variations.

A relevant observation, that is common to all works on SDAEs
that were carried out during the execution of the project AMPSAS,
is the difficulty to find suitable measurement data to set up realistic
stochastic processes. In fact, the parameters of the stochastic pro-
cesses included in model (54) can be determined only through long
time series with small sampling rate at several different locations.
The lack of these data is, we believe, due to two concurrent factors.
On the one hand, these measurements have not been deemed neces-
sary (or even possible) by TSOs and DSOs until recent years, i.e.,
until the level of penetration of renewable resources such as wind
and solar generation has significantly increased in power systems
around the world. On the other hand, SDAEs and their often unintu-
itive behaviour are not known to most practitioners and academics.
As far as we know, in fact, SDAEs are not thought in undergraduate
or graduate programmes on electrical engineering. We see, thus, the
need for updating electric power engineering programmes to include
this important and timely subject.

3.3 Impact of WAMS Delays

This example, extracted from [104], assumes that the 6 PSSs of the
AIITS are included in a WAMS. Thus, their input signals of the PSSs
are affected by time-varying delays similar to that shown in Fig. 3.
In this example, the contingency consists in the outage of the syn-
chronous power plant connected to bus 1378. To better illustrate the
effect of the delays, we assume that the PSSs have relatively high
gains. Without delays or with delays but with low PSS gains, in fact,
the system is stable and performs well.

Figure 9 shows the results obtained for three scenarios: no delays,
constant delay τ̄ and stochastic WAMS delay. The constant delay is
assumed to be the average value of the stochastic one. The effect of
the high gains of the PSSs is to increase the damping of electrome-
chanical oscillations but also, and as expected, to make the PSSs
more sensitive to measurement delays. This results in a small limit
cycle when considering the constant delay. The WAMS delays, how-
ever, has dramatic consequences on the dynamic performance of the
system.

While this result is obtained by pushing the gain of the PSSs,
yet it is a relevant demonstration of the effects, on a real-world
system, of the quenching phenomenon. This example is also partic-
ularly interesting because it combines delays, stochastic processes
and discontinuities (given by the sawtooth waveform for the WAMS
communication system). It is thus an example that could not be
carried out without the implementation of the proposed SFHI-DAE
model.

3.4 Impact of PI Limiters on the EWIC

This example, taken from [118], illustrates the impact of different
implementations of the hard limits of the current controllers of the
VSCs of the EWIC. In this example, thus, we include a dynamic
model of the EWIC, which is modelled as a symmetric monopole-
type VSC as described in [151], and a simplified 63-bus dynamic
model of the GB system as described in [152]. Before the fault, the
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Fig. 9: Transient behaviour of the frequency of the center of inertia
(COI) for the AIITS following a power plant outage [104].

EWIC imports 450 MW from the GB to the AIITS system. The con-
tingency is a three-phase fault located close by the EWIC on the Irish
side. The fault occurs at 0.2 s and is cleared after 60 ms.

Figure 10 shows the trajectories of the reference dq-axis currents
of the inner control loop of the Irish-side VSC. These controllers are
implemented as PIs and are utilised to impose the active and reac-
tive power flow, respectively, in the EWIC. In [118], several models
are considered, as follows. PI0 is a plain PI with no limiters, which
is utilised for reference; PI1 includes a windup limiter; and PI2 to
PI6 include different implementations of anti-windup limiters. These
are: IEEE Standard 421.5-2016 with conditional integrator (PI2);
two types of back calculation (PI3 and PI4); back calculation with
delay (PI5); and combined conditional and back calculation (PI6).

During the fault, all PI implementations, except for PI0, always
reach their limits on both d- and q-axis. As expected the windup
limiter (PI1) is the slowest to recover as it does not lock its inter-
nal state when the limiters are enabled. The other limiters respond
faster, in particular PI2 the fully locks its internal state. Back calcu-
lation models PI3 to PI6 are also anti-windup but do not lock their
states, rather use a feedback signal to reset this state and prevent the
integrator from winding up. Due to the relatively short duration of
the fault, the integrators of the PI models 3 to 6 do not reach a steady
state and provide a different dynamic response that depends on their
specific implementation.

As for the stochastic and delay DAEs examples, the main diffi-
culty to set up realistic scenarios and simulations is the availability
of data. VSC devices and their controllers are often provided as black
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Fig. 10: Dynamic response of the VSC reference dq-axis currents of
the active and reactive power support on the Irish-side of the EWIC
[118].

boxes by the makes and the details of the implementation of the hard
limits are not disclosed or are difficult to figure out. As a matter of
fact, in many studies that can be found in the literature, such limiters
are not modelled at all. However, as the results shown in this example
indicate, small differences in the implementation of the hard limits
can make quite a significant difference in the output of the controllers
and, in turn, in the power system dynamics. We believe, thus, that
creating a consciousness on the importance of modelling precisely
the models of the VSC controllers is critical, especially in view of
the fact that VSC-connected devices will dominate power system
dynamics in the near future.

3.5 Fraction Order AGC

This final example, extracted from [65], illustrates the utilisation of
a fractional order controller for the AGC of the AIITS. Figure 11
shows the frequency response of the AIITS with a conventional
integer order integral controller (IO-AGC) and the fractional order
integral one (FO-AGC). The gain of both controllers is Ki = 500.
Then, for the FO-AGC, the fractional order is chosen as γ = 0.15
and the ORA parameters are [ωb, ωh] = [10−3, 101] rad/s, N = 4.
Finally, we apply the same contingency, i.e., EWIC outage, as that
the leads to obtain Fig. 6. Simulation results show that the FO-
AGC can improve, even though slightly, the frequency regulation
of the system. This, of course, is a simple example, but shows how
inexpensive controller setups can make a difference on the dynamic
performance of a real-world network.

4 Conclusions

This paper discusses the methodological and numerical challenges
of the implementation of a software tool for power system modelled
as a set of SFHI-DAE. The modelling and applications of stochastic
processes, delays, discontinuities and behavioural models to power
system analysis are discussed in the paper. Stochastic processes
serve to model renewable sources and loads. Delayed and hybrid
(e.g., discontinuous) DAEs are utilised to model imperfections and
deviations from the ideal behaviour of telecommunication systems,
measurement signals and centralised/distributed controllers. Signal
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Fig. 11: Impact of FO-AGC on frequency response [65].

transmission delays, digital discretisation, noises and information
loss are also considered.

Each considered modelling aspect is particularly challenging as
it involves merging advanced mathematical concepts that are cur-
rently not used for power system analysis with an expert knowledge
of computer-based modelling and simulation techniques. The result
is a sophisticated tool that allows solving complex stability analysis
and control design problems.

The discussions and examples presented in the paper show that it
is possible for a small team of researchers with the adequate inter-
disciplinary skills and to develop a complete software tool based on
advanced mathematical concepts. It just requires a long time: 5 years
for the execution of the project AMPSAS plus the previous 15 years
of experience of the first author and lead of the project.

Arguably, the most relevant conclusions and recommendations
that can be drawn are two: (i) the importance of modelling “details,”
also at the cost of significantly complicate the power system model
and its implementation in a computer language; and (ii) the crucial
importance of real-world data to validate and set up such models.
These two aspects often go together: it is hard to justify the need
for certain measurements if there is no software that can actually
give them a use. On the other hand, it is risky to commit a research
group to the study of certain modelling details that nobody has stud-
ied yet. There is in fact the probability that these “details” do not
actually have an impact on the dynamic behaviour of the system.
As a matter of fact, what has not been discussed in this paper are
the several tens of attempted implementions of model features that
served only to realise that these features have no particular impact
on the system dynamic performance. Nevertheless, the lesson learnt
is that this kind of studies, even if unconventional and not following
the main-stream research trends, are useful and definitively worth
trying.

We believe that the discussions and results presented in this paper
provide a novel perspective and a novel methodological approach to
the formulation and analysis of power systems. We also trust that the
proposed modelling approach can provide an improved flexibility
and capability of adequately reflecting the fundamental changes that
power systems has gone through in recent years, and will continue
to go through into the future.
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