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On the Impact of Auto-Correlation of Stochastic Processes on
the Transient Behavior of Power Systems
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Abstract—This letter studies the impact of auto-correlation of stochas-
tic processes on the dynamic response of power systems. The frequency
spectrum of the trajectories of the state variables of the system is utilized
as a metric to evaluate this impact. The case study considers the well-
known two-area system as well as with a 1479-bus dynamic model of the
all-island Irish transmission system. Simulation results indicate that the
auto-correlation have a direct impact on the amplitude of the dominant
electro-mechanical modes of the system. Results also show that, for a
wide range of the values of the auto-correlation, the impact of stochastic
processes on system dynamics is local, affects differently each area of the
system and, in some cases, can lead to instability and voltage collapse.

Index Terms—Stochastic differential algebraic equations (SDAE),
power system dynamics, Ornstein-Uhlenbeck’s process, auto-correlation,
electro-mechanical oscillations.

I. INTRODUCTION

Most modern power systems include high shares of converter-
interfaced renewable energy sources, which are stochastic, e.g., wind
and solar. Moreover, the load consumption is not fully deterministic
in the time-scale of transient stability analysis [1]–[3]. These elements
introduce randomness into the systems. In dynamic studies, this
randomness can be conveniently modeled by means of stochastic
differential equations (SDEs). An SDE consists of two terms: the drift
and the diffusion [4]. The diffusion term defines the amplitude of the
noise, i.e., its standard deviation. The dynamic interaction between
the drift and the diffusion terms defines the auto-correlation of the
process, i.e. how the process evolves in the long term.

If the SDEs that describe the stochastic processes are combined
with the conventional differential-algebraic equations that describe
the transient stability model of power systems, the result is a set of
stochastic differential-algebraic equations (SDAEs) [5]–[7]. This is
the model considered in the letter.

A fair number of works is available on the impact of the diffusion
term on the stability of power systems, e.g. [8]–[10]. However, the
literature is either inadequate or silent on the topic of auto-correlation
of stochastic processes. An exception is [11], where the authors
exploit the property of the auto-correlation to initialize the SDAEs
that model the system. This letter focuses on another feature of
the auto-correlation, i.e. the dynamic coupling between the drift of
stochastic processes and the electro-mechanical modes of the systems.

II. MODELING

Power systems subject to random disturbances and noise are
conveniently modeled as a set of SDAEs [7], as follows:

ẋ = f(x,y,κ) ,

0 = g(x,y,κ) ,

κ̇ = a(κ) + b(κ) ◦ ξ ,
(1)

Equations (1) model the deterministic part of the transient behavior
of a power system. f : Rl+m+n 7→Rm are the differential equations;
g : Rl+m+n 7→Rl are the algebraic equations; x ∈ Rl is a vector of
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state variables; y ∈ Rm is a vector of algebraic variables; and κ ∈
Rn represents the vector of uncorrelated stochastic processes; ξ ∈ Rn
is a vector of n-dimensional independent Gaussian white noise, which
is the formal representation of time derivative of the Wiener process;
and ◦ represents the Hadamard product, i.e. the element-by-element
product of two vectors. Stochastic processes feature two terms: the
drift, a : Rn 7→ Rn, and the diffusion, b : Rn 7→ Rn. If the drift
is a vector linear functions, e.g. a(κ) = α ◦ κ, the elements of the
vector α are called auto-correlation coefficients.

A. Ornstein-Uhlenbeck’s Process

In the remainder of this work, we assume that κ in (1) are described
by Ornstein-Uhlenbeck’s processes (OUPs). This assumption allows
simplifying the discussion of the case studies but does not impact
on the generality of the conclusions. The OUP is a stochastic
mean-reverting process that follows Gaussian distribution and has a
bounded standard deviation. These features make the OUP adequate
to model the volatility in physical processes such as stochastic load
dynamics [2], [3], [12] and short-term wind fluctuations [13]–[15].
A OUP is defined as follows:

κ̇ = −α(κ− µ) + βξ (2)

where α is the auto-correlation coefficient; β is the coefficient of
the diffusion term; µ is the mean value; and ξ is the white noise. κ
is a real-valued process following a Gaussian probability distribution
given byN (µ, σ), where σ is the standard deviation, and β = σ

√
2α.

In this letter, we are concerned with the impact of the auto-
correlation on power system dynamics. It is thus relevant to illustrate
first the effect of the auto-correlation coefficient α on the dynamic
response of κ of a OUP. Figure 1 shows three realizations of (2),
obtained for µ = 0, σ = 0.1 and different values of α.

It is important to note that the three processes shown in Fig. 1
all have the same probability distribution in stationary condition.
In fact, the probability distribution function of (2) is P (κ) =

1

σ
√
2π
e−

1
2 (

κ−µ
σ )

2

and does not depend on α. However, their dynamic
behavior is significantly different because of the different value of α
and, hence, of their auto-correlation coefficient. This can be observed
in Fig. 1: the higher the value of α, the faster the variations in the
stochastic processes in the unit of time.

Formally, the auto-correlation function measures the dependence
of present values, of a given time series, on the past values, of the
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Fig. 1. Time domain profile of three Ornstein-Uhlenbeck’s processes with
µ = 0, σ = 0.1, and α1 = 0.01 s−1, α2 = 0.1 s−1, and α3 = 1 s−1.
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same time series, as a function of time lag:

R(τ) =
E[(κt − µ)(κt+τ − µ)]

σ2
(3)

where E is the expectation operator; κt is the value of the process
at time t; and τ is the time lag.

Figure 2 illustrates the auto-correlation, calculated using (3), of
the OUPs shown in Figure 1. The value of auto-correlation function
is always equal to 1 for τ = 0, by definition. For OUPs, as τ
increases the correlation between current and future values decreases
exponentially and decreases the faster the higher the value of α. In
fact, the analytical expression of auto-correlation function of a OUP is
given as R(τ) = e−ατ . This exponentially decaying auto-correlation
is observed in several physical processes such as stochastic load
dynamics [2], [12], and wind fluctuations [13], [14].

An effective way to differentiate stochastic processes having same
probability distribution but different auto-correlation coefficient is
offered by the frequency spectrum of the time series obtained by
Fourier Transform. This approach is conceputally similar to the signal
probing technique, e.g., [16], [17], which utilizes a Fourier analysis
of measurement data to determine the frequency, damping, and
participation factors associated with the inter-area oscillatory modes
of the power system. Figure 3 illustrates the frequency spectrum of
the time series observed in Fig. 1. Figure 3 shows that the higher the
value of α, the bigger the amplitudes of the frequencies of which a
OUP is composed. Thus, the amplitudes of the frequencies, of which
a OUP is composed, is directly proportional to the auto-correlation
coefficient.

This letter investigates whether the noise, modeled as a set of
OUPs, can trigger the electro-mechanical modes of the power system
and hence, modify its dynamic response. With this aim, we first
identify the electro-mechanical modes by calculating the dominant
eigenvalues and their participation factors. Then, the spectrum of
relevant variables of the system is analyzed to quantify the impact of
the auto-correlation coefficient of stochastic processes on the overall
system dynamic response.

III. CASE STUDY

Two systems are considered, namely the well-known Kundur’s
two-area system and a dynamic model of the All-Island Irish Trans-
mission System (AIITS). In all simulations, the realizations of the
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Fig. 2. Exponentially decaying auto-correlations of Ornstein-Uhlenbeck’s
processes for σ = 0.1, and α1 = 0.01 s−1, α2 = 0.1 s−1, and α3 = 1 s−1.
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Fig. 3. Frequency spectrum of realizations of Ornstein-Uhlenbeck’s processes
for σ = 0.1, and α1 = 0.01 s−1, α2 = 0.1 s−1, and α3 = 1 s−1.

Wiener processes are integrated with the Maruyama-Euler scheme
and a step size of h = 0.01 s [4], whereas the implicit trapezoidal
method is utilized for the integration of the deterministic part with
a step length t = 0.01 s (see also [7]). The processes are simulated
for a total simulation time of 250 s, since a OUP reaches stationarity
at tf = 2/α [11]. All simulations are carried out using the software
tool Dome [18].

Three scenarios where stochastic processes are characterized
by low-, medium- and high-speed exponentially-decaying auto-
correlations, respectively, are defined as follows:
• S1: α = 0.01 s−1.
• S2: α = 0.1 s−1.
• S3: α = 1 s−1.

The values above are in the range of real-world stochastic processes
that are found in power systems.

A. Two-Area System

The two-area system in [19] is simulated using the stochastic model
described in [7]. Noise is modeled as OUPs and included in the
load consumption. This model takes into account all sources of noise
at the distribution level, including renewable generation and load
fluctuations. The impact of the noise on the dynamic response of
the system is studied considering each area independently.

1) Stochastic Loads only in Area 1: The dominant electro-
mechanical modes of the system along with the participation factors
of the machines after introducing noise in Area 1 are shown in Table
I. These modes are calculated as a result of including stochastic load
power variations in Area 1 through OUPs as explained in [7]. For
each scenario, the OUPs used to model the noise have same frequency
spectrum as shown in Fig. 3. The standard deviation is set to σ = 1%
of the mean load value for all scenarios.

The active power injections pg of synchronous generators G1 and
G3 are shown in Fig. 4. The oscillations of these generators are
higher the higher the value of α of the noise included in the load
consumption. Figure 5 illustrates the frequency spectrum of pg of
the synchronous generators included in the two-area system. By
comparing the frequencies of the dominant electro-mechanical modes
shown in Table I with the frequency spectrum shown in Fig. 5, it is
clear that an increase in α causes an increase in the amplitude of
the oscillations in pg . Note also that the frequency spectrum of pg
shows well the coupling of the oscillatory modes of the two-area
system with the values of α.

The amplitude of the oscillations also depends on the participation
factors of the machines. This is particularly evident for mode 1, which
is the inter-area oscillatory mode and shows significant participation
from all the generators. Hence, the amplitude of the inter-area
oscillatory mode observed in all the generators is proportional to their
participation factors. This behavior can be verified by observing the
participation factors of generators in modes 2 and 3. Since mode 2 has
significant participation from G1 and G2, and provided that the noise
originates in Area 1, negligible oscillations are observed in mode 2
in the generators G3 and G4, located in Area 2. Whereas, mode
3 has significant participation from G3 and G4. Hence, negligible

TABLE I
ELECTRO-MECHANICAL MODES AND CORRESPONDING PARTICIPATION

FACTORS OF THE TWO-AREA SYSTEM WITH STOCHASTIC LOAD IN AREA 1

Mode Eigenvalue Freq. [Hz]
Participation Factors

G1 G2 G3 G4
1 -0.063±j3.866 0.615 19.05 11.01 34.86 21.85
2 -0.300±j7.112 1.132 42.07 52.93 1.63 1.25
3 -0.300±j7.392 1.176 1.02 1.47 37.7 57.52
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oscillations are observed in mode 3 from all the generators. This is
due, again, to the fact that the noise is located in Area 1.

Next the impact of the auto-correlation coefficient on the stability
of power system is analyzed with a Monte Carlo method. With this
aim, 1000 time domain simulations are carried out. The results of
these simulations are presented in Table II, which indicates that none
of the trajectories were found to be unstable for the three scenarios.

TABLE II
UNSTABLE TRAJECTORIES FOR THE TWO-AREA SYSTEM

Stoch. Procs. in Area 1 Stoch. Procs. in Area 2
Scenario Unstable trajectories Unstable trajectories

S1 0 0
S2 0 0
S3 0 521 (52.1%)

2) Stochastic Loads only in Area 2: The dominant electro-
mechanical modes of the system along with the participation factors
of the machines after introducing noise in Area 2 are shown in Table
III. The parameters of the stochastic loads are the same as those
utilized in the example above except for the standard deviation that
is set to σ = 0.5% of the mean load consumption.

Figure 6 illustrates pg of synchronous generators G2 and G4 in
time domain. Results show that generator G4, which belongs to Area
2, shows higher amplitude oscillations as compared to generator G1,
which belongs to Area 1. The rationale of this result is given by the
participation of the generators to the inter-area mode (see Table III).
The frequency spectrum of pg of all synchronous generators is shown
in Fig. 7. Results are consistent with those discussed in the example
above, i.e. the higher the α the higher the oscillations observed in
the generators of Area 2. Note that, even though modes 2 and 3 have
similar frequency, since the sources of noise are in Area 2, only the
pg of machines G3 and G4 show a relevant increase in the amplitude
of the frequency of mode 3.

Finally the effect on the stability of the two-area system of
auto-correlation coefficient of stochastic processes included in Area
2 is analyzed by simulating 1000 Monte Carlo simulations. The
trajectories of pg and v are observed and the results for unstable
trajectories are presented in Table II. Table II shows that 52.1% of
trajectories are unstable for scenario S3. For illustration purposes,
a few trajectories of voltage magnitude at bus 8 for unstable cases
are shown in Fig. 8. It is important to note that, for all scenarios,
the standard distribution of the processes is kept the same while the
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Fig. 4. Active power pg generation of the synchronous generators G1 and
G3 of the two-area system for stochastic load in Area1.

TABLE III
ELECTRO-MECHANICAL MODES AND CORRESPONDING PARTICIPATION

FACTORS OF THE TWO-AREA SYSTEM WITH STOCHASTIC LOAD IN AREA 2

Mode Eigenvalue Freq. [Hz]
Participation Factors

G1 G2 G3 G4
1 -0.139±j2.690 0.428 5.20 7.62 27.07 34.64
2 -0.292±j7.154 1.139 38.67 52.67 2.82 2.62
3 -0.331±j7.214 1.148 2.03 4.16 42.97 46.4
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Fig. 5. Frequency spectrum of pg of all the synchronous generators of the
two-area system for stochastic load in Area1.
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Fig. 6. Active power pg generation of the synchronous generators G2 and
G4 of the two-area system for stochastic load in Area2.

auto-correlation coefficient of the processes is varied. This implies
that sufficiently high values of the auto-correlation coefficient of the
stochastic processes may drive a system to instability, which may end
up in a voltage collapse.

B. All-Island Irish Transmission System

In this section, we consider a dynamic model of the AIITS, which
consists of 1479 buses, 1851 lines/transformers, and 22 synchronous
generators that are modeled through a VI-order model and are
equipped with IEEE ST1a exciters and turbine governors to ensure
a secure operation of the grid. Six conventional power plants also
include a power system stabilizer. The model also includes 176 wind
power plants, 34 of which are equipped with constant-speed and 142
with doubly-fed induction generators. Stochastic perturbations are
included in the load consumption, voltage phasors, and wind speed.
Figure 9 shows the frequency spectrum of pg of selected synchronous
generators of the AIITS. Table IV shows the dominant electro-
mechanical oscillation modes of the AIITS. Results are similar to
those obtained for the two-area system, i.e., the amplitude of the
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Fig. 7. Frequency spectrum of pg of all the synchronous generators of the
two-area system for stochastic load in Area2.
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Fig. 8. Voltage at bus 8 of the two-area system for stochastic load in Area
2 for scenario S3.

frequency of the electro-mechanical oscillation modes is increased
locally by increasing α.

TABLE IV
ELECTRO-MECHANICAL MODES OF THE AIITS AND CORRESPONDING

PARTICIPATION FACTORS

Mode Eigenvalue Freq. [Hz]
Participation Factors

G1 G2 G3 G4
1 -0.392±j4.689 0.746 54.50 29.73 – –
2 -0.677±j6.322 1.006 – – 84.75 –
3 -1.150±j6.368 1.0135 – – – 91.26
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Fig. 9. Frequency spectrum of pg of selected synchronous generators of the
AIITS.

IV. CONCLUSIONS

The letter analyzes the impact of the auto-correlation of the
stochastic processes on power system electro-mechanical modes.
Simulations are carried out considering the Kundur’s two-area system
and a detailed dynamic model of All-Island Irish Transmission
System.

Simulation results lead to the following relevant remarks.

• The higher the auto-correlation coefficient of the stochastic
processes, the higher the amplitude of the frequency of dominant
electro-mechanical modes. Thus it is important not only to know
the stationary probability distribution and standard deviation of
the stochastic processes of the system but also their “dynamic”
behavior, which is defined by the auto-correlation of these
processes.

• The presence of stochastic processes in an area of the system
has a reduced effect on the local modes of other areas. This
is due to the fact that the noise originated in an area can only
propagate to other areas through inter-area modes.

• Stochastic processes exhibiting higher values of auto-correlation
coefficient present in one area may cause instability in the
power system than those present in another area with the same

statistical properties. Hence, it is crucial to know the auto-
correlation coefficient of the stochastic processes along with
their distribution.

The main recommendation that can be drawn from this work is that
system operators should perform time-domain simulations for power
systems subject to stochastic disturbances with the proper values
of auto-correlation coefficients along with the standard deviation of
the stochastic processes. Using correct values of the auto-correlation
coefficients can prevent overlooking some potential instabilities that
may arise due to fast-varying stochastic processes.

Future work will focus on the design of local controllers capable
to reduce the coupling of noise on system dynamics.
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