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Abstract—This letter proposes an application of the Benford’s law for
the detection of cyber attacks in power system state estimators. Benford’s
law, also known as 1st-digit law, states an unexpected property of the
distribution of the first digit of certain sets of data, and has been found
to apply to a surprisingly wide range of data domains. The first novel
contribution of the letter is to show that the Benford’s law applies to
power system data as well. A relevant property of this law is its high
sensitivity to manipulations and, in fact, it is often utilized to detect
frauds. Based on this feature, the second contribution of the letter is to
utilize the Benford’s law to detect malicious data introduced by hackers
in the supervisory control and data acquisition (SCADA) system of a
transmission network. Tests based on power system models ranging from
9 to 21,177 buses show promising results.

Index Terms—Benford’s law, state estimation, cyber attack, bad data.

I. INTRODUCTION

The state estimation of power systems is a critical analysis carried
out by system operators and heavily depends on metering, communi-
cation networks and computers to elaborate the data. A failure of the
state estimator can lead to severe consequences, e.g. the Northeastern
blackout occurred on August 2003 that affected about 55 million
people across US and Canada. Future integrated cyber-physical
systems such as the smart grid are expected to depend even more than
conventional power systems on sensing and communication networks
for the control, operation and billing of the devices that are connected
to the grid [1].

This letter focuses on the malicious injection of bad data in power
systems, often referred to as “cyber attacks”. The first studies on
cyber attacks of power systems date back to 2009 [2], i.e. when the
first case of infiltration of “spies” in an US grid was reported [3]. The
interest on this topic has significantly grown since the 2015 Ukraine
blackout [4], which is one of the major real-world cyber attacks to
date. The interest in this topic is also reflected by a number of review
papers on cyber attacks, e.g. [5] and, more recently, [6].

The objectives of this letter are twofold: (i) to demonstrate that the
set of measurements of a power system available to system operators
through the SCADA system follows the Benford’s law; and (ii) to
show that the distribution of the first digits of the measurements
is highly sensitive to malicious manipulations caused by hackers.
Various metrics are proposed to detect the presence of bad data in
the set of measurements.

II. BENFORD’S LAW

The Benford’s law, also known as the law of anomalous numbers
or Ist-digit law, describes the frequency distribution of the leading
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digits of a set of data. Its general expression is:

Bb(i):logb(lJr%), i=1,2,...,9, (1)

where b is the base of the number and ¢ is digit of interest. The
values of B for b = 10 are given in Table I. Note that the the digit 0
is not taken into account in (1). The law can be generalized to digits
beyond the first. Considering for simplicity b = 10, the frequency
distribution for the j-th digit, with j > 1, is given by:

100-1) 1 1
Bl (i) = E log,, <1+ m) , i=0,1,...,9. (2)
k=10(G—2)
For j > 1, the frequency of the digits tends to a uniform distribution
(see Table I). For this reason, the most relevant applications of the
Benford’s law generally consider the first digit only. Moreover, the
second and following digits of the measurements affect the results
of the state estimation much less than the first digit. Accordingly,
exclusively the first-digit version of the Benford’s law is utilized in
this letter.

TABLE I: Benford’s law for the first 3 digits of numbers in base 10.

Digit | 0 I 2 3 7
Tst — 0301 0176 0125 0097
2nd | 0120 0.114 0.109 0.104 0.100
3rd | 0102 0.101 0.101 0.101  0.100
Digit | 5 6 7 8 9
Ist | 0.079 0067 0058 0051 0046
2nd | 0.097 0.093 0.090 0.088 0.085
3rd | 0100 0.099 0099 0099 0.098

The Benford’s law fits quite well a surprisingly large variety of very
diverse naturally-occurring sets of data. For example the frequency
of the first significant digit of physical constants; the distances of
stars from the Earth; and the leading digit of the series of numbers
obtained calculating 2" for n = 1,2,..., 00. There are also several
practical applications of the Benford’s law, ranging from price digit
analysis and genome data to fraud detection of socio-economic as
well as scientific data. The latter application is particularly relevant
for the matter of this letter.

There are several interpretations of the Benford’s law, e.g. entropy
related interpretations, multiplicative fluctuations of certain series
of data, e.g., stock prices. An interesting observation is that the
Benford’s law is strictly correlated to the distribution of the measured
data [7]-[9]. In particular, numbers following continuous probability
distributions that are common in engineering, e.g., Normal, Weibull,
Gamma, etc., tend to have their first digits distributed according to the
Benford’s law. On the other hand, the first relevant digits of numbers
following the uniform distribution do not follow the Benford’s law.
This property is exploited in the letter (see Section IV-B of the case
study).

III. APPLICATION OF BENFORD’S LAW TO POWER SYSTEMS

We assume that a set of m measurements at given times tx, k =
1,2,...,p, are available to the system operator. These measurements,



say z(") = z(t,) € R™, are functions of the states x*) = x(t) €
R™ of the system, as follows:

20 = h(a:<k)) +e® +n<k) , k=1,2,...,p. 3)

where €*) are the measurement errors, which are assumed to
be normally distributed and with zero-average [10]; and n“” is
the vector of malicious data introduced by the hacker. In normal
operation, thus, 'r](k) =0.

Most papers on state estimation and cyber attacks pay a huge
attention to the actual kind of measurements, i.e., on equations h, on
the redundancy of the measurements, distinction between topology
and measurement errors, as well as on the kind of information and
data available to the hacker. On the other hand, for the application
of the technique discussed in this letter, no particular hypothesis is
required except for the fact that 1) is assumed not to be distributed
as €™ In particular, we assume that the cyber attack consists of bad
data that are obtained by either substituting the original measurements
with uniformly-distributed random values or swapping measurements.
The assumption that malicious data introduced by hackers distribute
uniformly is justified by empirical observations in other fields where
the Benford’s law has been successfully applied, e.g. tax frauds. False
data that do not satisty this assumption might not be detected with
the proposed technique. On the other hand, since normally-distributed
zero-mean errors can be filtered relatively well by a robust state
estimator, one can argue that a cyber attack that introduces malicious
data in the form of € is not actually a threat for the system [11].

In this letter, we propose to check the quality of the measurements
z through the Benford’s law. However, instead of using the measure-
ment values as they are, we consider a set of normalized variations
with respect to the reference value of each measurement. This
operation avoids that certain numbers are artificially more common
than others. For example, in a transmission system where nominal
bus voltages are mostly 220 or 380 kV, the digits 2 and 3 would be
very common if no normalization is done on the measurements.

Thus, we consider the distribution of the first relevant digit of the
elements of a vector w € R™*P, whose elements are defined as::
Eglk) — Zr,h

Uh,k = k=1,...,p. 4

Zo,h

where 2,5, is the reference value of the measured quantities and z,, 5,
is the base value utilized to obtain per-unit quantities.

Equation (4) is adapted depending on the measured quantity. For
example, for voltage magnitudes z, , = zo,» = Vi, where Vi is the
nominal voltage of the bus where the measurement is taken. Similarly,
for frequency measurements, z,p = Zo,n = $2o, Where {2, is the
synchronous reference angular frequency of the systems. For active
and reactive power injections, 2z, = 0 and 2Z,n = Sbase, Where
Shase 1s the power base utilized in power flow analysis. Voltage phase
angles are assumed in radians and, hence 2,5 = Orer and 2o, = 1,
where 6.t is the angle reference of the slack bus of the system.

For example, if w = [0.1,0.729,0,0.384,1.2,0.0022], the first
relevant digits have frequencies 40% for digit 1, 20% for digits 2, 3
and 7, and O for digits 4-6, 7 and 9. Note that, if the ith measurement
is |ui| < 1, then |u;| is repeatedly multiplied by 10 until the first
digit is not null. Note also that null measurements are omitted in the
calculation of the digit frequencies, as (1) is not defined for ¢ = 0.

It is important to note that utilizing (4) is not strictly necessary for
the purpose of the identification of cyber attacks. If no normalization
of the measurement is used, each network has its own “fingerprint”
of first digits, which is perturbed by bad data. However, with (4), the
distribution of the first digits approximates the distribution predicted
by the Benford’s law for all networks, or at least all networks that

we have tested, and significantly simplifies the detection of bad data.
This is illustrated in the last example of Section I'V-B.

IV. CASE STUDY

The objectives of the case study are twofold. First, we show that
the Benford’s law effectively applies to power systems. While we do
not have a conclusive explanation on why this happens, yet we have
found that this is actually the case for all tested networks. In Section
IV-A, we show a small randomly-picked selection of the several
networks that we have considered. Then, Section IV-B discusses the
effect of malicious data in the distribution of the first digits of the
measurements. Three metrics are defined to evaluate the impact of
cyber attacks.

A. Examples

Figure 1 shows the results for four power systems with different
sizes, topologies, devices and controllers. The measurements used
to obtain the histograms comprise both the standard ones in state
estimation, e.g. bus voltage magnitudes, power injections at buses
and power flows in transmission lines; and those provided by phasor
measurement units, e.g. bus voltage phase angles and bus frequencies.
Note that null power injections are not considered in the calculation
of the distribution of the first digits. In any case, any modification
of zero-power injections can be easily detected and filtered by the
system operator. A variable number of measurement snapshots, p,
is utilized per each network, ranging from p = 10 to p = 10, 000.
Figure 1 has been obtained assuming e® normally distributed, with
zero mean and with a standard deviation 1% of the actual values of
the measurements.

Results indicate that the Benford’s law matches with a very good
accuracy. In fact, the relative square deviation index — see (7) —
returns values lower than 0.05 in all tested cases. As a general rule,
the higher the number of variables and measurements of the system,
the more accurate the Benford’s law is, although, in turn, this very
much depends on the normalization of the measurements. Another
observation is that bus voltage phase angle measurements are those
that mostly cause deviations with respects to the Benford’s law. It
is important to note that, for every network, set of measurements
and choice of the parameters for the normalization function (4),
the histogram has a quite fixed shape. This in turn means that the
distribution of the first digits comes with a sort of “fingerprint” that is
characteristic of that specific network. This property, even more than
the accuracy with which the distribution approximates the Benford’s
law, allows identifying malicious data. The introduction of bad data,
in fact, will inevitably create a distortion of the fingerprint of the
first digits. The main advantage of using the normalization of the
measurements is that the operator does not need to know a priori this
fingerprint. Reciprocally, the operator can adopt alternative ad hoc
normalizations (sort of encryption keys), which could even change
in time, e.g. daily. In absence of bad data, each normalization would
give rise to a specific “fingerprint,” unknown to the hacker, that will
be perturbed to a certain extent by potential cyber-attacks.

B. All-Island Irish Transmission System

In this section we consider a real-world model of the all-island
Irish power system. The topology and the steady-state operation data
of the system have been provided by the Irish transmission system
operator, EirGrid Group, whereas the dynamic data have been defined
based on our knowledge about the technology of the generators and
the controllers. The system consists of 1,479 buses, 796 lines, 1,055
transformers, 245 loads, 22 synchronous machines, with automatic



—— Benford's law —— Benford's law

0.25 Measurements Measurements

Frequency

2 1 6 8 2 1 6 8
First digit First digit

(a) WSCC 9-bus system (b) IEEE 14-bus system

—— Benford's law —— Benford's law

0.25 Measurements Measurements

Frvq\lvu( v

2 1 6 8 2 1 6 8
First digit First digit

(c) New England 39-bus system (d) 21,177-bus ENTSO-E system

Fig. 1: Benford’s law applied to power systems of various sizes.

voltage regulators and turbine governors, 6 power system stabilizers
and 176 wind power plants. Simulations are solved using Dome [12].

In the tests discussed below, we assume that the system operator
has available about m ~ 10,000 measurements per snapshot of the
system, and p = 1,000 snapshots, including bus voltage magnitudes,
active and reactive power injections at buses and flows in transmission
lines and transformers, and bus frequency measurements. Figure 2
shows the distribution of the first digits assuming n(k) =0 and
normally distributed, with zero mean and with a standard deviation
1% of the actual values of the measurements.
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Fig. 2: Distribution of first-digits of normalized measurements for the
all-island Irish system.

We define the following linear deviation index (LDI) to evaluate
the impact of malicious data:
9

> lei = Buo(i)], )

i=1

LDI =

where c¢; is the quota of the measurements whose first relevant
digit is ¢ normalized with respect to the total number (m X p) of
measurements; a digit-1 index (D11I):

DIl = ¢1 — Bio(1); (6)
and, finally, a relative square deviation index (RSDI), as follows:
[Cz BlO
RSDI = . 7
Z Broli @

The values of the indices above obtained for the Irish system are
given in Table II for various levels of bad data. All indices are very
sensitive to the bad data level, returning values that differ 120%
(D1I), 33% (LDI) and 150% (RSDI) for a bad data level introduced
by a cyber attack as low as 1%.

TABLE II: Indices for different percentages of bad data introduced
by a cyber attack.

Bad data [%] D11 LDI RSDI
0 0.0037 | 0.0304 | 0.0014
1 —0.0433 | 0.1314 | 0.0227
2 —0.0725 | 0.2114 | 0.0601
3 —0.0915 | 0.2664 | 0.0960
4 —0.1061 | 0.3057 | 0.1270
5 —0.1168 | 0.3340 | 0.1530
10 —0.1469 | 0.4184 | 0.2414
15 —0.1602 | 0.4551 | 0.2867

It is interesting to note that the normalization obtained by applying
(4) prevents that a cyber attacker can cheat the Benford’s law by
“swapping” a set of measurements. Say, for example, that the attack
consists in systematically swapping voltage magnitude measurements
with active power injections at the same bus. If the raw measurements
were utilized, the pattern of first digits would remain the same and no
issue could be detected by checking their distribution. On the other
hand, using (4), a swap of the measurements is immediately visible
from the distribution of the first digit. Table III shows the values of
the indices in (5) to (7). Again all indices are quite sensitive even to
low levels of bad data.

TABLE III: Indices for different percentages of swapped data intro-
duced by a cyber attack.

Swapped data [%] DI1I LDI RSDI
0 0.0037 | 0.0304 | 0.0014
1 0.0088 | 0.0423 | 0.0040
2 0.0132 | 0.0634 | 0.0109
3 0.0178 | 0.0895 | 0.0211
4 0.0219 | 0.1143 | 0.0349
5 0.0262 | 0.1375 | 0.0502
10 0.0433 | 0.2423 | 0.1621
15 0.0580 | 0.3303 | 0.3045

As a last example, we illustrate the concept of “fingerprint”
introduced in Section III. The normalization obtained with (4) has
been introduced to obtain a distribution of the first digits that fits
the classical Benford’s law. A hacker that knows that measurement
data are double-checked through the Benford’s law, might be able to
introduce attacks that pass undetected. To avoid this possibility, the
normalization step can be utilized to make the shape of the distribu-
tion of the first digits unique, and thus serve as an “encryption” that
cannot be unravelled by hackers.

Figure 3 shows the distribution of the first digits assuming that ac-
tive power measurements are normalized with the following formula:

P — 0.5Shase
Sbase

) ®)

Phk =

The coefficient 0.5 introduced in (8) leads to high bins for the digits
4 and 5. Table IV shows that a cyber attack can be still be easily
detected, even for small percentages of malicious data, assuming that
the system operator has a good knowledge of the distribution of the
first digits for a situation where no cyber attack contaminates the
measurements. In Table IV the indexes D1I, LDI and RSDI have
been calculated considering the deviations of the data with respect to



the values of the digits shown in Figure (3). For this reason, the first
row of Table IV is null.

Finally, the following remark on measurement errors is relevant.
We have assumed so far that these errors are normally distributed.
In practice, they can have other distributions and can, thus, impact
on the shape of the distribution of the first digits. Independently
from their distribution and properties, however, the errors due to
the instrumentation show a substantial difference with respect to
the false data introduced by cyber attackers. That is, genuine errors
are an intrinsic part of any set of measurements and are expected
to be always present, to a certain extent. Cyber attacks, on the
other hand, constitute extraordinary events, artificially introducing
additional errors, which are not distributed in the same way as
“natural” errors. The impact of intrinsic measurement errors, thus,
is part of the “fingerprint” of the distribution of the first digits of a
set of noisy measurements. Hence, these errors not only are not an
issue for the detection of cyber attacks but, in case they give rise to
a peculiar distribution of the first digits, they can actually also help
to detect the cyber attacks.

TABLE IV: Indices for different percentages of bad data introduced
by a cyber attack with normalization of the active power measure-
ments based on (8).

Bad data [%] DI1I LDI RSDI
0 0 0 0
1 —0.0217 | 0.1375 | 0.0383
2 —0.0355 | 0.2257 | 0.1026
3 —0.0440 | 0.2860 | 0.1649
4 —0.0511 | 0.3278 | 0.2173
5 —0.0562 | 0.3616 | 0.2633
10 —0.0707 | 0.4549 | 0.4166
15 —0.0770 | 0.4962 | 0.4961
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Fig. 3: Distribution of first-digits of measurements for the all-island
Irish system with normalization of the active power measurements
based on (8).

V. CONCLUSIONS

The letter shows that the Benford’s law applies to a set of
typical measurements utilized for the state estimation of power
systems if these measurements are properly normalized. No particular
assumption is made on the information available to the hacker, which
can be either partial or complete. The only assumption made is
that the hacker does not introduce variations with zero mean and
Gaussian distribution on the measurements. Results allow concluding
that the frequency of digit 1 and a relative square deviation index
are particularly sensitive to the injection of bad data and/or data
swapping. In fact, bad/swapped data levels as low as 1% can be
easily detected. Custom normalizations of the data can also be utilized
as an encryption to protect against hackers that are aware of the
utilization of data sanity checks based on the Benford’s law. The
most relevant advantages of the proposed technique are its negligible
computational burden and full independence from conventional state
estimation tools. However, it does not provide information on which
data have been hacked. For this reason, the proposed technique can
be utilized to raise a “red flag” on suspicious sets of measurements.
Then, conventional bad-data detection techniques can be utilized to
carry out further analyses and identify which data are false. Given
its high sensitivity to malicious data, the proposed pre-screening
technique can be particularly efficient and reduce the possibility of
“false positive” detections.

REFERENCES

[1] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks
on the smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp.
645-658, 2011.

Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against

state estimation in electric power grids,” in Proceedings of the 16th ACM

Conference on Computer and Communications Security. New York, NY,

USA: Association for Computing Machinery, 2009, p. 21-32.

[3] S. Gorman, “Electricity grid in U.S. penetrated by spies.” [Online].

Available: http://online.wsj.com/article/SB123914805204099085.html

G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015

Ukraine blackout: Implications for false data injection attacks,” IEEE

Transactions on Power Systems, vol. 32, no. 4, pp. 3317-3318, 2017.

R. Deng, G. Xiao, R. Lu, H. Liang, and A. V. Vasilakos, “False data

injection on state estimation in power systems—attacks, impacts, and

defense: A survey,” IEEE Transactions on Industrial Informatics, vol. 13,

no. 2, pp. 411423, 2017.

[6] A.S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection algo-
rithms for false data injection attacks in smart grids,” IEEE Transactions
on Smart Grid, vol. 11, no. 3, pp. 2218-2234, 2020.

[7]1 R. M. Fewster, “A simple explanation of Benford’s law,” The American
Statistician, vol. 63, no. 1, pp. 26-32, 2009.

[8] A. K. Formann, “The Newcomb-Benford law in its relation to some
common distributions,” PLoS ONE, vol. 5, no. 5, 2010.

[91 S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. USA: California Technical Publishing, 1997.

10] A. Abur and A. Gémez Exp6sito, Power System State Estimation: Theory
and Applications. New York, NY: CRC Press, 2004.

[11] A. de la Villa Jaén, J. B. Martinez, A. G6émez-Expésito, and F. G.
Viazquez, “Tuning of measurement weights in state estimation: Theo-
retical analysis and case study,” IEEE Transactions on Power Systems,
vol. 33, no. 4, pp. 4583-4592, 2018.

[12] F. Milano, “A Python-based software tool for power system analysis,”
in IEEE PES General Meeting. 1EEE, 2013, pp. 1-5.

[2

—

[4

=

[5

=



