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Continuous Newton’s Method
for Power Flow Analysis

F. Milano, IEEE Member

Abstract— This paper describes the application of the contin-
uous Newton’s method to the power flow problem. This method
basically consists in formulating the power flow problem as
a set of autonomous ordinary differential equations. Basedon
this formal analogy, we propose an entire family of numerically
efficient algorithms for solving ill-conditioned or badly-initialized
power flow cases. The paper also shows that the classical Newton-
Raphson’s method and most robust power flow techniques
proposed in the literature are particular cases of the proposed
formulation. An example based on a 1254-bus model of the UCTE
system is presented and discussed.

Index Terms— Newton-Raphson’s method, robust power flow,
ill-conditioned power flow, optimal multiplier, Runge-Kut ta for-
mulas, continuous Newton’s method.

I. I NTRODUCTION

A. Motivation

The power flow analysis is one of the most important
problems in power system studies. This paper gives a novel
perspective on the formulation of the power flow problem and
proposes an efficient method for solving ill-conditioned cases.

B. Literature Review

The origins of the formulation of the power flow problem
and the solution based on the Newton-Raphson’s technique are
back to the late sixties [1]. Since then, a huge variety of studies
have been presented about the solution of the power flow
problem, addressing starting initial guess [2], computational
efficiency [3]–[9], ill-conditioned cases and robustness [10]–
[18], multiple solutions [19], [20], and unsolvable cases [21],
[22].

It is relevant to classify the power flow problems into the
following categories:

1) Well-conditioned case. The power flow solution exists
and is reachable using a flat initial guess (e.g. all load
voltage magnitudes equal to 1 and all bus voltage angles
equal to 0) and a standard Newton-Raphson’s method.
This case is the most common situation.

2) Ill-conditioned case. The solution of the power flow
problem does exist, but standard solution methods fail
to get this solution starting from a flat initial guess.
Typically this situation is due to the fact that the region
of attraction of the power flow solution is narrow or
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far away from the initial guess. In this case, the failure
of standard power flow solution methods is due to the
instability of the numerical method, not of the power
flow equations. Robust power flow methods have proved
to be efficacious for solving ill-conditioned cases.

3) Bifurcation point. The solution of the power flow exists
but it is either a saddle-node bifurcation or a limit-
induced bifurcation [23].

a) Saddle-node bifurcations are associated with the
maximum loading condition of a system. The so-
lution cannot be obtained using standard or robust
power flow methods, since the power flow Jacobian
matrix is singular at the solution point.

b) Limited-induced bifurcations are associated with a
physical limit of the system, such as a shortage of
generator reactive power. Although limit-induced
bifurcation can in some cases lead to the voltage
collapse of the system, the solution point is typ-
ically a well-conditioned case and does not show
convergence issues.

Several continuation techniques [23], [24] and optimal
power flow problems [25]–[27] have been proposed for
determining bifurcation points. These methods allow
defining the distance between the present power flow
solution and the bifurcation points and thus are useful for
studying the static stability of the system [23]. However,
observe that encountering a case whose solution is
exactly a bifurcation point is quite uncommon in the
practice.

4) Unsolvable case. The power flow solution does not
exist. Typically, the issue is that the loading level of the
network is too high. As in the case of the bifurcation
points, a continuation method or an optimal power flow
problem allow defining the maximum loading level that
the system can supply. An alternative method to analyze
unsolvable cases is given in [21], [22]. As shown in [21],
robust power flow methods provide a solution close to
the feasibility boundary rather than diverge.

C. Contributions

This paper addresses ill-conditioned power flow cases. At
this aim, we propose a novel approach for formulating the
power flow problem based on the vector continuous Newton’s
method (a scalar version of the continuous Newton’s method
can be found in [28]). This approach shows that there is
a formal analogy between the Newton’s method and a set
of autonomous ordinary differential equations. This analogy
is intriguing, since it allows unifying the standard Newton-
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Raphson’s method and most robust techniques proposed in
the literature in an unique framework. Furthermore, the anal-
ogy suggests that any efficient numerical integration method
(e.g. Runge-Kutta formulas) can be used for solving the power
flow problem. Finally, a byproduct of the continuous Newton’s
method is the similarity with the Davidenko’s homotopy
technique [29].

D. Paper Organization

In Section II we provide brief outlines of the fundamentals
of standard and robust Newton-Raphson’s methods for solving
the power flow problem. Section III describes the continuous
Newton’s method and its application to the power flow prob-
lem. Consideration on the stability and the similarity withthe
Davidenko’s homotopy method are also given in this section.
Section IV presents a case study based on a 1254-bus model of
the UCTE system and shows the advantages of the proposed
technique. Finally, in Section V conclusions are duly drawn.

II. OUTLINES OF THENEWTON-RAPHSON’ S METHOD

The power flow problem is formulated as a set of nonlinear
equations, as follows:

0 = g(x) (1)

where g (g ∈ R
n) and x (x ∈ R

n) are the variables,
i.e. voltage amplitudes and phases at load buses, reactive
power and voltage phases at generator PV buses and active
and reactive power at the slack bus [1]. In the classical power
flow formulation, variables and equations are twice the number
of the network buses (see also the Appendix A).

Since (1) are nonlinear and cannot be explicitly inverted,
one has to use a numerical iterative technique for solving the
power flow problem. Thei-th iteration of the classical Newton-
Raphson (NR) algorithm for (1) is as follows:

∆x(i) = −[g
(i)
x ]−1g(i) (2)

x(i+1) = x(i) + ∆x(i)

wheregx = ∇T
xg is the Jacobian matrix of the power flow

equations. Agood initial guessx(0) is needed to start the
iterative process. Typically a flat start is an acceptable initial
guess [2]. The algorithm stops if the variable increments∆x

are lower than a given toleranceǫ or the number of iterations
is greater than a given limit (i > imax). In the latter case, the
algorithm has likely failed to converge.

For well-conditioned cases, the standard NR technique
typically converges in 4-5 iterations. However, there are id-
iosyncratic cases for which the NR technique will fail to
converge. For this reason a variety ofrobustvariations of the
basic NR method have been proposed in the literature [10],
[11], [13], [15]–[18]. Most of these techniques mainly consists
in modifying the first equation of (2) as follows:

∆x(i) = −µ[g
(i)
x ]−1g(i) (3)

whereµ is a factor that improves the convergence properties
of the iterative process. In [10], [11], [13], [15]–[18], several
methods for computing adequate values ofµ are proposed
and/or compared. Ifµ is the result of an optimization process,
µ is calledoptimal multiplier.

III. C ONTINUOUS NEWTON’ S METHOD

Let us consider a set of autonomous ordinary differential
equations (ODE):

ẋ = f(x) (4)

The simplest method of numerical integrating (4) is the explicit
Euler method, as follows:

∆x(i) = ∆tf(x(i)) (5)

x(i+1) = x(i) + ∆x(i) (6)

where∆t is a given time step.
The analogy between (2) and (5) is straightforward if one

defines:
f (x) = −[gx]−1g(x) (7)

Equations (2) can thus be viewed as thei-th step of the
Euler forward method where∆t = 1 [28]. Furthermore,
robust NR techniques (3) are nothing but thei-th step of
the Euler integration method where∆t = µ. In other words,
the computation of the optimal multiplierµ corresponds to a
variable step Euler method.

The equilibrium pointx0 of (4) is

0 = f (x0) = −[gx|0]
−1g(x0) (8)

Thus, assuming thatgx is not singular,x0 is also the solution
of (1). Observe that assuming a non-singular Jacobian matrix
for the power flow equations is an implicit hypothesis of any
power flow analysis (see also the discussion in the following
Subsection III-B).

A. Stability of the continuous Newton’s method

Differentiating (7) with respect tox leads to:

fx = ∇T
xf (x) (9)

= −[gx]−1gx − (∇T
x([gx]−1))g(x)

= −In − (∇T
x([gx]−1))g(x)

whereIn is the identity matrix of ordern. Since the equilib-
rium point x0 is a solution forg(x0) = 0, one has:

fx|0 = −In (10)

A proof of (10) using tensor notation is given in the Appendix
B. Equation (10) basically implies that all eigenvalues offx
at the solution point are equal to−1. Thus, (10) means that
the solution of (1), if exists, is asymptotically stable. The
reachability of this solution depends on the starting point
x(t0) = x0, which has to be within the region of attraction
(also calledstability region) of x0.

This paper focuses on the stability of the numerical methods
used to obtain the solution of (1), and thus we assume thatx0

is within the region of attraction ofx0. At this regard, observe
that initial guesses can be of two types:

1) The initial guess is outside the region of attraction of
the solution point. Numerical methods typically diverge
if one starts with such initial guess. The determination
of the region of attraction of the solution of the power
flow equations is out of the scope of this paper. Some
interesting discussion can be found in [21].
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2) The initial guess is inside the region of attraction of
the solution point. In this case, a numerical method is
expected to converge but can, in some cases, diverge.
This is the phenomenon that is addressed in this paper.

The proposed technique is expected to show better ability
to converge than other methods presented in the literature if
the initial guess is within the region of attraction.

B. Continuous Newton’s method and homotopy

Let us assume that the power flow equations (1) depend on
a scalar parameterλ (λ ∈ R), as follows:

0 = g(x, λ) (11)

In most voltage stability studies, this parameter typically
multiplies load and generator powers, so thatλ is also called
loading parameter[23]. The study of the behavior ofg as
λ varies constitutes the well-known continuation power flow
analysis, which is basically a homotopy method [30].

Differentiating the continuous Newton’s equations (11) at
an equilibrium point, one has:

0 = gxdx + gλdλ (12)

where the dependence onx0 has been omitted for the sake
of simplicity. Equation (12) leads to the homotopy method
proposed by Davidenko for computing the variation ofx as a
function of the parameterλ [29]:

dx

dλ
= −[gx]−1gλ (13)

wheregλ = ∇T
λ g.1 The Davidenko’s method fails at turning

points (e.g. saddle-node bifurcations) because of the singular-
ity of gx. More details on homotopy techniques can be found
in [31].

Equations (13) is equivalent to a set of ODE, where the
integration variable isλ. It is relevant to note the similarity of
the continuous Newton’s method (7) and (13). In fact, let us
define the functionh(x, t) as follows:

0 = h(x, t) = etg(x) (14)

wheree represents the natural exponential. Then, differentiat-
ing h, one has:

0 = hxdx + htdt (15)

= etgxdx + etgdt

Thus (7) can be rewritten as:

dx

dt
= −[hx]−1ht (16)

Equation (16) shows thatt can be viewed as the continuation
parameter for the functionh(x, t). As for the Davidenko’s
method, the continuous Newton’s method fails at turning
points where the power flow Jacobian matrix is singular.

1Observe that (13) can be also obtained from (7). As a matter offact,
differentiating (4) and imposingdẋ = 0 leads to:

0 = df = −Indx− [gx]−1g
λ
dλ

where it is implicitly assumed thatgx does not depend onλ (see (23) and
the formulation of the power flow problem in the Appendix A).

The main difference between (13) and (16) is thatλ is an
internal or forced continuation parameter (thus leading to a
natural parameterhomotopy), whilet is an external orfree-
running (thus leading to anartificial parameter homotopy)
[32]. Thus only the final solution point of (16) is physically
relevant, while the values ofx in intermediate iterations lack
of interest. It seems more interesting to further investigate the
fact that (13) can be viewed as a dynamic system. This is
currently an open research topic.

C. Efficient solution methods of the power flow problem

It is well-known that the forward Euler method, even with
variable time step, can be numerically unstable. Reference
[28] suggests that, given the analogy between the power flow
equations (1) and the ODE (4), any well-assessed numerical
method can be used to integrate (4). It is thus intriguing to use
some efficient integration method for solving (1). Observe that,
since the computation off = −[gx]−1g implies the inversion
of the power flow Jacobian matrix, only explicit integration
methods are suitable and computationally efficient, since one
does not need to compute the Jacobian matrix off .

For the sake of example, in the sake study described in
Section IV, we use a classical fourth order Runge-Kutta
formula (RK4). A generic step of the RK4 is as follows:

k1 = f(x(i)) (17)

k2 = f(x(i) + 0.5∆tk1)

k3 = f(x(i) + 0.5∆tk2)

k4 = f(x(i) + ∆tk3)

x(i+1) = x(i) + ∆t(k1 + 2k2 + 2k3 + k4)/6

The time step∆t can be adapted based on the estimated
truncation error of the integration method. An interesting
discussion on the Runge-Kutta truncation error estimationcan
be found in [33]. For example, the RK4 error can be estimated
based on the half-step method, as follows:

ξ = max{abs(k2 − x(i+1))} (18)

Then the time step∆t can be computed based on the following
simple heuristic rules:

if ξ > 0.01 then∆t← max{0.985 ·∆t, 0.75} (19)

if ξ ≤ 0.01 then∆t← min{1.015 ·∆t, 0.75}

Based on these rules, the time step is increased if the truncation
error is greater than a given threshold and decreased if the
truncation error is lower than a given threshold. The minimum
value of the time step is limited to0.75. If the lower value of
the time step∆t is not limited, in case of unsolvable unsolv-
able power flow problems, the proposed algorithm provides a
solution close to the feasibility boundary of the power flow
equations, as discussed in [21]. All thresholds and tuning
parameters in (19) have been determined based on heuristic
criteria.

It is important to note that any order and any version of the
family of the Runge-Kutta formulas could be used, and any
of these methods is numerically more stable than the Euler
forward method.
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Fig. 1. One-line diagram of the 1254-bus 1942-line model of the UCTE
system.

IV. CASE STUDY

Figure 1 depicts the one-line diagram of the 1254-bus 1942-
line model of the UCTE system. An in-depth description
of this system is given in [34], while UCTE data in vari-
ous formats can be found at [35]. In [35], three scenarios
are available, namely summer, winter peak, and winter off-
peak. Simulations have been solved for the summer scenario,
however, similar results can be obtained for the winter cases.
All simulations have been solved using the software package
PSAT [36], which allows easily prototyping new algorithms.
Furthermore, PSAT is open source, thus, the full code of the
proposed algorithm is freely available at the author’s webpage
[37], so that the interested reader can readily reproduce all
simulations presented in this section.

Table I compares the number of iterations necessary to
obtain the solution of the power flow problem for the UCTE
system and for a variety of convergence tolerancesǫ, as
follows:

ǫ ≥ max{abs(∆x(i))} (20)

The methods compared in Table I are the following:

1) Standard NR method.
2) Fast decoupled power flow (FDPF) method [5]. Since

the data only provides line reactances, the BX and XB
versions of the FDPF produce same results in this case.

3) Iwamoto’s method (IM). This method has been pre-
sented in [11] and consists in finding the optimal mul-
tiplier µ the minimizes the corrector vector∆x(i).

4) The continuous Newton’s method using a simple for-
ward Euler variable step method (simple robust method,
SRM). This method consists in comparing the corrector
vector of the last two iterations. If∆x(i) > ∆x(i−1),
then the multiplierµ is divided by 2.

5) The continuous Newton’s method using the RK4 pre-
sented in (17). An initial time step∆t = 1 has been
used.

For the sake of completeness, Fig. 2 shows the flowchart of
the proposed technique. Observe that the flowchart is the same
as the standard Newton-Raphson’s technique or other robust
methods except for (17) and the criterion used for updating

using (19)

max

x (0)

i = 1
t = 1∆

ε > max{abs(∆ x(i))}

Stop
i = i + 1

Update ∆ t

Solve (17)

 No

NoYes

Initialization

Yes

i > i

Fig. 2. Flowchart of the proposed RK4-based continuous Newton’s method
for solving the power flow analysis.

∆t. For example,∆t = 1 = constant in the standard Newton-
Raphson’s method.

The proposed technique does not directly take into account
equipment limits and controls, such as reactive power genera-
tor limits. However, any technique that is currently used inthe
standard Newton-Raphson’s method to take into account these
limits can be readily included in the proposed algorithm. For
example, one commonly used technique consists in checking
at each iteration the value of the reactive power produced at
PV buses, and switching the PV bus to a PQ bus if the reactive
power limit has been violated.

A. Simulation results

Table I shows that the standard NR and the FDPF, which
in some cases presents better convergence properties than the
NR method, fails to reach a solution for the UCTE system.
The robust methods that uses a variable multiplierµ reach
the solution but with a relatively high number of iterations.
Finally, the RK4 applied to the continuous Newton’s method
converges in a relatively small number of iterations. This result
has to be expected, since the RK4 ensures an higher efficiency
than the Euler integration method.

Figure 3 shows a comparison of the convergence error
ǫ = max{abs(∆x(i))} for the Iwamoto’s method, the simple
robust method and the proposed RK4 method forǫ = 10−5.
The IM provides a smaller error than the SRM in the first
iterations. However, the SRM presents a smaller error than
IM after iteration 20 and eventually converges before than
the IM. The proposed RK4 always gives smaller convergence
errors than the other methods.

The reason for the failure of the standard NR method
is the initial guess, which in this case is not close enough
to the solution and makes the NR map unstable. Thus, it
would be reasonable to start with a robust technique and then
switch back to the NR method once the corrector vector∆x(i)
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TABLE I

COMPARISON OFMETHODS FORSOLVING THE POWER FLOW OF THE

UCTE SYSTEM

# Iter. # Iter. # Iter.

Method ǫ = 10
−3

ǫ = 10
−4

ǫ = 10
−5

Standard NR - - -

Fast Decoupled PF - - -

Iwamoto’s method 99 320 1021

Simple robust method 31 39 47

Runge-Kutta method 10 13 16
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Fig. 3. Comparison of convergence errors obtained with different robust
power flow solution methods for the UCTE system.

is smaller than a given threshold. This idea is not new in
power system analysis [38]. However, it has been applied for
time domain integration of power systems with faults not to
power flow analysis. In [38], the implicit trapezoidal method is
proposed as the workhorse for time domain analysis of power
systems. Each step of the implicit trapezoidal method is solved
by means of a Newton-Raphson technique. Step variations of
the parameters can lead to a “bad” initialization for the next
integration step. For this reason, the occurrence of faultscan
lead to the convergence failure of the trapezoidal method. To
overcome this issue, [38] suggests to switch to a Runge-Kutta
formula method for the few instants after the occurrence of a
fault and then switch back the trapezoidal method when the
variations of system variables are sufficiently stabilized.

Table II shows the results for the modified version of
the robust power flow methods and the continuous Newton’s
method. The threshold used to decide if it is convenient
to switch to the NR method is max{abs(∆x(i))} < 10−2.
Furthermore, in the case of the SRM, the multiplierµ is reset
to 1 after each iteration. Using this technique, the number of
iterations has been drastically reduced, especially in thecase
of the Iwamoto’s method.

Figure 4 shows a comparison of the convergence error
max{abs(∆x(i))} for the modified Iwamoto’s method, the
simple robust method, and the proposed RK4 method for

TABLE II

COMPARISON OFMODIFIED ROBUST METHODS FORSOLVING THE

POWER FLOW OF THE UCTE SYSTEM

# Iter. # Iter. # Iter.

Method ǫ = 10
−3

ǫ = 10
−4

ǫ = 10
−5

Iwamoto’s method 32 32 33

Simple robust method 9 9 10

Runge-Kutta method 8 8 8
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Fig. 4. Comparison of convergence errors obtained with different modified
robust power flow solution methods for the UCTE system.

ǫ = 10−5. The IM provides a smaller error than the SRM
in the first iterations. However, once the SRM switches to
the standard NR method, it quickly converges. As in the
previous simulations, the proposed RK4 always gives smaller
convergence errors than the other methods.

B. Computational burden

The heaviest computational part of any power flow solution
technique is the factorization of the Jacobian matrix of the
system. All other computations are matrix and vector sums and
products that can be done quite efficiently and we can assume
that they do not significantly affect simulation times. In the
case of Iwamoto’s method, the Jacobian matrix is factorized
once per iteration, while, in the case of the RK4 method, four
times per iteration. In the case of the simple robust method,
the number of factorizations per iteration is not constant,but
one can assume that the mean value is about two factorizations
per iteration.

Table III presents a comparison of the CPU times of the
Iwamoto’s method, the SRM, and the RK4 method for the
convergence toleranceǫ = 10−5. CPU times refer to a 2.4
GHz Intel Core 2 Duo processor running Matlab 7.6. Both
the original and the modified version of these methods are
compared. As expected, the performance of the method is
proportional to the number of iterations by the number of
factorizations of the power flow Jacobian matrix per iteration.
The SRM and the RK4 methods show similar performances
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TABLE III

COMPUTATIONAL BURDEN OF THEIM, SRM AND RK4 SOLUTION

TECHNIQUES FOR THEUCTE SYSTEM (ǫ = 10−5)

Original Version Modified Version

Method CPU time (s) CPU time (s)

Iwamoto’s method 106.5 3.4

Simple robust method 3.5 0.8

Runge-Kutta method 3.4 1.4

and are generally faster than the Iwamoto’s method.

V. CONCLUSION

This paper proposes a continuous version of the Newton’s
method for solving the power flow problem. The paper has
two main contributions: (i) a general framework for apply-
ing efficient numerical integration techniques for solvingill-
conditioned power flow cases; and (ii) formal taxonomy of
the existing numerical methods for solving the power flow
problem.

Future work will concentrate on further developing the
analogy between the power flow problem, ODE systems and
homotopy methods. The stability and region of attraction ofthe
continuous Newton’s method are promising fields of research.
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APPENDIX A
POWER FLOW EQUATIONS

For the sake of completeness, this appendix gives the power
flow equations (1) in polar form. For each bush, one has:

Ph = V 2
h (gh + gh0) (21)

− Vh

nℓ
∑

ℓ 6=h

Vℓ(ghℓ cos(θh − θℓ) + bhℓ sin(θh − θℓ))

Qh = −V 2
h (bh + bh0)

− Vh

nℓ
∑

ℓ 6=h

Vℓ(ghℓ sin(θh − θℓ)− bhℓ cos(θh − θℓ))

wherePh andQh are the real and reactive powers injected at
bush; V andθ are the bus voltage magnitude and phase angle,
respectively;nℓ is the number of connections departing from
bus h and gh, gh0, bh, bh0, ghℓ and bhℓ are line parameters,
namely conductance’s and susceptance, as commonly defined
in the literature.

Power injectionsPh and Qh at buses are modeled as the
sum of generator and load powers connected to the bush, as
follows:

Ph =
∑

i∈Ih

PGi
−

∑

j∈Jh

PLj
(22)

whereIh andJh are the sets of generators and loads con-
nected to bush, respectively. The loading parameter increases
linearly the bus power injections, as follows:

Ph(λ) = λ
∑

i∈Ih

PGi
− λ

∑

j∈Jh

PLj
(23)

APPENDIX B
PROOF OF(10)

This appendix proves (10) through tensor notation. Let us
define the following quantities:

fi elementi of the vector functionf(x).
gk elementk of the vector functiong(x).
aik element(i, k) of the matrix[gx]−1.
fi,j partial derivative offi with respect to the vari-

ablexj .
gk,j partial derivative ofgk with respect to the vari-

ablexj .
aik,j partial derivative of aik with respect to the

variablexj .

where the dependence offi, gk, aik, fi,j , gk,j andaik,j on x

has been omitted for simplicity. Equations (7) and (9) can be
rewritten as follows:

fi = −

n
∑

k=1

aik · gk (24)

fi,j = −
n

∑

k=1

aik · gk,j (25)

−
n

∑

k=1

aik,j · gk

Since the matrix[aik] is the inverse ofgx, then

n
∑

k=1

aik · gk,j =

{

1 if i = j

0 if i 6= j
(26)

Thus, (25) can be written in the compact form:

fi,j = −δij −

n
∑

k=1

aik,j · gk (27)

where δij is the well-known Kronecker’s operator. Further-
more, if gk = 0 ∀k = 1, . . . , n (which is verified at the
solution pointx0), then one obtains the final expression:

fi,j = −δij (28)

that is the tensor version of (10).



PAPER ACCEPTED FOR PUBLICATION ON IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST 2008. 7

This result is straightforward for a scalarg(x), i.e. forx ∈ R

andg ∈ R, as follows:

ẋ = f(x) = −
g(x)

gx(x)

⇒ fx(x) = −
gx(x)

gx(x)
+

gxx(x)

g2
x(x)

g(x)

= −1 +
gxx(x)

g2
x(x)

g(x)

thusfx(x0) = −1 if g(x0) = 0 andgx(x0) 6= 0.
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