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Continuous Newton’s Method
for Power Flow Analysis

F. Milano, IEEE Member

Abstract— This paper describes the application of the contin-
uous Newton’s method to the power flow problem. This method
basically consists in formulating the power flow problem as
a set of autonomous ordinary differential equations. Basedn
this formal analogy, we propose an entire family of numericdly
efficient algorithms for solving ill-conditioned or badly-initialized
power flow cases. The paper also shows that the classical Newwt
Raphson’s method and most robust power flow techniques
proposed in the literature are particular cases of the propsed
formulation. An example based on a 1254-bus model of the UCTE
system is presented and discussed.

3)

Index Terms— Newton-Raphson’s method, robust power flow,
ill-conditioned power flow, optimal multiplier, Runge-Kut ta for-
mulas, continuous Newton’s method.

I. INTRODUCTION
A. Motivation

The power flow analysis is one of the most important
problems in power system studies. This paper gives a novel
perspective on the formulation of the power flow problem and
proposes an efficient method for solving ill-conditionedes

B. Literature Review

The origins of the formulation of the power flow problem
and the solution based on the Newton-Raphson'’s technigue ar
back to the late sixties [1]. Since then, a huge variety ddist!
have been presented about the solution of the power flow
problem, addressing starting initial guess [2], compatel
efficiency [3]-[9], ill-conditioned cases and robustne$6]{
[18], multiple solutions [19], [20], and unsolvable cas2&]]
[22].

It is relevant to classify the power flow problems into the
following categories:

1) Well-conditioned caseThe power flow solution exists
and is reachable using a flat initial guess (e.g. all load
voltage magnitudes equal to 1 and all bus voltage angles
equal to 0) and a standard Newton-Raphson’s method.
This case is the most common situation.

lll-conditioned case The solution of the power flow
problem does exist, but standard solution methods fail

4)

2)

far away from the initial guess. In this case, the failure
of standard power flow solution methods is due to the
instability of the numerical method, not of the power
flow equations. Robust power flow methods have proved
to be efficacious for solving ill-conditioned cases.
Bifurcation point The solution of the power flow exists
but it is either a saddle-node bifurcation or a limit-
induced bifurcation [23].

a) Saddle-node bifurcations are associated with the
maximum loading condition of a system. The so-
lution cannot be obtained using standard or robust
power flow methods, since the power flow Jacobian
matrix is singular at the solution point.
Limited-induced bifurcations are associated with a
physical limit of the system, such as a shortage of
generator reactive power. Although limit-induced
bifurcation can in some cases lead to the voltage
collapse of the system, the solution point is typ-
ically a well-conditioned case and does not show
convergence issues.

Several continuation techniques [23], [24] and optimal
power flow problems [25]-[27] have been proposed for
determining bifurcation points. These methods allow
defining the distance between the present power flow
solution and the bifurcation points and thus are useful for
studying the static stability of the system [23]. However,
observe that encountering a case whose solution is
exactly a bifurcation point is quite uncommon in the
practice.

Unsolvable case The power flow solution does not
exist. Typically, the issue is that the loading level of the
network is too high. As in the case of the bifurcation
points, a continuation method or an optimal power flow
problem allow defining the maximum loading level that
the system can supply. An alternative method to analyze
unsolvable cases is given in [21], [22]. As shown in [21],
robust power flow methods provide a solution close to
the feasibility boundary rather than diverge.

b)

to get this solution starting from a flat initial guessC. Contributions

Typically this situation is due to the fact that the region This paper addresses ill-conditioned power flow cases. At
of attraction of the power flow solution is narrow orthis aim, we propose a novel approach for formulating the
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power flow problem based on the vector continuous Newton'’s
method (a scalar version of the continuous Newton’s method
can be found in [28]). This approach shows that there is
a formal analogy between the Newton’s method and a set
of autonomous ordinary differential equations. This agglo
is intriguing, since it allows unifying the standard Newton
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Raphson’s method and most robust techniques proposed in I1l. CONTINUOUSNEWTON'S METHOD

the literature in an unique framework. Furthermore, thé-ana | et ys consider a set of autonomous ordinary differential
ogy suggests that any efficient numerical integration meethgqyations (ODE):

(e.g. Runge-Kutta formulas) can be used for solving the powe &= f(z) ()
flow problem. Finally, a byproduct of the continuous Newton’

method is the similarity with the Davidenko’s homotopyl he simplest method of numerical integrating (4) is the ieipl
technique [29]. Euler method, as follows:

Az = Atf(x®) (5)

D. Paper Organization 2D ) 4 Al ©)

In Section Il we provide brief outlines of the fundamentals
of standard and robust Newton-Raphson’s methods for splviwhere At is a given time step.
the power flow problem. Section Ill describes the continuous The analogy between (2) and (5) is straightforward if one
Newton’s method and its application to the power flow proldefines:
lem. Consideration on the stability and the similarity witte f(x) = —[gz] 'g(x) @)
gav@enkos homotopy method are also given in this sectiop. lfjations (2) can thus be viewed as théh step of the
ection |V presents a case study based on a 1254-bus mod % r forward method wheré\t — 1 [28]. Furthermore
the UCTE system and shows the advantages of the proposebae N : '

. . . . . robust NR techniques (3) are nothing but th¢h step of
technique. Finally, in Section V conclusions are duly drawnthe Euler integration method wherst = . In other words,

Il. OUTLINES OF THENEWTON-RAPHSON S METHOD the computation of the optimal multiplier corresponds to a

The power flow problem is formulated as a set of nonlineé(f”‘ri"ibIe stg_p I_Euler method. .
equations, as follows: The equilibrium pointzy of (4) is

0=g(z) 1) 0 = f(zo0) = —[9z o] 'g(z0) (8)

whereg (g € R") andz (z € R") are the variables, Thus, assuming that,. is not singularx is also the solution
i.e. voltage amplitudes and phases at load buses, reacfifél). Observe that assuming a non-singular Jacobian xnatri
power and voltage phases at generator PV buses and ad@®fethe power flow equations is an implicit hypothesis of any
and reactive power at the slack bus [1]. In the classical poweower flow analysis (see also the discussion in the following
flow formulation, variables and equations are twice the nembSubsection 111-B).
of the network buses (see also the Appendix A).

Since (1) are nonlinear and cannot be explicitly inverted,. Stability of the continuous Newton's method
one has to use a numerica] itera_ltive technique.for solvieg th Differentiating (7) with respect te: leads to:
power flow problem. The-th iteration of the classical Newton-

Raphson (NR) algorithm for (1) is as follows: fo = Vif(x) 9)
Az = _[gi)-1g®) @ = —[92]7'92 — (Vz(l9z] ")9(z)
20D = ) 4 Az = —I,— (Vz(lgz] ))g(=)

whereg,, = VLg is the Jacobian matrix of the power flowwhereI,, is the identity matrix of order. Since the equilib-
equations. Agood initial guessz(®) is needed to start the UM pointz, is a solution forg(xo) = 0, one has:
iterative process. Typically a flat start is an acceptabitialn Fzlo=—1In (10)
guess [2]. The algorithm stops if the variable incremehis . S _
are lower than a given toleraneeor the number of iterations A Proof of (10) using tensor notation is given in the Appendix
is greater than a given limiti & imay). In the latter case, the B- Equation (10) basically implies that all eigenvaluesfgf
algorithm has likely failed to converge. at the solution point are equal tel. Thus, (10) means that
For well-conditioned cases, the standard NR techniqifee Solution of (1), if exists, is asymptotically stable.€Th
typically converges in 4-5 iterations. However, there ate i"€achability of this solution depends on the starting point
iosyncratic cases for which the NR technique will fail tat(fo) = ®o, which has to be within the region of attraction
converge. For this reason a varietyrobustvariations of the (&lso calledstability regior) of zo. _
basic NR method have been proposed in the literature [10],Th|s paper focuses on the stability of the numerical methods

[11], [13], [15]-[18]. Most of these techniques mainly cimts used to obtain the solution of (1), and thus we assumeathat
in modifying the first equation of (2) as follows: is within the region of attraction af,. At this regard, observe

. ()11 (i that initial guesses can be of two types:
Az = —p[g)1 1g? (3) - . . . .
1) The initial guess is outside the region of attraction of
where is a factor that improves the convergence properties  the solution point. Numerical methods typically diverge

of the iterative process. In [10], [11], [13], [15]-[18],\==al if one starts with such initial guess. The determination
methods for computing adequate values ofare proposed of the region of attraction of the solution of the power
and/or compared. If; is the result of an optimization process, flow equations is out of the scope of this paper. Some

1 is calledoptimal multiplier interesting discussion can be found in [21].
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2) The initial guess is inside the region of attraction of The main difference between (13) and (16) is thas an
the solution point. In this case, a numerical method isternal orforced continuation parameter (thus leading to a
expected to converge but can, in some cases, divergatural parametethomotopy), whilet is an external ofree-
This is the phenomenon that is addressed in this papemning (thus leading to arartificial parameter homotopy)

The proposed technique is expected to show better abill82]. Thus only the final solution point of (16) is physically

to converge than other methods presented in the literaturdgglevant, while the values af in intermediate iterations lack
the initial guess is within the region of attraction. of interest. It seems more interesting to further inveséighe

fact that (13) can be viewed as a dynamic system. This is

B. Continuous Newton’s method and homotopy currently an open research topic.

Let us assume that the power flow equations (1) depend on )
a scalar parameter (\ € R), as follows: C. Efficient solution methods of the power flow problem

It is well-known that the forward Euler method, even with
0=g(z,2) (11)  variable time step, can be numerically unstable. Reference

In most voltage stability studies, this parameter typicalll28] suggests that, given the analogy between the power flow
multiplies load and generator powers, so thas also called €quations (1) and the ODE (4), any well-assessed numerical
loading parameterf23]. The study of the behavior of as Method can be used to integrate (4). It is thus intriguings® u

)\ varies constitutes the well-known continuation power flogome efficient integration method for solving (1). Obseha.t

analysis, which is basically a homotopy method [30]. since the computation of = —[gy]~'g implies the inversion
Differentiating the continuous Newton's equations (11) #&f the power flow Jacobian matrix, only explicit integration
an equilibrium point, one has: methods are suitable and computationally efficient, sinoe o
does not need to compute the Jacobian matriy .of
0 = ggdx + g,dA (12) For the sake of example, in the sake study described in

where the dependence an has been omitted for the sakeSection 1V, we use a classical fourth o.rder Runge-Kutta
of simplicity. Equation (12) leads to the homotopy methotPrmula (RK4). A generic step of the RK4 is as follows:

?roptgsed fbi/hDavidenkct)e;o[zc;c])mputing the variationmoés a ki = f(z®) (17)
unction of the parame : ;
ky = f(z40.5Atk)
dx i
o = gl 9, (13) ks = f(@" +0.5Atk)
ki = O + Atk
whereg, = V1 g.! The Davidenko’s method fails at turning , 14 f(f’B N 3)
20D = 20 + At(kl + 2ko 4 2k3 + k4)/6

points (e.g. saddle-node bifurcations) because of thauking

ity of g,,. More details on homotopy techniques can be founthe time stepAt can be adapted based on the estimated
in [31]. _ _ _ truncation error of the integration method. An interesting
Equations (13) is equivalent to a set of ODE, where th@iscussion on the Runge-Kutta truncation error estimatam

integration variable is\. It is relevant to note the similarity of pe found in [33]. For example, the RK4 error can be estimated
the continuous Newton’s method (7) and (13). In fact, let Usased on the half-step method, as follows:

define the functiorh(x, t) as follows:

= bsks — 2D 18
0 = h(x,t) = c'g(x) (14) ¢ = max{abgk, — )} (18)

Then the time stef\t can be computed based on the following
wheree represents the natural exponential. Then, differentiafmple heuristic rules:
ing h, one has: )
if £ > 0.01thenAt +— max{0.985 - At, 0.75} (19)

0 = hadr+hd (15) if £ <0.01thenAt « min{1.015- At, 0.75}
= e'ggpdr + clgdt ) o ) )
) Based on these rules, the time step is increased if the tionca
Thus (7) can be rewritten as: error is greater than a given threshold and decreased if the
dz 1 truncation error is lower than a given threshold. The mimmu
= —lhg| "h: (16)

dt value of the time step is limited t0.75. If the lower value of

Equation (16) shows thatcan be viewed as the continuatioril® time stepAt is not limited, in case of unsolvable unsolv-
parameter for the functiok(z,t). As for the Davidenko’s @ble power flow problems, the proposed algorithm provides a
method, the continuous Newton's method fails at turnin@omt'or‘ close to the feasibility boundary of the power flow

points where the power flow Jacobian matrix is singular, €quations, as discussed in [21]. All thresholds and tuning
parameters in (19) have been determined based on heuristic

10bserve that (13) can be also obtained from (7). As a mattaaif  criteria.
differentiating (4) and imposing: = 0 leads to: It is important to note that any order and any version of the
0=df = —I,dx —[gg] 1g,d\ family of the Runge-Kutta formulas could be used, and any
where it is implicitly assumed thaj,, does not depend oA (see (23) and of these methods is numerically more stable than the Euler
the formulation of the power flow problem in the Appendix A). forward method.
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Initialization
x 0

i=1
At =1

Solve (17

'

Yes )
£ > max{abs(A X))}

: Stop Update At using (19)
Fig. 1. One-line diagram of the 1254-bus 1942-line modelh&f UCTE =i+ 1

system. ¢

Yes No
IV. CASE STUDY

) Figure 1 depicts the one-line diagram Qf the 1254_bus_ 1_943_. 2. Flowchart of the proposed RK4-based continuous hiewtmethod

line model of the UCTE system. An in-depth descriptiofyr solving the power flow analysis.

of this system is given in [34], while UCTE data in vari-

ous formats can be found at [35]. In [35], three scenarios

are available, namely summer, winter peak, and winter offt. For exampleAt = 1 = constant in the standard Newton-

peak. Simulations have been solved for the summer scenaR@phson’s method.

however, similar results can be obtained for the winter sase The proposed technique does not directly take into account

All simulations have been solved using the software packag@uipment limits and controls, such as reactive power gener

PSAT [36], which allows easily prototyping new algorithmstor limits. However, any technique that is currently usethie

Furthermore, PSAT is open source, thus, the full code of tetandard Newton-Raphson’s method to take into accountthes

proposed algorithm is freely available at the author’s vegfgp limits can be readily included in the proposed algorithm: Fo

[37], so that the interested reader can readily reproduce @ample, one commonly used technique consists in checking

simulations presented in this section. at each iteration the value of the reactive power produced at
Table | compares the number of iterations necessary R/ buses, and switching the PV bus to a PQ bus if the reactive

obtain the solution of the power flow problem for the UCTEOwer limit has been violated.

system and for a variety of convergence toleraneess

follows: A. Simulation results

¢ > max{abgAz")} (20)  Table | shows that the standard NR and the FDPF, which
in some cases presents better convergence propertieshiéhan t
NR method, fails to reach a solution for the UCTE system.
1) Standard NR method. The robust methods that uses a variable multipliereach
2) Fast decoupled power flow (FDPF) method [5]. Sincge solution but with a relatively high number of iterations
the data only provides line reactances, the BX and XBinally, the RK4 applied to the continuous Newton's method
versions of the FDPF produce same results in this caggnverges in a relatively small number of iterations. Thisult
3) Iwamoto’s method (IM). This method has been praygs to be expected, since the RK4 ensures an higher efficiency
sented in [11] and consists in finding the opt_imal Multhan the Euler integration method.
tiplier ;2 the minimizes the corrector vectdyz(®. Figure 3 shows a comparison of the convergence error
4) The continuous Newton’s method using a simple fog max{abgAx (")} for the lwamoto’s method, the simple
ward Euler variable step method (simple robust methogypust method and the proposed RK4 methodefer 10°.
SRM). This method consists in comparing the correct@the |M provides a smaller error than the SRM in the first
vector of the last two iterations. Rz > Az""Y, jierations. However, the SRM presents a smaller error than
then the multiplieru is divided by 2. IM after iteration 20 and eventually converges before than
5) The continuous Newton's method using the RK4 prene |M. The proposed RK4 always gives smaller convergence
sented in (17). An initial time stepf\¢t = 1 has been grrors than the other methods.
used. The reason for the failure of the standard NR method
For the sake of completeness, Fig. 2 shows the flowchartisfthe initial guess, which in this case is not close enough
the proposed technique. Observe that the flowchart is the saim the solution and makes the NR map unstable. Thus, it
as the standard Newton-Raphson’s technique or other robwsuld be reasonable to start with a robust technique and then
methods except for (17) and the criterion used for updatisgitch back to the NR method once the corrector vedtof?

The methods compared in Table | are the following:
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TABLE | TABLE Il
COMPARISON OFMETHODS FORSOLVING THE POWER FLOW OF THE COMPARISON OFMODIFIED ROBUSTMETHODS FORSOLVING THE
UCTE SrsTEM PoweRFLow OF THEUCTE SrsSTEM

# lter. # lter. # Iter. # Iter. # lter. # lter.
Method e=10"3 | e=10"* | e=10"" Method e=10" | e=10"" | e=10"°
Standard NR - - - Iwamoto’s method 32 32 33
Fast Decoupled PF - - - Simple robust method 9 9 10
lwamoto’s method 929 320 1021 Runge-Kutta method 8 8 8
Simple robust method 31 39 47
Runge-Kutta method 10 13 16
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Fig. 4. Comparison of convergence errors obtained withedfit modified
robust power flow solution methods for the UCTE system.

Fig. 3. Comparison of convergence errors obtained withedffit robust

power flow solution methods for the UCTE system. e = 1075. The IM provides a smaller error than the SRM

in the first iterations. However, once the SRM switches to
. . L. . he standard NR method, it quickly converges. As in the
is smaller than a given threshold. This idea is not new ? d y v

. X . evious simulations, the proposed RK4 always gives smalle
power system analysis [38]. However, it has been applied &5nvergence errors than the other methods.
time domain integration of power systems with faults not to
power flow analysis. In [38], the implicit trapezoidal methis

proposed as the workhorse for time domain analysis of powy Computational burden
systems. Each step of the implicit trapezoidal method igezbl  The heaviest computational part of any power flow solution
by means of a Newton-Raphson technique. Step variationst@thnique is the factorization of the Jacobian matrix of the
the parameters can lead to a “bad” initialization for thetnexystem. All other computations are matrix and vector sunds an
integration step. For this reason, the occurrence of fadts products that can be done quite efficiently and we can assume
lead to the convergence failure of the trapezoidal method. that they do not significantly affect simulation times. Ireth
overcome this issue, [38] suggests to switch to a RungeaKugiase of lwamoto’s method, the Jacobian matrix is factorized
formula method for the few instants after the occurrence ofomce per iteration, while, in the case of the RK4 method, four
fault and then switch back the trapezoidal method when tkies per iteration. In the case of the simple robust method,
variations of system variables are sufficiently stabilized  the number of factorizations per iteration is not constaat,
Table 1l shows the results for the modified version ofne can assume that the mean value is about two factorization
the robust power flow methods and the continuous Newtorger iteration.
method. The threshold used to decide if it is convenientTable Ill presents a comparison of the CPU times of the
to switch to the NR method is méabgAz()} < 1072. |wamoto’s method, the SRM, and the RK4 method for the
Furthermore, in the case of the SRM, the multipjieis reset convergence tolerance = 10~°. CPU times refer to a 2.4
to 1 after each iteration. Using this technique, the numlber GHz Intel Core 2 Duo processor running Matlab 7.6. Both
iterations has been drastically reduced, especially inctis® the original and the modified version of these methods are
of the Iwamoto’s method. compared. As expected, the performance of the method is
Figure 4 shows a comparison of the convergence erqomoportional to the number of iterations by the number of
max{abgAxz(")} for the modified lwamoto’s method, thefactorizations of the power flow Jacobian matrix per itenati
simple robust method, and the proposed RK4 method fohe SRM and the RK4 methods show similar performances
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TABLE Il
COMPUTATIONAL BURDEN OF THEIM, SRM AND RK4 SOLUTION
TECHNIQUES FOR THEUCTE SYSTEM (e = 10~°)

Power injectionsP;, and Q;, at buses are modeled as the
sum of generator and load powers connected to thehbas

follows:
Original Version| Modified Version
J . . Py = Z Pg, — Z Pr, (22)
Method CPU time (s) CPU time (s) icTy jeTn
Iwamoto’s method 106.5 3.4
Simple robust method 35 0.8 whereZ;, and 7, are the sets of generators and loads con-
Runge-Kutta method 3.4 14 r_1ected to bus, respecu_vgly. The loading par.ameter increases
linearly the bus power injections, as follows:
PiN) =AY Pe,~A ) Pu, (23)
and are generally faster than the lwamoto’s method. i€Zn JE€ETn
V. CONCLUSION APPENDIX B

This paper proposes a continuous version of the Newton’s PROOF OF(10)

method_for sol\(ing_ the power flow problem. The paper has This appendix proves (10) through tensor notation. Let us
two main contributions: (i) a general framework for applyaefine the following quantities:
ing efficient numerical integration techniques for solvitig '

conditioned power flow cases; and (i) formal taxonomy of /i element of the vector functionf(x).

the existing numerical methods for solving the power flow 9%
problem. @ik
Future work will concentrate on further developing the fig

elementk of the vector functiory(x).
element(i, k) of the matrix[g,] .
partial derivative off; with respect to the vari-

analogy between the power flow problem, ODE systems and ab'?%- o . )
homotopy methods. The stability and region of attractiothef ~ 9k.; partial derivative ofg, with respect to the vari-
continuous Newton’s method are promising fields of research able ;.
ik, partial derivative ofa;, with respect to the
variablez;.
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n
APPENDIXA _Zai’w "9k
POWER FLOW EQUATIONS k=1

For the sake of completeness, this appendix gives the powdice the matriXa;;] is the inverse of4, then
flow equations (1) in polar form. For each busone has:

" 1 if i=j
Py = Vign +gno) (21) kz:laik (g = {O if i#j (26)
Ny =
- Va #Zth(ghg cos(0h = O¢) + bresin(®h — 00)) gy, (25) can be written in the compact form:
Qn = —ViX(bn + bno) -
ne fig==0ij =Y air; - gk (27)
— Vh Z Vg(ghg sin(@h — 9@) — bhg COS(@h — 9@)) k=1
t£h

where §;; is the well-known Kronecker’s operator. Further-
where P, and @), are the real and reactive powers injected ahore, if g, = 0 Vk = 1,...,n (which is verified at the
bush; V andé are the bus voltage magnitude and phase ang$alution pointx), then one obtains the final expression:
respectively;n, is the number of connections departing from
bush and gy, gno, br, bro, gne @and by, are line parameters, fij = —0ij (28)
namely conductance’s and susceptance, as commonly defined
in the literature. that is the tensor version of (10).
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This result is straightforward for a scalgiz), i.e. fore € R [18]
andg € R, as follows:
. 9(x) [19]
z = flx)=-—
@)= 0@
9:(T) | Gaa(T)
= folz) = - g(x [20]
@ = @ e
gmm(x)
= -1+ g(x [21]
2w 1
thus £, (o) = —1 if g(z) = 0 and gy (o) # 0. [22]
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