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Abstract—This letter presents a technique to calculate the variance
of algebraic variables of power system models represented as a set
of stochastic differential-algebraic equations. The technique utilizes the
solution of a Lyapunov equation and requires the calculation of the state
matrix of the system. The IEEE 14-bus system serves to demonstrate the
accuracy of the proposed technique over a wide range of variances of
stochastic processes. The accuracy is evaluated by comparing the results
with those obtained with Monte Carlo time domain simulations. Finally,
a case study based on a 1479-bus dynamic model of the all-island Irish
transmission system shows the computational efficiency of the proposed
approach compared to the Monte Carlo method.

Index Terms—Stochastic processes, differential-algebraic equations,
covariance matrix, power system dynamic performance.

I. INTRODUCTION

MODERN power systems are subjected to stochastic processes
due to the high penetration of non-synchronous generation

such as wind and photo-voltaic. Stochastic load consumption is
another relevant source of noise, especially at the distribution level. It
is important to study the impact of stochastic processes to estimate the
probability that physical limits such as voltage insulation ratings of
a substation, the thermal limits of the lines/transformers, are violated
in normal operation. This letter focuses precisely on this point and
proposes an efficient technique that, given the properties of the noise
sources, evaluates the variance of all state and algebraic variables of
power system dynamic models.

The dynamic performance of a power system with inclusion of
stochastic processes can be conveniently studied through Stochastic
Differential Algebraic Equations (SDAEs) [1]. These SDAEs are non-
linear and can have high dimensionality for large power systems. The
use of numerical schemes for their integration is thus unavoidable.
The stochastic terms require a significant extra computational burden
to solve the integration [2]. Moreover, SDAEs have to be studied
with a Monte Carlo method, i.e., several hundreds or even thousands
of times, to properly estimate the statistical properties of the system
variables, such their probability distribution and variance.

A number of techniques are available in the literature that provide
the statistical properties in stationary conditions of the state variables,
e.g. [3] and [4]. These methods are based on the properties of the
Fokker-Planck equation and the solution of the Lyapunov equation.
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This letter further elaborates on this approach and proposes the
utilization of a simple, yet effective linearized method to calculate
the statistical properties of the algebraic variables of power systems
without the need to perform cumbersome time domain simulations.

II. POWER SYSTEM MODEL WITH NOISE

The power system model considered in this work is described by
the following set of index-1 SDAEs:

ẋ = f(x,y,η) , (1)

0m,1 = g(x,y,η) , (2)

η̇ = a(η) +B(η) ξ . (3)

Equations (1)-(2) describe the conventional deterministic power sys-
tem models such as transmission lines, generators and controllers.
Vector f : Rn+m+p 7→ Rn defines the deterministic differential
equations; vector g : Rn+m+p 7→ Rm defines the algebraic equa-
tions; x ∈ Rn is the vector of the deterministic state variables and
y ∈ Rm is the vector of the algebraic variables. Equation (3) defines
the behavior of the stochastic processes η ∈ Rp, where ξ ∈ Rq is
the white noise vector, i.e., the vector of the formal time derivatives
of the Wiener processes. Vector η represents the fluctuations of loads
and renewable energy sources such as wind and solar power plants.
Equation (3) is composed of two terms: the drift a : Rp 7→ Rp and
the diffusion term B : Rp 7→ Rp×Rq . The elements of matrix B are,
in general, nonlinear functions of η to account for distributions other
than Gaussian [5]. However, for short-term analysis and/or small
fluctuations, one can assume normal distributions, which lead to a
constant diffusion matrix B [1].

In the general case, p ̸= q. This feature allows modeling correlated
processes [6]. If p = q and B is a diagonal matrix, then the processes
η are fully uncorrelated. In the following, without lack of generality,
the elements of η are assumed to be uncorrelated and with bounded
variance. The latter property has been observed in the measurements
of the noise sources of power systems, as discussed in [1] and
references therein. A widely accepted model with bounded variance
is the mean-reverted process, which has a linear drift term of the
form:

ak(ηk) = αk(µk − ηk) , k = 1, 2, . . . , p , (4)

where αk is the mean reversion speed, which defines the autocorre-
lation of the process, and µk is the average value of the process. If a
mean-reverted drift (4) is coupled with a constant diffusion, say bk,
one obtains a normally distributed Ornstein-Uhlenbeck (OU) process
with variance:

var(ηk) = σ2
k = b2k/(2αk) , k = 1, 2, . . . , p , (5)

where σk is the standard deviation of the k-th process. Note also that
bk is the k-th diagonal element of the diffusion matrix B.

III. CALCULATION OF THE VARIANCE OF ALGEBRAIC

VARIABLES

The starting point of the proposed technique to calculate the
variances of the algebraic variables y is the set of SDAEs linearized
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at the equilibrium point (xo,yo,ηo) as per Method I described
in [4], i.e., a point for which (2) are satisfied and ẋ = 0n,1 and
a(ηo) = 0p,1. The linearization of (1)-(3) gives: ˙̃x

0m,1

˙̃η

 =

 fx fy fη

gx gy gη

0p,n 0p,m aη

x̃ỹ
η̃

+

 0n,q

0m,q

B(ηo)

 ξ , (6)

where fx, fy , fη , gx, gy , gη , aη are the Jacobian matrices of the
system calculated at (xo,yo,ηo). x̃ and η̃ represent the deterministic
and the stochastic states of the linearized system. Eliminating the
algebraic variables from (6) and defining z̃ = [x̃T, η̃T]T leads to a
set of linear stochastic differential equations (SDEs), as follows:[

˙̃x
˙̃η

]
=

[
fx − fyg

−1
y gx fη − fyg

−1
y gη

0p,n aη

] [
x̃
η̃

]
+

[
0n,q

B(ηo)

]
ξ

= Ao z̃ +Bo ξ . (7)

Based on the Fokker-Planck equation, the probability distribution
ϖ(z̃) of all state variables in stationary condition satisfies [3]:

ϖ(z̃) = (det | 2πC |)−1/2 · exp
(
− 1

2
z̃TC−1z̃

)
, (8)

where C is the covariance matrix of the state variables in (7). Matrix
C is symmetric and satisfies the Lyapunov equation:

AoC+CAT
o = −BoB

T
o , (9)

which is a special case of the Riccati equation. The diagonal elements
of C are the steady-state variances of the components of the state
variables z̃. In particular, if the OU processes η are not correlated,
the last p diagonal elements of C are given by (5) where ak and bk
are the k-th diagonal elements of aη and Bo, respectively, and σ2

k are
the variances of the p stochastic processes η̃. The interested reader
can refer to [4] for a comprehensive discussion on the numerical
solution of (9).

From (7), we observe that x̃ can be written as a linear combination
of the entries of z̃. Hence, also the elements of x̃ are Gaussian
processes. Furthermore, the covariance matrix K of the small-signal
algebraic variables can be written as [7]:

K = Go CGT
o , (10)

where
Go = −g−1

y

[
gx gη

]
. (11)

The diagonal elements of K are the sought variances of the algebraic
variables ỹ.

Note that if p ≪ n, i.e., the number of noise sources is much
smaller than the number of state variables, the covariance matrices
C and hence K might not be full rank. A zero element in the k-th
position of the diagonal of C (K) indicates that the associated x̃k
(ỹk) are not affected by noise. In this case, the vector of stochastic
processes z̃ is said to be degenerate [8].

IV. CASE STUDIES

This section illustrates the accuracy and numerical efficiency of the
method in Section III to calculate the variances of algebraic variables
of the power system. All results are compared to the ones obtained
through Monte Carlo (MC) time domain simulations. The power
systems utilized in this case study are the IEEE 14-bus system, and
the all-island Irish transmission system (AIITS). The MC simulations
are performed exploiting parallelism on 2 Intel® Xeon® CPUs at
2.20GHz with 20-cores each, running a Linux OS that exploits core
virtualization (hypertrading). This means that at most 80 realizations
were solved in parallel for each MC simulation. Equation (9) is solved
using the open-source library SLICOT [9], whereas time domain

simulations are carried out with Dome [10]. In the remainder of
this section, the systems of equations (9) and (10) are referred to
as Lyapunov Equation Method (LEM).

In both power systems, the sources of noise are modeled as OU
processes and included in the loads and, for the AIITS, also in the
wind speeds. Load consumption is modeled as voltage dependent
incorporating stochastic processes:

pL(t) = (pL0 + ηp(t))(v(t)/v0)
γ ,

qL(t) = (qL0 + ηq(t))(v(t)/v0)
γ ,

vW(t) = vW0 + ηw(t) ,

(12)

where pL0 and qL0 are the active and reactive power consumption
at time t = 0; v(t) is the magnitude of the bus voltage at the load
bus; v0 is the voltage magnitude at the load bus at the start of the
simulation; γ defines the load voltage dependence; and ηp and ηq are
OU stochastic processes with drift and diffusion terms defined as in
(4) and (5), respectively. γ = 2 is utilized in all simulations.

In (12) vW0 is the initial wind speed; and ηw is a stochastic process
characterized by a Weibull distribution. This is obtained using the
technique described in [11], namely, using the same drift term defined
as in (4) and a nonlinear diffusion function bw(ηw), as follows:

aw(ηw) = αw(µw − ηw)

bw(ηw) =
√
b1(ηw)b2(ηw) ,

(13)

where

µw = λΓ
(
1 + κ−1) ,

b1(ηw) = 2αw ηw c1
λ

κ
(c2(ηw))

−κ ,

b2(ηw) = κ exp (cκ2 (ηw)) Γ (1 + c1, c
κ
2 (ηw))− Γ (c1) .

In the above equations, c1 = 1/κ and c2(ηw) = ηw/λ; αw is the au-
tocorrelation coefficient; κ and λ are the shape and scale parameters,
respectively, of the Weibull distribution; and Γ( · ) and Γ( · , · ) are the
Gamma function and the Incomplete Gamma functions, respectively.

The stochastic processes are modeled with the following
parameters: αp = αq = αw = 0.01 s−1; σ(ηp) = 0.05 pL0;
σ(ηq) = 0.05 qL0 and σ(ηw) = 0.05 vW0. The integration of
the deterministic part of SDAEs is performed by the implicit
trapezoidal method with the ∆t = 0.01 s time step. The OU
processes are integrated using the Euler-Maruyama method with
h = 0.01 s step size.

A. IEEE 14-Bus System

The IEEE 14-bus system contains 14 buses with 11 loads, 20
lines/transformers, and 5 synchronous machines. The synchronous
generators are described by a sixth-order model, and are equipped
with turbine governors and IEEE Type-I automatic voltage regulators.
An automatic generation control is also included in the model. The
IEEE 14-bus system is modified by including a wind power plant
connected to bus 5. All device models and data can be found in [12].

The IEEE 14-bus system is first simulated using the MC approach.
MC simulations require the selection of two parameters, namely, the
final simulation time tf and the number N of realizations of η.
These parameters decide how the stationary conditions are reached
and, hence, directly impact the accuracy of the statistical properties,
such as the standard deviation, of the variables.

The choice of the value of tf depends principally on the parameters
αi of the underlying processes and can be heuristically estimated
as tf = 2/min{αi}. As a proof of concept, Fig. 1 shows the
time evaluation of ση for different values of α. Figure 1 shows
that the stationarity of ση strongly depends on α (top panel) and is
independent from ση at stationary conditions (bottom panel). More
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Fig. 1. Standard deviation of η as a function of time, where the parameters
are defined such that σ(η1) = σ(η2) = σ(η3) = 0.1 with α1 = 1 s−1;
α2 = 0.1 s−1; and α3 = 0.01 s−1, and σ(η4) = 0.4; σ(η5) = 0.3;
σ(η6) = 0.2 with α4 = α5 = α6 = 0.01 s−1.

details on the evolution of the standard deviation of the power system
variables can be found in [13]. In the simulations carried out for this
case study, the smallest αi are of the order of 10−2 s and Fig. 1
confirms that a simulation time of 200 s is adequate to allow for all
stochastic processes to reach stationarity.

The second parameter to choose is the number of realizations N for
which the estimated value of ση is reliable enough to be independent
of the specific realizations of the stochastic processes. The best value
of N is determined by calculating the average ση of each process at
t = 200 s as a function of N , as shown in Fig. 2. This figure shows
that as N increases, the standard deviation of η and of other system
variables converges towards a constant value. Based on these results,
N = 1000 appears sufficient to obtain accurate stationary conditions
with the MC approach.

Next, we compare the values of standard deviation of the power
system variables for the IEEE 14-bus system obtained with MC with
those obtained through LEM. With this aim, we define a measure of
closeness, ϵσ , as follows:

ϵσ (%) =
σMC − σLEM

σMC
100 . (14)

where σMC, and σLEM are the standard deviations of the variables
obtained through MC and LEM, respectively.

Figure 3 shows the box plot of the values of ϵσ obtained in the
case of the IEEE 14-bus system through the MC and LEM for the
following variables: δ and ω are the rotor angle and speed of the
synchronous machines, respectively; e′d and e′q (ψd and ψq) are the
d- and q-axis internal emfs (fluxes) of the synchronous machines,
respectively; pg and qg are the active and reactive power injections
of the synchronous machines, respectively; pe is the active power
output of the wind power plants; Id and Iq are the d- and q-axis
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Fig. 2. Standard deviation of variables as a function of the number of
realizations of η.
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Fig. 3. Box plot of the measure of closeness ϵσ for the IEEE 14-bus system.

currents of the synchronous machines, respectively; θ and v are the
bus voltage magnitude and angle, respectively; pfr and qfr (pto and
qto) are the active and reactive power injections at the sending-end
(receiving-end) bus, respectively. In the figure, the thick horizontal
grey lines show the median of the data, the top and bottom notches
contain 5% to 95% percentile of the data, and the black circles show
the outliers. Results indicate that LEM yields σLEM that are very
close to σMC.

Note that, for all the stochastic processes ηp, ηq and ηw, LEM
yields the exact values of ση . This happens regardless of the process
being modeled through either a linear or a non-linear diffusion term.
Note also that, to test the accuracy of LEM against the nonlinearity of
the SDAEs, we have considered σ(ηp) = σ(ηq) ranging from 1% to
10% of the initial load consumption. The variations in the values of
ϵσ for all the variables were found to be in the same range as in Fig. 3.
It is fair to conclude, thus, that LEM provides very accurate results
for a wide range of standard deviation of the stochastic process.

B. All-Island Irish Transmission System

This section demonstrates the robustness and light computational
burden of the LEM when applied to a real-world complex systems.
The model of the AIITS considered in this section consists of 1479
buses, 1851 transmission lines or transformers, 245 loads, 22 conven-
tional synchronous power plants with AVRs and turbine governors, 6
PSSs and 169 wind power plants. Note that the secondary frequency
control of the AIITS is implemented manually and, thus, is slower
than 200 s, hence no AGC is considered in the model. Wind speeds
are modeled as OU processes. The resulting set of DAEs for the
AIITS includes 2278 state variables (666 of which are stochastic
processes) and 14623 algebraic variables. The proposed approach
was solved for all of the state and algebraic variables but, for
space limitation, we can show below only a small selection of these
variables.

The box plot of ϵσ for the AIITS is shown in Fig. 4. The deviations
observed in ϵσ are of the same order as the ϵσ observed in IEEE 14-
bus system. This result shows that the LEM works for larger systems
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Fig. 4. Box plot of the measure of closeness ϵσ for the AIITS.
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with the same accuracy as it does for the smaller systems. It is
important to note that the solution of (10), which is straightforward
per se, depends on the solution of the Lyapunov equation in (9),
which is numerically more challenging, especially for large systems.
To properly solve (9), the matrix Ao has to be well-conditioned to
prevent numerical overflow but at the same time to retain the accuracy
of the results.

It is also relevant to note that the increase in ϵσ values does
not necessarily need to be interpreted as an error of the proposed
approach. Indeed, non-zero values in ϵσ can be expected in general
because ϵσ is a relative value and none of the two methods (i.e., MC
and LEM) is perfect in terms of accuracy. On the one hand, the MC
method is a brute-force numerical technique. Its accuracy depends
on the number of realizations of the stochastic processes and the
time step of the time domain integration, as well as the length of
the simulated time. On the other hand, the LEM is analytical and
exact, at least for linear or linearized systems. Hence, the deviation
between the results obtained with these two techniques is due to (i)
the numerical issues of the MC method and (ii) the nonlinearity of
the DAEs that model the power system behavior.

LEM shows a clear advantage with respect to MC, at least for
large power system models. That is, LEM is characterized by signif-
icantly smaller computational times than MC and yields variances of
algebraic variables with higher accuracy. In the case of the AIITS,
the total CPU time required by MC was 14763 s, i.e., more than 4
hours, whereas LEM took 12 s.

V. CONCLUSIONS

This letter proposes a method to calculate the standard deviation
of the algebraic variables of power system modeled as SDAEs.
The proposed method is based on the solution of the Lyapunov
equation and a linearized method. Simulation results show that
the proposed technique has a high accuracy for a wide range of
standard deviation of stochastic processes, and significantly reduces
the computational time compared to conventional Monte Carlo time
domain simulations. Moreover, the proposed method calculates the
variance of all algebraic variables based on the knowledge of the
variance of the noise sources and the system model, such as load
active and reactive power and wind speeds. These are typically
known by system operators. The proposed approach appears thus
more practical than measuring directly all the algebraic variables
in the system. Finally, since the proposed approach is analytical, it
makes possible a deeper understanding of the phenomena under study.
For example, one can easily and quickly run a sensitivity analysis by
varying the elements of Go or design a robust control that minimizes
the effect of the noise on certain algebraic variables. These analyses
are not straightforward or even possible using the MC method.

The limitations of this method are similar to those of any lin-
earization. We expect that the accuracy of the approach reduces as
the time scale of the analysis and, hence, the deviation of the actual
system from the linearized model increases. How the accuracy of
this approach varies as a function of the time-scale is indeed an open
question which we will tackle in future work. In particular, we will
also focus on the evaluation of the impact of nonlinearities such as
saturations and controller hard limits on the variance of the variables
of stochastic power system models as well as on the design of robust
controller.
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