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Abstract—This paper proposes a novel technique for repre-
senting system security constraints that properly include voltage
stability limits in the operation of competitive electricity markets.
The market clearing algorithm is modeled as a voltage stability
constrained Optimal Power Flow (OPF) problem, while the dis-
tance to the closest critical power flow solution is represented by
means of a loading parameter and evaluated using a Continuation
Power Flow (CPF) technique. Sensitivities obtained at the OPF
step are used to estimate power directions for the CPF method,
while the CPF analysis provides the loading parameter to be
used in the OPF problem based on an N-1 contingency criterion.
The OPF and the CPF steps are repeated until the maximum
loading parameter is found, thus providing optimal solutions
considering both proper market conditions and security margins.
Two benchmark systems with both supply and demand bidding
are used to illustrate and test the proposed technique.

Index Terms—Electric energy markets, security, optimal
power flow, continuation power flow, sensitivity analysis, voltage
stability.

I. INTRODUCTION

IN the last decade, the electricity industry has undergone
worldwide restructuring which has significantly changed

the energy market place. This fact, combined with the fact
that in most industrialized countries it is difficult to build new
transmission lines while demand is constantly increasing, is
leading market participants and system operators to look for
adequate and practical ways of evaluating, maintaining and
pricing system security in order to allow secure and “fair” mar-
ket transactions. In this context, system stability and associated
sensitivity should be evaluated in a simple but effective way,
so that market participants can obtain clear market signals.
However, pricing security through proper system constraints
requires a variety of assumptions as well as complex models
and simulations. In the various market models that have been
proposed and implemented, how to properly include system
security is still an open question.

This paper proposes a OPF-based market clearing algo-
rithm that properly accounts for voltage stability limits. This
constitutes a different setting than a traditional “centralized”
OPF, where significant contributions has been made regarding
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security modeling that had led to well-established formulations
for the security-constrained OPF, although using different ap-
proaches to the one proposed here, as discussed in more detail
below. The proposed market clearing algorithm embodies a
complex tradeoff: its computational burden should fit the
requirements of daily or hourly markets (below a few CPU
minutes), it should be sufficiently complex to model relevant
stability limits (which constitutes a novel contribution with
respect to currently available market clearing procedures), and
sufficiently clear to be meaningful for market operators.

Nonlinear optimization techniques are reliable tools when
applied to power system markets [1], [2], [3], [4]. Moreover, a
variety of OPF-based models have been successfully used for
addressing voltage stability issues, such as the maximization
of the loading parameter in voltage collapse studies, as dis-
cussed in [5] and [6]. The main advantage of optimization
procedures is their inherent ability to provide, along with
the optimal accepted bids, the costs associated with system
security, since Lagrangian multipliers associated with the
power flow equations can be used to determine Locational
Marginal Prices (LMPs) and identify cost components due to
different power system constraints [7], [8], [9], [10], [11]. Cost
components associated with the voltage stability constraints
that are proposed in this paper can thus be used as price
signals for security; furthermore, we also show that Lagrangian
multipliers at the optimal solution lead to sensitivity formulas
of the power bids with respect to the stability margin of the
system.

In [12], the authors proposed an OPF-based market rep-
resentation with voltage stability constraints, so that system
security is not simply modeled through the use of voltage
and power transfer limits, typically determined off-line. A
multi-objective optimization method is presented, so that the
social benefit and the distance to a maximum loading condition
are simultaneously maximized time, considering both elastic
and inelastic demand bidding. However, the multi-objective
approach has the drawback of not directly providing a “pure”
market solution, as the objective function explicitly depends on
the stability margin and on the weighting factors. Furthermore,
the values of the weighting factors, which play a significant
role in the optimization process and the solution, are not
known a priori and hence additional studies are necessary to
determine adequate values for these weighting factors. Finally,
the technique which was proposed in [12] does not take into
consideration system contingencies, which is rather important
in the proper representation of system security.

An attempt to include an N-1 contingency criterion in the
multi-objective VSC-OPF-based auction is described in [13],



where two different techniques based on multiple VSC-OPF
solutions together with a contingency ranking methodology are
proposed and studied. The contingency ranking proved to be
an effective method to find a “reasonable” worst case, although
it did not always guarantee an optimal solution to the problem.

The present paper proposes an iterative CPF-OPF technique
to avoid the multi-objective optimization approach, while
providing market solutions as a function of a security margin
determined using an N-1 contingency criterion. The objective
is to maximize the social welfare while maintaining an “ade-
quate” distance to a maximum loading condition associated
with bus voltage limits, equipment thermal limits and/or
the system voltage stability limits. It is relevant to observe
that, since the objective function is a pure social welfare,
the Lagrangian multipliers associated with the active power
equations are the locational marginal prices. Furthermore, the
proposed technique allows controlling the level of security,
while in [12] and [13] the security margin was an output of
the multiobjective OPF-based market clearing procedure.

This paper is organized as follows: Section II describes
the standard and the VSC-OPF-based market models, as well
as the sensitivity analysis used in the proposed CPF-OPF
technique, which is described in detail in Section III. In
Section IV, the results of applying the proposed methodology
to a simple 6-bus test system with both elastic and inelastic
demand bidding, and a benchmark 24-bus test systems with
elastic demand model are presented and discussed in detail.
Finally, Section V summarizes the contributions of this paper
and proposes possible future research directions.

II. OPF MARKET CLEARING MODELS AND SENSITIVITIES

A. Standard OPF Market Clearing Model

The OPF-based market clearing procedure is a non-linear
constrained optimization problem, and consists of an objective
function and a set of equality and inequality constraints, as
follows:

Maximize(x,p) f(p) (1)

subject to g(x, p) = 0
hmin ≤ h(x, p)
h(x, p) ≤ hmax

pmin ≤ p

p ≤ pmax

where x ∈ R
n are the dependent variables, such as bus

voltage phasors, and p ∈ R
m are the control variables, i.e.

power demand and supply bids PD and PS , respectively. The
functions f : R

m �→ R, g : R
n×R

m �→ R
n, and h : R

n �→ R
�

are defined as follows:
1) Objective function: The objective function f is defined

as:
f =

∑

i

CDi
(PDi

) −
∑

i

CSi
(PSi

) (2)

Equation (2) represents consumer surplus plus the producer
surplus, i.e. the net social welfare, which is computed as the
difference of two terms. The first term is the sum of accepted
demand bids PDi

times their corresponding bid prices CDi

in $/MWh. (In the case of inelastic demand, demand powers
PD are known, which can be represented in (2) by setting
CD = 0.) The second term is the sum of accepted production
bids PSi

times their corresponding bid prices CSi
in $/MWh.

2) Equality constraints: The set g represents the standard
power flow equations:

g(x, p) = g(θ, V, kG, PS , PD) = 0 (3)

where x = (θ, V, kG) and p = (PS , PD). The variables θ and
V are the bus voltage phases and magnitudes, respectively,
while kG is a scalar variable used to account for system
losses by means of either a unique or distributed slack bus.
Observe that x represents the set of dependent variables to be
optimized, i.e. x ∈ R

n. Generator reactive powers QG are not
included in this set and are expressed as a function of x and
p.

The generator and load powers are defined as follows:

PG = PG0 + PS (4)

PL = PL0 + PD

where PG0 and PL0 stand for generator and load powers which
are not part of the market trading (e.g. must-run generators,
inelastic loads). Loads are assumed to have constant power
factor, thus:

QL = PL tan(φL) (5)

3) Inequality constraints: In (1), the set of inequality
constraints has been split into h, which represents the physical
and security limits of the system, and the bid blocks for control
variables p.

The physical and security limits considered in this paper
are similar to what is used in [11], and take into account
transmission line thermal limits:

Iij(θ, V ) ≤ Iijmax (6)

Iji(θ, V ) ≤ Iijmax

generator reactive power limits:

QGmin ≤ QG(x, p) ≤ QGmax (7)

voltage “security” limits:

Vmin ≤ V ≤ Vmax (8)

and power limits on transmission lines:

|Pij | ≤ Pij max (9)

which are used to represent security limits of the system [11],
based typically on an N-1 contingency criterion. These limits
are typically “conservative” and can in general lead to low
transaction levels, higher costs and lower security margins as
shown in [12]. Thus, h = [Iij , Iji, QG, V, Pij ].

The limits in p are represented as follows:

PSmin ≤ PS ≤ PSmax (10)

PDmin ≤ PD ≤ PDmax
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B. VSC-OPF Market Clearing Model

In this paper, the following optimization problem is used
to represent an OPF market clearing model with inclusion of
voltage stability constraints:

Maximize(x,p,x̂) f(p) (11)

subject to g(x, p) = 0
ĝ(x̂, p, λ) = 0

λ = λ̂

hmin ≤ h(x, p)
h(x, p) ≤ hmax

ĥmin ≤ h(x̂, p)

h(x̂, p) ≤ ĥmax

pmin ≤ p

p ≤ pmax

In (11), a second set of power flow variables x̂ ∈ R
n and

equations ĝ : R
n × R

m × R �→ R
n, together with their

associated constraints h(x̂) : R
n �→ R

�, are introduced to
represent the solution associated with a loading parameter λ,
where λ represents an increase in generator and load powers,
as follows:

P̂G = (1 + λ + k̂G)PG (12)

P̂L = (1 + λ)PL

In (12), the scalar variable k̂G allocates losses, assuming a
distributed slack bus model. Observe that (11) is somewhat
similar to the optimization problems proposed in [6] and [12],
but is not the same, as λ is a fixed value λ̂, and hence is
assumed to be an input. Furthermore, λ ≤ λmax, where λmax

stands for the maximum loading margin. In this paper, it is
assumed that (11) has a solution for λ = 0, i.e. the base loading
conditions do not exceed the maximum system loading.

An iterative CPF-based technique is proposed here based
on the sensitivity analysis described below to guarantee that
λ ≤ λmax in (11). It is important to stress the fact that the
value of λmax can be associated with thermal or bus voltage
limits, or a voltage stability limit due to a singularity of the
power flow Jacobian or a controller limit such as a generator
reactive power limit.

Notice also that in this case h = [Iij , Iji, QG, V ], i.e. no
limits on the active power flowing through transmission lines
are represented, since the stability limits are already accounted
for in (11) through the maximization of λ. The representation
of stability limits is more accurate in (11) than in (1), as the
stability situation is evaluated at the current loading condition,
not off-line as in the case of (9). However, physical constraints
such as (6), (7) and (8) have still to be taken into account as
they represent physical/security constraints of the system and
are thus included in (11).

Observe that the limit case λ = 0 corresponds to no security.
If λ = 0, (11) does not reduce to (1) and its solution does not
guarrantee any security level. To ensure a security level in the
solution, the loading parameter should be λ̂ > 0.

C. Sensitivity Analysis

In addition to the optimal operating point, the OPF-based
market clearing problem provides, with almost no additional
computational effort, a set of sensitivity variables, namely
dual variables or Lagrangian multipliers, which are Locational
Marginal Prices (LMPs).

LMPs can be directly deduced from the Lagrangian function
of (11), i.e.

L = f(p) − ρT
g g(x, p) − ρT

ĝ ĝ(xc, λ, p) − ρλ(λ − λ̂) (13)

− μT
g max(hmax − h(x, p) − sg max)

− μT
g min(h(x, p) − hmin − sg min)

− μT
ĝ max(ĥmax − h(x̂, p) − sĝ max)

− μT
ĝ min(h(x̂, p) − ĥmin − sĝ min)

− μT
p max(pmax − p − sp max)

− μT
p min(p − pmin − sp min)

where the ρ variables are the Lagrangian multipliers associated
with the equality constraints; the μ variables (μi ≥ 0 ∀i)
correspond to the dual variables associated with the inequality
constraints; and the s variables (si ≥ 0 ∀i) form the slack
vector which has to be non-negative.

The LMPs are the Lagrangian multipliers ρg associated with
the power flow equation g; furthermore, LMPs depend on the
loading parameter λ and the Lagrangian multipliers of the
equations ĝ, as it can be deduced from the KKT conditions
for supply and demand powers, i.e.

∂L/∂PSi
= dCSi

/dPSi
− ρgPi

+ μp maxi
− μp mini

(14)

− ρĝPi
(1 + λ + k̂G) = 0

∂L/∂PDi
= −dCDi

/dPDi
+ ρgPi

+ ρgQi
tan(φLi

)

+ μp maxi
− μp mini

+ ρĝPi
(1 + λ)

+ ρĝQi
(1 + λ) tan(φLi

) = 0

which lead to the following expressions for the LMPs [12]:

LMPSi
= ρgPi

= dCSi
/dPSi

+ μp maxi
− μp mini

(15)

− ρĝPi
(1 + λ + k̂G)

LMPDi
= ρgPi

= dCDi
/dPDi

+ μp mini
− μp maxi

− ρĝPi
(1 + λ) − ρĝQi

(1 + λ) tan(φLi
)

− ρgQi
tan(φLi

)

where sub-indexes P and Q of the dual variables ρg and
ρĝ indicate the active and reactive power flow equations,
respectively, at bus i. Observe that (15) contains terms that
depend on the loading parameter λ. These terms can thus
be viewed as costs associated with the security constraints of
the system, and thus (15) shows how system security affects
market prices.

These Lagrangian multipliers and LMPs can be used to
determine the sensitivities of the parameters p with respect
to the parameter λ, i.e. dp/dλ, which can then be used to
determine the load and generation directions for computing
λmax with the help of a CPF. To determine dp/dλ, one can
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use the following optimization problem [14], which is directly
related to problem (11):

Maximize(x,x̂) f(p) (16)

subject to g(x, p) = 0
ĝx(x̂, λ) = ĝ∗p
λ = λ∗

p = p∗

hmin ≤ h(x, p)
h(x, p) ≤ hmax

ĥmin ≤ h(x̂, p)

h(x̂, p) ≤ ĥmax

pmin ≤ p

p ≤ pmax

where λ∗ and p∗ are the optimal solution of (11); ĝ∗pi
are the

right-hand side constant powers injected at buses:

ĝ∗pi
= (1+λ∗+k̂∗

G)(PG0i
+P ∗

Si
)−(1+λ∗)(PL0i

+P ∗
Di

) (17)

and ĝx are the equations representing bus power injections, as
follows:

ĝx(x̂, λ) = ĝ(x̂, λ, p) + ĝ∗p (18)

For the sake of simplicity and without loss of generality,
observe that (17) is written for the case of one supplier and
one consumer connected at the same bus i.

It is important to observe that (16) is introduced here only to
derive the sensitivity formulas for dp/dλ which are obtained
below. However, in practice, there is no need to solve (16). As
a matter of fact, (11) and (16) have the same optimal solution
and their KKT conditions are identical. From (16) and from
the definition of dual variables [15], one has:

df

dλ

∣∣∣∣
∗

=
df

dλ∗ = −ρλ (19)

df

dĝpi

∣∣∣∣
∗

=
df

dĝ∗pi

= −ρĝpi
(20)

where ρĝpi
is the Lagrangian multipliers associated with the i-

th equation of (18). This yields the sensitivities of the objective
function f with respect to the actual values of the loading
parameter and the total power injections at the network buses.
From (17) and (20), one has that:

df

dpi

∣∣∣∣
∗

=
df

dĝpi

∣∣∣∣
∗

dĝpi

dpi

∣∣∣∣
∗

= −ρĝpi
∇pi

ĝpi (21)

¿From (21) and (19), one obtains:

dpi

dλ

∣∣∣∣
∗

=
dpi

df

∣∣∣∣
∗

df

dλ

∣∣∣∣
∗

=
ρλ

ρĝpi
∇pi

ĝpi
(22)

Observe that from (22), ρĝpi
	= 0; this cannot be guaranteed,

but it would be “unusual” in practice to have a zero Lagrangian
multiplier of a binding equality constraint. These sensitivity
expressions based on Lagrangian multipliers constitute one of
the main contributions of this paper, and can be shown to be
equal to the sensitivities proposed in [16], which are based on
bifurcation analyses.

For example, particularizing (22) for the power bids P ∗
Si

and
P ∗

Di
, respectively, one can obtain the following sensitivities:

dPSi

dλ

∣∣∣∣
∗

=
1

(1 + λ∗ + k̂∗
G)

ρλ

ρĝPi

(23)

dPDi

dλ

∣∣∣∣
∗

= − 1
(1 + λ∗)

ρλ

ρĝPi

III. MIXED CPF-OPF TECHNIQUE

Figure 1 depicts the flow-chart of the proposed technique
for determining the maximum loading parameter value λmax

associated with an optimal market solution. This technique
works as follows:

Step 0: The loading parameter is initialized to λ0 = 0,
which is the “base case” or pure market clearing problem.
Observe that (11) must have a feasible solution for this
base case condition.
Step 1: The VSC-OPF problem (11) is solved using the

current value of the loading parameter.
Step 2: The current OPF solution and the associated dual

variables are used to determine the variations of power
supplies and demands Δp(k) as follows:

Δp(k) =

dp

dλ

∣∣∣
k∥∥∥ dp

dλ

∣∣∣
k

∥∥∥
Δλ (24)

where Δλ is a desired increment in the loading parameter
(e.g. Δλ = 0.05). Observe that |Δp(k)| must not exceed
the values of the slack variables sp in order to avoid
violations on bid block limits (10). Notice also that it is
assumed that Δp(k) = 0 if ρ

(k)
λ = 0, as no inequality

constraint is active for the current critical power flow
solution and thus λ can be increased without changing
the actual bids. Observe also that the sensitivities dp/dλ
are normalized to avoid small or large steps if ‖dp/dλ‖
is low or high, respectively.
Step 3: Given the power directions p(k) + Δp(k), a stan-

dard CPF technique is used to find a new value of
the loading parameter λ ≤ λmax considering an N-1
contingency criterion [17]. Observe that using the CPF
analysis it is possible to find limit-induced bifurcations
and saddle-node bifurcations while taking into account all
security constraints that are used in problem (11) (trans-
mission line thermal limits, generator reactive power
limits and voltage limits). Furthermore, contingencies are
considered in this step, i.e. a CPF is run for each “critical”
transmission line outage (typically a small number of line
outages have to considered [13]). If no better solution is
found, i.e. the CPF analysis does not return a loading
parameter λ(k) such that λ(k) ≥ λ(k−1), Δp(k) is reduced
by a given factor (e.g. by half) and the CPF is carried
out again. Observe that the solution of (11) ensures that
there exists at least a solution for (p(k), λ(k)); thus, the
CPF analysis step always ends successfully.
Step 4: If |λ(k) − λ(k−1)| < ε then the algorithm stops,

otherwise k ⇐ k + 1 and the procedure returns to Step
1. Notice that (11) always presents a feasible solution for
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the increased loading parameter value found at Step 3, as
the CPF analysis is performed using the same constraints
as (11).

Step 3 ensures that the increment of λ, obtained by means of
the CPF analysis, will always lead to a feasible OPF problem.
It would be certainly possible to use a fixed step for the
loading parameter, say Δλ, and stop the process when the
OPF problem fails to converge. However this approach present
the inconvenience that Δλ cannot be determined a priori. If
Δλ is too small, the number of OPF steps will be high, thus
resulting in an unnecessary computational effort. On the other
hand, if Δλ is too high, the information about the maximum
loading condition and critical points will not be accurate.

It is important to highlight the fact that the proposed CPF-
OPF method yields not only one solution for a given value
of λ, but a series of OPF solutions for 0 ≤ λ ≤ λmax. If
no contingencies are considered, this technique yields similar
results as those obtained using the methodology proposed in
[12], as discussed in Section IV.

Summarizing, the proposed technique is more versatile than
the multiobjective techniques proposed in [12] and [13], for
the following reasons:

1) Contingencies can be taken into account directly so that
system security can be properly handled, which was not
possible with the techniques described in [12] and [13].
Thus,.

2) The iterative process proposed in this paper allows
controlling the value of the loading parameter λ, while
in [12], λ was an output of the multiobjective OPF-based
market clearing procedure.

3) In [12], the Lagrangian multipliers are not the LMPs, as
the multiobjective function is not a pure social welfare.
Thus, additional computational effort was required to
compute the LMPs, which is not an issue in the proposed
methodology.

IV. CASE STUDIES

The proposed technique is applied to the 6-bus test system
used in [12] for comparison purposes, and to a benchmark
24-bus test system [18]. All the results discussed here were
obtained using the MATLAB-based program PSAT [19], which
makes use of a primal-dual IP method based on a Mehrotra’s
predictor-corrector technique and a CPF routine (OPF and CPF
results were double-checked with GAMS-CONOPT [20], [21],
and UWPFLOW [22], respectively.)

On a Pentium 4, 2.66 GHz, with 1 GB of RAM, the 6-
bus test cases took 9 s of CPU time for the elastic load
case, and 7 s for the inelastic load case, whereas the 24-
bus test case needed about 49 s. The proposed technique was
also tested on a 129-bus model of the 400 kV Italian grid,
with 32 generators and 82 consumers [13]; for this network,
the desired results were obtained in about 6 minutes. These
results show that the computational burden of the proposed
technique can readily fit the requirements of realistic daily
or hourly markets, since interior point solution methods used
to solve the proposed optimization problems, which make
use of matrix sparsity, have been shown to be efficient for

k = 0

k ⇐ k + 1

Power Flow:

Optimal

Continuation Power Flow:

yesno

Sensitivity Analysis:

Stop

λ0 = 0

compute x(k), x̂(k), p(k), ρ(k)

compute Δp(k)

determine λ(k) using p(k) + Δp(k)

|λ(k) − λ(k−1)| < ε

as power directions based on an

N-1 contingency criterion

for a given Δλ

Fig. 1. Flow-chart of the proposed CPF-OPF technique.

large problems, with CPU times increasing roughly linearly
with network size. Furthermore, the CPU times mentioned
above correspond to a Matlab implementation of the proposed
method; performances would certainly improve if a compiled
language such as Fortran or C were used.

A. 6-bus Test Case

Figure 2 depicts the 6-bus test case used in [12], represent-
ing three generation companies (GENCOs) and three energy
service companies (ESCOs) that provide linear supply and
demand bids, respectively. The complete set of data for this
system is provided in Appendix A.

Table I depicts the results for the VSC-OPF-based market
problem (11) with λ = 0, i.e. for the base case solution; these
results are in accordance with results presented in [12], as
expected. The initial solution with λ = 0 is then used as the
first point of the CPF-OPF algorithm. Figure 3 depicts the total
transaction level T (T =

∑
i PLi

) for the 6-bus system as a
function of the loading parameter λ obtained with the proposed
technique as well as those obtained with the multi-objective
VSC-OPF method proposed [12]. Notice that in this example,
no N-1 contingency criterion has been considered in the CPF
analysis to allow a comparison with the multi-objective VSC-
OPF method. The two methods provide consistent results as
the constraints used in the two methods are similar. However,
the proposed method allows to control the values of the loading
parameter λ, while the algorithm which was proposed in [12]
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Bus 3

(GENCO 2)
Bus 2 (GENCO 3)

(ESCO 3)

(ESCO 1)

(ESCO 2)

Bus 4

Bus 5

(GENCO 1)
Bus 1

Bus 6

Fig. 2. 6-bus test system.

TABLE I

6-BUS TEST SYSTEM: OPF SOLUTION FOR λ = 0

Participant V LMP PBID P0 Pay
[p.u.] [$/MWh] [MW] [MW] [$/h]

GENCO 1 1.100 8.94 0.0 90 -805
GENCO 2 1.100 8.91 25.0 140 -1470
GENCO 3 1.100 9.07 20.0 60 -726
ESCO 1 1.021 9.49 25.0 90 1091
ESCO 2 1.013 9.57 10.0 100 1053
ESCO 3 1.039 9.35 8.0 90 916

TOTALS T = 323 MW Losses = 12.0 MW

does not. Observe, for example, that in Fig. 3, the curve
obtained with the multiobjective VSC-OPF presents a large
gap between 0.5 and 0.7, which is a problem, since results
in this region are likely to present the right compromise of
security and acceptable transaction levels.

Figure 4 illustrates the accepted power bids for the 6-bus
example with elastic demand with respect to system demand
changes represented by the parameter λ, illustrating the effect
of security limits (system congestion) on market conditions.
Observe that the overall total transaction level decreases,
which is to be expected, since as the load increases, the system
gets closer to its security margins, i.e. gets more congested,
and hence transactions levels decrease to meet the security
constraints due to the elasticity of the loads; the power bids at
each bus, on the other hand, may increase or decrease as the
load increases depending on the active security constraints. It
is interesting to observe in Fig. 5 that the LMPs decrease as the
system demand and hence congestion levels increase; this is
due to the load elasticity, which allows market participants to
properly respond to increased system congestion, which is not
the case for inelastic demand, as discussed below. Observe
also that at the loading parameter value λ ≈ 0.73, LMPs
decrease below the minimum power supply price bid of 7
$/MWh (see Table II in Appendix A); this is due to the OPF
constraints forcing the system to work at the power levels
needed to maintain the required loading margin, regardless of
the social benefit (this behavior was observed in [12] as well).
Thus, market solutions for λ > 0.73 are likely to be discarded
by the market participants as the LMPs are smaller than the
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Fig. 3. Total Transaction Level for the 6-bus test system with elastic demand;
no contingencies.
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Fig. 4. Accepted power bids for the 6-bus test system with elastic demand;
no contingencies.

cheapest supply bid. The algorithm was stopped at λ = 0.8,
as further increases in the loading parameter values are not
really relevant for market operations.

Figure 6 depicts the normalized sensitivities dp/dλ for the
elastic demand case; these sensitivities are zero for λ = 0
and remain at zero up to λ ≈ 0.50, which is basically the
loading margin of the initial solution depicted in Table I. This
means that as the system demand increases from λ = 0 to
λ = 0.50 (0 ≤ λ ≤ 0.50), no constraints in h(x̂) are active;
for λ > 0.50, the sensitivities are not zero (dp/dλ 	= 0), since
at least one constraint h(x̂) is active. Observe that the signs of
the sensitivities are generally consistent with the variations of
supply and demand powers. However, in some cases, the OPF
problem may force the power levels to vary in ways different
to their corresponding sensitivity values in order to maximize
the overall social benefit while meeting all security constraints.

Figures 7 and 8 depict the accepted bids and the LMPs,
respectively, for the 6-bus example with inelastic demand.
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Fig. 5. LMPs for the 6-bus test system with elastic demand; no contingencies.
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Fig. 6. Sensitivities dp/dλ for the 6-bus test system with elastic demand;
no contingencies.

Notice that the demand bids were fixed at the values illustrated
in Table I, which lead to a constant total transaction level T =
323 MW. Since the demand is constant, the increase in the
loading margin λ leads to a redistribution of generated powers
and thus to more expensive transactions, as one would expect.
Furthermore, the variation of power levels are consistent with
the signs of the sensitivities dp/dλ, as depicted in Fig. 9.

B. 24-bus Test Case

Figure 10 depicts the 24-bus test system used here to
illustrate a more realistic application of the proposed CPF-
OPF technique; this system corresponds to the IEEE One Area
RTS-96 benchmark network and is fully described in [18].
This system was chosen due to the relatively large number of
possible supply and demand bidders, since the system has 32
generators and 17 consumers. In this example, elastic linear
demand-side bids have been assumed, whereas the line-wise
generator cost curves given in [18] have been approximated
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Fig. 7. Accepted supply bids for the 6-bus test system with inelastic demand;
no contingencies.
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Fig. 8. LMPs for the 6-bus test system with inelastic demand; no contin-
gencies.
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Fig. 9. Sensitivities dp/dλ for the 6-bus test system with inelastic demand;
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Fig. 10. 24-bus test system (IEEE One Area RTS-96 [18]).

with a quadratic function, as follows:

CSi
(PSi

) = c0i
+ c1i

PSi
+ c2i

P2Si
(25)

The coefficients c0i
, c1i

and c2i
, as well as demand bids are

given in Appendix B.
Figure 11 depicts the total transaction level with respect

to system load changes obtained with the proposed CPF-OPF
technique using a N-1 contingency criterion during the CPF
analysis. The proposed CPF-OPF iteration process is stopped
at the loading level λ = 0.8, as the market conditions at this
point have changed significantly with respect to the base load.
The worst case condition, i.e. the lowest total transaction level
and the lowest stability margin, is obtained for a contingency
on the transformer which connects buses 3 and 24. This is
to be expected, since most of the generation is located in the
230 kV region, while the loads are mostly concentrated in
the 132 kV region; hence, reducing the transmission system
capacity between the two regions will reduce the transaction
level and increase system congestion. Observe that, in this
case, a direct comparison of the solutions for the proposed
method with similar solutions for the multi-objective VSC-
OPF cannot be performed here since the latter does not allow
for N-1 contingency analyses.

Figures 12 and 13 depict some significant accepted power
bids and the associated LMPs for the 24-bus example. Observe
that also in this case, power bids may increase or decrease,
while the LMPs decrease as the loading parameter increases,
confirming that an elastic demand properly reacts to conges-
tion problems. In this example, the transaction level is constant
up to λ ≈ 0.62, which is also the loading margin of the
base case solution (λ = 0), as confirmed by the values of
the sensitivities dp/dλ depicted in Fig. 14. For λ > 0.62,
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Fig. 11. Total transaction level for the 24-bus test system with elastic demand.
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Fig. 12. Significant accepted power bids for the 24-bus test system with
elastic demand.

dp/dλ is not zero, as some system security constraints become
active, and thus the total transaction level begins to decrease.
Observe that also in this example the signs of the sensitivities
dp/dλ are in good accordance with the variations of supply
and demand powers.

V. CONCLUSIONS

In this paper, an iterative CPF-OPF technique based on a
sensitivity analysis for managing and pricing system security
are proposed and tested on a simple test system as well as
on a more realistic test system. The results demonstrate the
advantages of proposed technique which provides a set of
optimal market solutions as a function of system security or
congestion levels; thus, the proposed CPF-OPF method allows
system operators and market participants to investigate the
effects of system security on the market clearing mechanism.

The proposed technique also presents promising features for
future research. First, since the determination of the system se-
curity limits is basically decoupled from the OPF-based market
clearing problem, the proposed CPF-OPF technique could be

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
21.5

22

22.5

23

23.5

24

24.5

LMP
Bus 3

LMP
Bus 7

LMP
Bus 8

LMP
Bus 10

LMP
Bus 13

LMP
Bus 14

Loading parameter λ

L
oc

al
M

ar
gi

na
lP

ri
ce

s
[$

/M
W

h]

Fig. 13. LMPs at significant buses for the 24-bus test system with elastic
demand.
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Fig. 14. Sensitivities dp/dλ for the 24-bus test system with elastic demand.

in principle extended to take into account dynamic system
models and their associated security limits. Second, and also
based on the decoupling of the market problem and the CPF
analysis, it should be possible to simplify the OPF problem
(e.g. using linear approximations of certain constraints such as
a dc power flow model) while still performing full nonlinear
security analyses to properly represent system security limits
in market operations.
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APPENDIX A
6-BUS TEST SYSTEM DATA

This appendix depicts the complete data set for the 6-bus
test system of Fig. 2. Table II shows supply and demand bids
and the bus data for the market participants, whereas Table
III shows the line data. Thermal limits were assumed to be
twice the values of the line currents at base load conditions
for a 400 kV voltage rating; it is also assumed that Iijmax =
Ijimax = Imax. Finally, maximum and minimum voltage limits
are considered to be 1.1 p.u. and 0.9 p.u. and reactive power
limits for all three GENCOs are ±150 MVAr.
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TABLE II

GENCO AND ESCO BIDS AND BUS DATA FOR THE 6-BUS TEST SYSTEM

Part. C P bid
max PL0 QL0 PG0

[$/MWh] [MW] [MW] [MVAr] [MW]

GENCO 1 9.7 20 0 0 90
GENCO 2 8.8 25 0 0 140
GENCO 3 7.0 20 0 0 60
ESCO 1 12.0 25 90 60 0
ESCO 2 10.5 10 100 70 0
ESCO 3 9.5 20 90 60 0

TABLE III

LINE DATA FOR THE 6-BUS TEST SYSTEM

Line Rij Xij Bi/2 Imax

i-j [p.u.] [p.u.] [p.u.] [A]

1-2 0.1 0.2 0.02 37
1-4 0.05 0.2 0.02 133
1-5 0.08 0.3 0.03 122
2-3 0.05 0.25 0.03 46
2-4 0.05 0.1 0.01 200
2-5 0.1 0.3 0.02 103
2-6 0.07 0.2 0.025 132
3-5 0.12 0.26 0.025 95
3-6 0.02 0.1 0.01 200
4-5 0.2 0.4 0.04 26
5-6 0.1 0.3 0.03 29

APPENDIX B
24-BUS TEST SYSTEM SUPPLY AND DEMAND BIDS

This appendix depicts supply and demand bids for the
for the 24-bus test system of Fig. 10. Table IV shows the
coefficient of the quadratic approximation of supply bids for
all generators, whereas demand data are illustrated in Table
V, where PD0 stands for the initial solution of (11) with
λ = 0. Demand bid limits PDmax and PDmin have been
chosen to be 120% and 80% of PD0 , respectively. A demand
costs CD equal to 24 $/p.u.h was chosen for all consumers,
while voltage limits are considered to be 1.1 p.u. and 0.9 p.u.
Observe that, although demand costs do affect OPF solutions,
the aim of using the 24-bus system example was only to
properly test the proposed technique when applied to a realistic
network and should not be considered representative of a real
market scenario. Finally, the short-time emergency rating data
reported in [18] were used to compute maximum current limits
in transmission lines, assuming nominal voltages.

TABLE IV

SUPPLY COSTS COEFFICIENTS FOR THE 24-BUS TEST SYSTEM

Bus Generator c0 c1 c2
[$/h] [$/p.u.h] [$/p.u.2h]

1, 2 1, 2, 5, 6 0.017 24.842 36.505
1, 2 3, 4, 7, 8 0.035 10.239 3.840

7 9-11 0.00 17.974 2.748
13 12-14 0.0058 18.470 1.011
15 15-19 0.011 21.227 37.937

15, 16, 23 20, 21, 30, 31 0.011 9.537 0.559
18, 21 22, 23 0.058 5.230 0.007

22 24-29 0 1 0
23 32 0.016 9.587 0.315

TABLE V

DEMAND BIDS DATA FOR THE 24-BUS TEST SYSTEM

Bus PD0 PDmax PDmin
[p.u.] [p.u.] [p.u.]

1 1.188 1.4256 0.9504
2 1.067 1.2804 0.8536
3 1.98 2.376 1.584
4 0.814 0.9768 0.6512
5 0.781 0.9372 0.6248
6 1.496 1.7952 1.1968
7 1.375 1.65 1.1
8 1.881 2.2572 1.5048
9 1.925 2.31 1.54
10 2.145 2.574 1.716
13 2.915 3.498 2.332
14 2.134 2.5608 1.7072
15 3.847 4.6164 3.0776
16 1.1 1.32 0.88
18 3.663 4.3956 2.9304
19 1.991 2.3892 1.5928
20 1.408 1.6896 1.1264
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