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Abstract—The paper focuses on the accuracy and stability of
implicit numerical methods when utilized for the Time Domain
Integration (TDI) of power systems with inclusion of time delays.
In particular, a small-disturbance analysis technique is proposed
to evaluate the numerical distortion that TDI methods induce
to the dynamic modes of power systems modeled as Delay
Differential Algebraic Equations (DDAEs). The case study illus-
trates the features of the proposed technique through simulations
conducted using the IEEE 14-bus test system, and considering
three examples of implicit integration methods, namely Backward
Euler Method (BEM), Implicit Trapezoidal Method (ITM), and
2-stage Radau IIA.

Index Terms—Time delays, Delay Differential Algebraic Equa-
tions (DDAEs), Time Domain Integration (TDI), implicit numer-
ical methods, numerical stability and accuracy.

I. INTRODUCTION

A. Motivation

Power system modeling and stability analysis in the pres-
ence of time delays has attracted increasing attention in recent
years, mainly due to the potential negative impacts that mea-
surement and communication latency can have on the stability
of automatic regulation loops, e.g. in wide area damping
controllers [1]–[7]. To date, the most successful technique to
evaluate the effect of time delays on the dynamic behavior of a
power system following a disturbance is to carry out a TDI of
the system’s equations through a suitable numerical scheme.
However, it is known that delays can worsen the accuracy and
even make unstable otherwise very robust numerical schemes,
such as the Implicit Trapezoidal Method (ITM) [8]. It is thus
crucial to have reliable tools able to evaluate the accuracy
of the numerical schemes employed for the TDI of dynamic
power system models with inclusion of delays. This paper
proposes a novel framework to address precisely this issue.

B. Literature Review

The conventional dynamic power system model is formu-
lated as a set of non-linear Differential Algebraic Equations
(DAEs) [9], [10]. These equations are known to be stiff and
their TDI is typically conducted through an implicit numerical
scheme, in order to guarantee that numerical stability is

This work is supported by the European Commission, by funding G. Tzounas
and F. Milano under the project EdgeFLEX, grant agreement no. 883710; and
by Science Foundation Ireland, by funding I. Dassios and F. Milano under
the Investigator Programme with grant no. SFI/15/IA/3074.

maintained for every integration time step size. Including time
delays to the power system model changes the nature of its
equations, leading to a set of non-linear Delay Differential
Algebraic Equations (DDAEs) [2], for which many of the
known results about the stability properties of TDI methods
for DAEs lose their validity.

The simplest approach to numerically integrate a set of
DDAEs is by modifying standard implicit methods so that
they account also for the delayed terms. In this regard, the
modifications required by the ITM to integrate power system
models with time delays were discussed in [2], [11]. On the
other hand, theoretical results from numerical analysis indicate
that such approach may not be adequate and suggest that
accurate integration of Delay Differential Equations (DDEs)
requires the application of special methods developed to this
aim, e.g. see [8], [12]. In this regard, we note that most
insights on the stability characterization of a TDI method
for time-delay systems are derived based on the behavior of
the method when applied to a scalar, linear test DDE. The
major limitation of such approach is that results provide only
rough and qualitative information, since they are typically
not generalizable for systems of DDEs. As a matter of fact,
it has been proven that no A-stable natural Runge-Kutta
(RK) method is asymptotically stable on the whole class of
asymptotically stable linear systems of DDEs [8], [13].

The stability and precision of implicit numerical methods
employed for the TDI of DDAE power system models is
a problem that has not been systematically discussed in the
literature. Regarding the precision, the standard tool used by
most solvers is truncation error analysis, which, although it
provides good estimates of the deviation between exact and
numerically computed trajectories, it yet cannot capture the
ability of a method to prevent the exponential growth of
truncation errors. The goal of this paper is to provide a novel
approach to assess, in a unified way, the stability and accuracy
of numerical methods employed for the TDI of DDAE power
system models.

C. Contributions

The contributions of the paper are twofold:

• A novel framework, based on Small-Signal Stability
Analysis (SSSA), is proposed to evaluate the numerical
approximation introduced by TDI methods, when applied
for the integration of power systems modeled as DDAEs.
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• A discussion on how the presence of delays impacts
the spurious oscillations and/or overdamping introduced
to the dynamic modes of power systems by the Back-
ward Euler Method (BEM), the ITM, and the 2-stage
Radau IIA method. To the best of our knowledge, this
is the first study that aims to systematically study and
observe this numerical effect.

D. Organization

The remainder of the paper is organized as follows. Sec-
tion II outlines the modeling and stability analysis of power
systems impacted by time delays. Section III describes the
proposed approach to evaluate the accuracy and stability of
TDI methods. Section IV presents a case study based on
the IEEE 14-bus benchmark system that showcases important
features of the proposed approach. Finally, conclusions are
drawn and future work is outlined in Section V.

II. POWER SYSTEM MODEL WITH TIME DELAYS

A. DDAE Model

The dynamic power system model is conventionally de-
scribed by a set of DAEs, as follows [9]:

x′ = f(x,y) ,

0m,1 = g(x,y) ,
(1)

where x = x(t) ∈ Rn and y = y(t) ∈ Rm denote the
state and algebraic variables, respectively; f : Rn+m → Rn,
g : Rn+m → Rm, are non-linear functions; and 0m,1 denotes
the m×1 zero matrix. Discrete variables in (1) are represented
implicitly, i.e., a discontinuous change in the system gives rise
to a jump from (1) to a new set of equations of the same form.

Inclusion of delays in the right-hand side of (1) changes the
DAEs into a set of DDAEs of retarded type, as follows [2]:

x′ = f(x,y,xd,yd) ,

0m,1 = g(x,y,xd,yd) ,
(2)

where xd ∈ Rnd , yd ∈ Rmd , are the delayed or retarded state
and algebraic variables, respectively. In compact form, (2) can
be rewritten as follows:

Ex′ = ϕ(x,xd) , (3)

where x = [xT yT]T, xd = [xT

d yT

d ]
T, and:

E =

[
In 0n,m

0m,n 0m,m

]
, ϕ(x,xd) =

[
f(x,y,xd,yd)
g(x,y,xd,yd)

]
. (4)

B. Small-Signal Stability Analysis

The proposed approach to assess the accuracy and stability
of numerical methods for the TDI of power systems with
delays, which will be described in Section III, is based on
SSSA. Thus, we first introduce the reader to the SSSA of
power systems with inclusion of delays. For simplicity, let
assume that the delay system includes a single constant delay
τ > 0. Then, we have that xd = x(t− τ) and (3) becomes:

Ex′(t) = ϕ(x(t),x(t− τ)) . (5)

Linearization of (5) around an equilibrium point gives:

E x̃′(t) = A0x̃(t) +A1x̃(t− τ) , (6)

where A0 and A1 are the Jacobian matrices associated to the
delay-free and delayed variables of the system, respectively;
and x̃ indicates the deviation of x from the equilibrium. If
the system includes multiple, say ν, delays, τk > 0, k =
1, 2, . . . , ν, the last expression is generalized as:

E x̃′(t) = A0x̃(t) +

ν∑
k=1

Akx̃(t− τk) . (7)

The eigenvalues of system (7) are determined from the solution
of the corresponding characteristic equation [14]:

det

(
sE−A0 −

ν∑
k=1

Ake
−sτk

)
= 0 , (8)

where s ∈ C. Then, (7) is stable if and only if all finite
eigenvalues have negative real parts.

The presence in (8) of the exponential function implies the
existence of infinitely many roots [14]. In this paper, this prob-
lem is solved with the technique proposed in [15]. That is, (7)
is transformed to an equivalent system of Partial Differential
Equations (PDEs) of infinite size. Then, the PDE system is
reduced to a finite dimensional problem through Chebyshev’s
spectral discretization. Chebyshev’s discretization technique
has been used for the eigenvalue analysis of delayed power
system models, e.g. in systems with constant and stochastic
delays affecting the stability of control loops [2], [6], [16] and
has proved to show very good accuracy if a proper number of
interpolation nodes is selected. A sparse version of the same
technique has been recently proposed in [17].

III. PROPOSED APPROACH

A TDI method for power systems with time delays is a
discrete-time approximation employed to solve system (3) for
a defined time period and set of initial conditions. In this
section, we describe the proposed approach to evaluate the
amount of approximation introduced by implicit TDI methods
to the representation of the dynamic modes of system (3).

A. Single Delay

Assume for simplicity that the integration time step h is
constant, and that the system includes a single constant delay,
which is an integer multiple of the integration time step,
i.e. τ = ch, where c ∈ N. We provide the following definition:

Definition 1. In an implicit form, a TDI method applied to
system (3) can be described by a discrete-time system, as
follows:

0r,1 = η(xt,xt−h,xt−ch,xt−(c+1)h) , (9)

where r = n + m; η : R4r → Rr is a vector of non-linear
functions; and xt : N∗h → Rr.

The discrete-time system (9) covers the family of RK
methods, i.e. the most important family of methods for the
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integration of DDEs. In general, RK methods have been
shown to be preferable to linear multi-step methods for the
integration of DDEs, since they are characterized by simplicity
of implementation, low computational complexity and high
accuracy, e.g. see [8] and relevant references therein.
Linearization of (9) gives:

0r,1 =
∂η

∂xt
x̃t +

∂η

∂xt−h
x̃t−h +

∂η

∂xt−ch
x̃t−ch

+
∂η

∂xt−(c+1)h
x̃t−(c+1)h . (10)

The linearized method can be rewritten as follows:

0r,1 = C0x̃t +C1x̃t−h +Ccx̃t−ch +Cc+1x̃t−(c+1)h , (11)

where Ci are, in general, matrix functions of h, E, A0, A1.
We arrive at the following proposition.

Proposition 1. The stability of (11) can be assessed by
studying the stability of the following linear discrete-time
system:

Fyt = Gyt−h , (12)

where:

F =

[
Icr 0cr,r

0r,cr C0

]
, G =

[
0cr,r Icr

−Cc+1 −C†

]
, (13)

C† =
[
Cc 0r,r . . . 0r,r C1

]
, (14)

with C† having dimensions r × cr.
The proof of Proposition 1 is provided in the Appendix.

Then, the stability of (12) can be studied by finding its
eigenvalues, which are the roots of the characteristic equation:

det(ẑF−G) = 0 , (15)

where ẑ ∈ C. In particular, (12) is asymptotically stable if and
only if all finite eigenvalues have magnitude less than one.

B. Multiple Delays

Let the system include multiple, say ν, delays. If τ1 < τ2 <
· · · < τν , then (11) takes the more general form:

0r,1 =C0x̃t +C1x̃t−h +Cc1 x̃t−c1h +Cc1+1x̃t−(c1+1)h

+ . . .+Ccν x̃t−cνh +Ccν+1x̃t−(cν+1)h , (16)

where we have substituted τk = ckh, c1 < c2 < · · · < cν ;
Ci are, in general, matrix functions of h, E, A0, Ak. Then,
Proposition 1 can be generalized as follows.

Proposition 2. The stability of (16) can be assessed by
studying the stability of a linear discrete-time system in the
form of (12), where:

F =

[
Icνr 0cνr,r

0r,cνr C0

]
, G =

[
0cνr,r Icνr

−Ccν+1 −C†

]
, (17)

C† =
[
Ccν 0r,r . . . Cc1 . . . 0r,r C1

]
, (18)

with C† having dimensions r × cνr.
The proof of Proposition 2 is provided in the Appendix.

C. Eigenvalue Mapping and Validity of SSSA

In both single-delay and multiple-delay cases, the eigenval-
ues of system (12) represent, in the Z-plane, the numerically
distorted by the TDI method dynamic modes of system (3). Let
ẑk be the eigenvalue of (12) that approximates the k-th mode
of the DDAE power system model. The latter is represented by
the eigenvalue sk = α+ȷβ, which is a root of the characteristic
equation (7). Then, the actual and distorted modes sk, ẑk, can
become directly comparable by mapping the one to the domain
of the other. Mapping ẑk from the Z to the S plane, we have:

ŝk =
1

h
log(ẑk) = α̂+ ȷβ̂ , (19)

where log(·) denotes the complex logarithm. Then, the numer-
ical distortion caused to the k-th mode by the TDI method is:

ds,k = ŝk − sk , (20)

while the distortion caused to the damping of this mode is:

dζ,k = ζ̂k − ζk , (21)

where ζk = −α/(α2 + β2). Positive values of dζ,k in (21)
indicate that the mode is overdamped, whereas negative values
indicate that the mode is underdamped.

Equations (20) and (21) are based on SSSA and thus they
are in principle valid only at a steady state solution of the
system. Around the steady state solution, these equations are
accurate measures of the distortion of the system’s modes
given h, or vice versa, can be employed to determine the
value of h required to achieve a required level of precision.
These measures are also good estimates of the approximation
introduced by TDI methods under varying operating condi-
tions, owing first, to that the structure of the dynamic modes
and the stiffness of a power system model are features that
do not alter dramatically by changing the operating point,
and second, that TDI methods maintain certain qualitative
properties, e.g. numerical stability properties, when applied
to different systems of the same class. This suggests that,
for a given network, the proposed analysis does not need
to be repeated often and, possibly, can be done only once.
Similar considerations that support the statement above are
given, e.g., in [18]–[20].

D. Examples

In this section we consider three examples of implicit RK
methods applied for the TDI of (3), namely the BEM, the
ITM, and the 2-stage Radau IIA. The same methods are then
utilized in the simulations of Section IV. The goal here is
to show how the linearized version of each method can be
formulated so that Proposition 2 can be readily applied. For
generality, we assume that the system includes ν delays. The
single delay case can be retrieved by substituting ν = 1.
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Backward Euler Method: The Butcher tableau [21] of the
BEM is:

1 1
1

(22)

Applied for the TDI of (3), the method takes the form:

Ext = Ext−h + hϕ(xt,xt−c1h,xt−c2h, . . . ,xt−cνh) .
(23)

Linearization of (23) gives:

Ex̃t = Ex̃t−h + hA0x̃t + h

ν∑
k=1

Akx̃t−ckh , (24)

or equivalently:

0r,1 =(E− hA0)x̃t −Ex̃t−h − h

ν∑
k=1

Akx̃t−ckh . (25)

The last system is in the form of (11), where:

C0 = E− hA0 , C1 = −E ,

Cck = −hAk , Cck+1 = 0r,r .
(26)

Note that including the delayed Jacobians Ak in (24) is
necessary to capture the delay effects on the system. This
should not be confused with the structure of the Jacobian used
in the iterative solution of each point of the integration, e.g. in
Newton’s method, where delays can be viewed as known
constants and thus omitted, see [2].

Implicit Trapezoidal Method: The Butcher tableau of the
ITM is:

0 0 0
1 0.5 0.5

0.5 0.5
(27)

Applying the method for the TDI of (3) and linearizing, gives:

Ex̃t = Ex̃t−h + 0.5hA0 (x̃t−h + x̃t)

+ 0.5h

ν∑
k=1

Ak(x̃t−(ck+1)h + x̃t−ckh) .
(28)

System (28) can be written in the form of (11), where:

C0 = E− 0.5hA0 , C1 = −E− 0.5hA0 ,

Cck = Cck+1 = −0.5hAk .
(29)

2-Stage Radau IIA: The Butcher tableau of the 2-stage
Radau IIA method is:

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4
(30)

Applying the method for the TDI of (3) and linearizing, gives:

Eut−h+h/3 =Ex̃t−h +
h

12
A0

(
5ut−h+h/3 − x̃t

)
(31)

+
h

12

ν∑
k=1

Ak(5x̃t−(ck+1)h − x̃t−ckh) ,

Ex̃t =Ex̃t−h +
h

4
A0

(
3ut−h+h/3 + x̃t

)
(32)

+
h

4

ν∑
k=1

Ak(3x̃t−(ck+1)h + x̃t−ckh) . (33)

Solving (31) for ut−h+h/3 and substituting in (32) yields:

(E− h

4
A0)x̃t =

(
E+

3h

4
A0ME

)
x̃t−h − h2

16
A0MA0x̃t

+
h

4

ν∑
k=1

(
Ak − h

4
AkMAk

)
x̃t−ckh

+
3h

4

ν∑
k=1

AkMEx̃t−(ck+1)h , (34)

where M = (E− 5h
12A0)

−1. System (34) can be rewritten in
the form of (11), where:

C0 = E− h

4
A0 +

h2

16
A0MA0 ,

C1 = −E− 3h

4
A0ME ,

Cck = −h

4
Ak +

h2

16
AkMAk ,

Cck+1 = −3h

4
AkME .

(35)

IV. CASE STUDY

This section presents simulation results based on the
IEEE 14-bus system. The system consists of 14 buses, 5
synchronous machines equipped with Automatic Voltage Reg-
ulators (AVRs), 12 transmission lines, 4 transformers, and 12
loads. Moreover, the machine connected to bus 1 is equipped
with a Power System Stabilizer (PSS). The DAE system model
has in total 52 state and 92 algebraic variables. The full static
and dynamic data are taken from [10] and the gain of the AVR
of the machine at bus 1 is reduced by 2.5 times compared
to these data, a modification that secures for the system an
adequate delay margin to facilitate a full comparison among
the examined TDI methods for both small and large delay and
time step sizes. Simulations in this section are executed using
Dome [22] and eigenvalues are computed with LAPACK [23].

Let us consider first the system without any delay. The
eigenvalue analysis shows that the system is stable and
that the most poorly damped mode is the complex pair
−0.976 ± ȷ5.970. Hereafter we will refer to this mode as
Mode 1. Figure 1 shows, for different integration time step
sizes, how the dynamic modes of the DAE power system
model are approximated by the three TDI methods discussed
in Section III-D. The plots are drawn by first solving for each
method equation (8) and then mapping the computed roots
to the S-plane according to (19), so that they are directly
comparable to the eigenvalues of the DAE system, i.e. the roots
of (8), where, for the delay-free case, one has Ak = 0r,r.

Results indicate that the BEM overdamps the system’s
dynamics (see Fig. 1a), which is as expected, since the method
is known to be hyperstable, see also the relevant discussion
in [20]. Moreover, the ITM, while being very accurate for
time steps in the order of 10−2 s, it introduces underdamped
oscillations when employed with large time steps (see Fig. 1b).
Finally, under the same time step, the most accurate among
the examined methods is the 2-stage Radau IIA method.
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Fig. 1: Delay-free system: Eigenvalue analysis of TDI methods.

We now introduce a delay. With this aim, we assume that
the input signal of the PSS connected to the machine at bus 1
is impacted by a constant delay τ . By varying the delay
magnitude and repeating the eigenvalue analysis we find that
the delay margin of the system is 0.39 s. In fact, for τ = 0.4 s,
the system has one unstable mode 0.007 ± ȷ7.498, which is
thus the most critical for the delay-dependent stability of the
system. Hereafter we will refer to this mode as Mode 2.

Note that, in the delay-free system, Mode 2 is represented
by the complex pair −2.719 ± ȷ8.898. The eigenvalues of
the DDAE system are determined considering Chebyshev’s
discretization technique (see also Section II-B) with 8 nodes,
which is a choice that provides a good compromise between
precision and computational burden.
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(a) h = 0.01 s, τ = 0.05 s.
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(b) h = 0.1 s, τ = 0.3 s.

Fig. 2: DDAE system: Eigenvalue analysis of TDI methods.

Figure 2 shows two examples of how the dynamic modes of
the DDAE system are distorted by the TDI methods. Figure 2a
considers h = 0.01 s and τ = 0.05 s. In this case, both
ITM and Radau IIA accurately capture the system’s dynamics.
Figure 2b considers larger time step and delay values, i.e. h =
0.1 s and τ = 0.3 s, in which case the Radau IIA is the

most accurate among the examined methods. For the ITM,
the rightmost mode, i.e. Mode 2, shows a slight overdamping
of dζ = 0.298 % in Fig 2b. The magnitude of the overdamping
per se in this case is small, yet, interestingly, the response of
the method is in the opposite direction from what one would
expect, that would be, similar to the delay-free case, all modes
to be more or less underdamped.

In both cases illustrated in Fig. 2, the BEM overdamps the
system’s oscillations. This property of the BEM is well known.
On the other hand, what is of interest in this work and not
well known is how the numerical approximation is impacted
due to the presence of the delay. To this aim, we carry out a
number of simulations considering a varying delay magnitude
and a constant time step, and we compute for each scenario
and method the numerical and damping distortion according to
(20) and (21). Results are presented for Mode 1 and Mode 2.

Figures 3 and 4 show how the three TDI methods considered
distort Mode 1 and Mode 2, respectively, for h = 0.03 s and
as the delay magnitude varies. For the sake of comparison,
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Fig. 3: Time delay vs distortion of Mode 1, h = 0.03 s.
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TABLE I: Numerical distortion of Mode 1, h = 0.1 s.

BEM ITM Radau IIA

τ [s] Actual Mode |ds| [%] dζ [%] |ds| [%] dζ [%] |ds| [%] dζ [%]

- −0.976± ȷ5.970 1.594 24.681 0.175 −0.892 0.018 0.231
0.1 −1.308± ȷ5.883 1.784 26.479 0.174 −1.318 0.085 1.382
0.2 −1.685± ȷ5.801 1.760 24.472 0.179 −1.800 0.093 1.472
0.3 −2.117± ȷ5.687 1.736 21.853 0.188 −2.311 0.103 1.580
0.4 −2.601± ȷ5.497 1.694 18.372 0.197 −2.752 0.116 1.712

TABLE II: Numerical distortion of Mode 2, h = 0.1 s.

BEM ITM Radau IIA

τ [s] Actual Mode |ds| [%] dζ [%] |ds| [%] dζ [%] |ds| [%] dζ [%]

- −2.719± ȷ8.898 3.259 29.223 0.605 −3.349 0.091 0.433
0.1 −1.441± ȷ9.276 2.606 25.388 0.587 −1.090 0.251 −1.373
0.2 −0.545± ȷ8.681 2.314 25.396 0.427 0.090 0.186 −0.196
0.3 −0.145± ȷ8.031 2.013 24.195 0.318 0.298 0.137 0.270
0.4 0.007± ȷ7.498 1.788 22.953 0.250 0.195 0.107 0.491

we have included in each plot a horizontal line indicating the
amount of distortion introduced by each method for the same
time step size in the delay-free case. Results show that the
same method does not necessarily have the same effect on
different modes of the system. For example, the accuracy of
the BEM is better in the delayed than in the delay-free system
in capturing Mode 2, but worse in capturing Mode 1. To give
another example, the accuracy of the Radau IIA is better in
the delayed than in the delay-free system in capturing Mode 1
for all delays considered, however, for Mode 2 the method is
more accurate in the delayed system only for delays larger than
0.15 s. A general conclusion arising from these figures is that,
although both ITM and Radau IIA are very accurate for all
delays considered, the ITM follows slightly more closely both
modes, both in terms of numerical and damping distortion.

We consider a larger time step, i.e. h = 0.1 s. The distortion
of Mode 1 and Mode 2 by the examined TDI methods in
this case is presented in Tables I and II. In this case, the
Radau IIA method is the most accurate among the three
methods for all delays considered. Furthermore, for large
delays, the overdamping introduced by the BEM decreases,
which is also consistent with Figs. 3b and 4b. Finally, as the
delay increases, the underdamping introduced by the ITM to
Mode 1 increases, whereas for Mode 2, it decreases, so that
for delays larger than 0.2 s the mode appears overdamped.
This is in line with the discussion of Fig. 2 provided above.

We consider that the delay is fixed at 0.2 s, and we examine
how the distortion of the two modes varies as the time step h
is increased. The results are presented in Fig. 5, and show
that, as expected, the magnitude of ds for the two modes
for all three methods increases with the increase of h. The
different response of the ITM in capturing the damping of
the two modes is confirmed also in this figure. Furthermore,
Fig. 5f indicates that the Radau IIA may induce underdamping
or overdamping depending on the step size (see Mode 1). A
relevant remark is that, assuming only constant delays that
are integer multiples of h limits our ability to draw plots like
Fig. 5 with full accuracy. The assumption is made in this work
for the sake of simplicity, e.g. we have no need for explicit
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Fig. 4: Time delay vs distortion of Mode 2, h = 0.03 s.

calls on interpolation in the definition of matrices F and G.
The task of extending the formulation for delays of any value,
including time-varying and stochastic delays, is left as a task
for future work.

V. CONCLUSIONS

The paper presents a framework to evaluate the numerical
approximation that TDI methods introduce when employed for
the numerical integration of power system models impacted
by time delays. The proposed framework is based on SSSA
and is formulated in a general way that covers many methods,
including the most important family of numerical methods for
the integration of DDEs, i.e. implicit RK methods. We will
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Fig. 5: Time step vs distortion of Mode 1 (dashed) and Mode 2
(solid), τ = 0.2 s.

dedicate future work to evaluate the computational burden of
our approach when applied to large-scale systems, as well as
to extend it for time-varying and stochastic delays, plus for
delays that are not integer multiples of the time step.

APPENDIX

A. Proof of Proposition 1

We set:

y
[0]
t−h = x̃t−(c+1)h , y

[1]
t−h = x̃t−ch ,

. . . , y
[c−1]
t−h = x̃t−2h , y

[c]
t−h = x̃t−h ,

(36)

and

y
[0]
t = x̃t−ch = y

[1]
t−h , y

[1]
t = x̃t−(c−1)h = y

[2]
t−h ,

. . . , y
[c−1]
t = x̃t−h = y

[c]
t−h , y

[c]
t = x̃t .

(37)

From the last equation we have:

C0y
[c]
t = C0x̃t = −C1x̃t−h −Ccx̃t−ch −Cc+1x̃t−(c+1)h ,

or equivalently:

C0y
[c]
t = −C1y

[c]
t−h −Ccy

[1]
t−h −Cc+1y

[0]
t−h . (38)

We define:

yt =
[
(y

[0]
t )T (y

[1]
t )T (y

[2]
t )T . . . (y

[c]
t )T

]T
. (39)

Merging (36)-(39), we arrive at the desired result. □

B. Proof of Proposition 2

We set:

y
[0]
t−h = x̃t−(cν+1)h , y

[1]
t−h = x̃t−cνh ,

. . . , y
[cν−c1]
t−h = x̃t−(c1+1)h , y

[cν−c1+1]
t−h = x̃t−c1h ,

. . . , y
[cν−1]
t−h = x̃t−2h , y

[cν ]
t−h = x̃t−h ,

(40)

and

y
[0]
t = x̃t−cνh = y

[1]
t−h , y

[1]
t = x̃t−(cν−1) = y

[2]
t−h ,

. . . , y
[cν−c1]
t = x̃t−c1h = y

[cν−c1+1]
t−h ,

y
[cν−c1+1]
t = x̃t−(c1−1)h = y

[cν−c1+2]
t−h , . . . ,

y
[cν−1]
t = x̃t−h = y

[cν ]
t−h , y

[cν ]
t = x̃t .

(41)

From the last equation we have that:

C0y
[cν ]
t = C0x̃t =−C1x̃t−h −Cc1 x̃t−c1h

−Cc1+1x̃t−(c1+1)h − . . .

−Ccν x̃t−cνh −Ccν+1x̃t−(cν+1)h ,

or, equivalently:

C0y
[cν ]
t =−C1y

[cν ]
t−h −Cc1y

[cν−c1+1]
t−h −Cc1+1y

[cν−c1]
t−h

− . . .−Ccνy
[1]
t−h −Ccν+1y

[0]
t−h .

(42)
We define:

yt =
[
(y

[0]
t )T (y

[1]
t )T . . . (y

[cν−c1]
t )T . . . (y

[cν ]
t )T

]T
. (43)

From (40)-(43), we arrive at the desired result. □
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