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Abstract— This letter studies the impact of the dead-band in the input
signal of Power System Stabilizers (PSSs) on the transient response of
power systems. The letter provides a taxonomy of the dynamic behavior of
the system in various scenarios: no PSS, PSS without dead-band, and PSS

with dead-band. For the latter, the dead-band stability margin and the
interaction of the PSS with the system loading level as well as primary and
secondary frequency regulators are discussed. The oscillatory behavior
of the system is rigorously studied through the monodromy matrix and

limit cycles are characterized by means of Floquet multipliers. The IEEE
14-bus system serves to illustrate the aforementioned scenarios.

Index Terms— Power System Stabilizer (PSS), dead-band, frequency
control, limit cycle, monodromy matrix, Floquet multipliers.

I. INTRODUCTION

Dead bands are often utilized in power systems to reduce the

operation and maintenance costs of mechanical devices such as

Turbine Governors (TGs). The importance of dead-bands on primary

frequency regulation and system stability is an ever-green topic that

has been studied in the last six decades [1], [2]. Other uses of the

dead-band are in PSSs, in particular, those for wide-area systems [3].

While the impact of communication delays on the stability of PSSs

has been widely studied in recent years [4], [5], no study has focused

so far on the impact of modelling a dead-band in the input signal of

PSSs. This letter aims at filling this gap.

II. THEORETICAL BACKGROUND

The power system is modelled as a set of hybrid nonlinear

Differential Algebraic Equations (DAEs) [6]:




ẋ

0

u̇



 =





f(x,y,u)
g(x,y,u)

0



 , (1)

where f : Rnx+ny+nu 7→ R
nx are differential equations;

g : Rnx+ny+nu 7→ R
ny are the algebraic equations; x ∈ R

nx ,

y ∈ R
ny and u ∈ R

nu are state, algebraic and discrete variables,

respectively. Variables u are in steady state except for a finite set of

instants at which they jump, thus making f and g piecewise-smooth

functions. These discrete events can be monitored by a proper

set of nh (nx + ny)-dimensional manifolds h(x,y) = 0, where

h(x,y) : Rnx+ny 7→ R
nh . When a trajectory in the state space hits

one of the nh manifolds [say hj(x,y) = 0] at t = t1, u−

1 (i.e.,

u(t1) immediately before the event) is instantaneously mapped in

u+
1 = bj(x(t1),y(t1),u

−

1 ), where bj : R
nx+ny+nu 7→ R

nu (for

j = 1, ..., nh) are reset functions. To model the aforementioned

manifolds, one can usually adopt if-then rules as in hybrid automata

[6], [7]. In this letter, u is used to model the dead-bands.
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Whenever (1) admits a T -periodic solution, say γT , e.g., a limit

cycle, its stability can be studied through the Floquet multipliers,

i.e., the eigenvalues of its monodromy matrix. To provide the reader

with some basic concepts on this topic, we focus on sets of hybrid

nonlinear Ordinary Differential Equations (ODEs) thus neglecting

y and g(·, ·, ·). The interested reader can refer to [8] for a deeper

overview concerning DAEs.

Let us first introduce the fundamental solution matrix for smooth

ODEs, i.e., let us assume that u never jumps. In this case (1)

reduces to ẋ = f(x) with initial condition x(t0) = x0, and its

Φ(t, t0) fundamental solution matrix is the solution of the variational

equation:

Φ̇(t, t0) = Jf Φ(t, t0) , (2)

with the initial condition Φ(t0, t0) = 1nx , where Jf is the Jacobian

matrix of f and 1nx is the nx×nx identity matrix. Φ(t, t0) provides

the sensitivity of the solution of ẋ = f(x) w.r.t. x0. If x(t0) ∈
γT , then x(t0) = x(t0 + T ) and Φ(T + t0, t0) ≡ Ψ is called

monodromy matrix and its eigenvalues are the µk (k = 1, ..., nx)

Floquet multipliers associated to γT . If the condition |µk| ≤ 1 ∀k
holds, then γT is a stable limit cycle [9].

The computation of the fundamental solution matrix can be

achieved using forward sensitivity analysis [10]. The variational

equation (2) can be numerically integrated in parallel with the ODE

originating it. Nevertheless, this approach is time-consuming as far

as the dimension of the system gets big. To overcome this issue, the

solution of the variational equation can be conveniently obtained as

a by-product of the integration of the original ODE [11].1

If variables u are considered, thus leading to hybrid ODEs, the

computation of Ψ is less straightforward since Jf is not defined at

the points where u jumps and f is not continuous. Let us assume

again that an event occurs for t = t1. If the hybrid ODE admits a

limit cycle γT with single switching point of f at x1, occurring at

t1 ∈ (t0, t0 + T ), then Ψ is computed as Φ(T + t0, t1)SΦ(t1, t0)
where S is the saltation matrix operator, viz. a proper correction

factor to be inserted whenever the trajectory hits one of the h(x) = 0

manifolds in the state space [12]. The trajectory hits hj(x) = 0 at

t = t1 and the saltation matrix is computed as:

S = Jbj
+

[

f(x1,u
+
1 )

0

]

− Jbj

[

f(x1,u
−

1 )
0

]

∇hj
Tf(x1,u

−

1 )

[

∇hj

0

]T

, (3)

where Jbj
is the Jacobian of bj computed at (x1,u

−

1 ), ∇hj is the

gradient of hj(x) = 0 computed at x1 and T is the transposition

operator.

III. CASE STUDY

The analysis is based on the well-known IEEE 14-bus system,

whose base-case model and data can be found in [6]. The system

includes five synchronous machines with 6th order models. Each

1The PAN circuit simulator utlized for the simulations discussed in Section
III implements this approach.
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machine includes a IEEE DC1 Automatic Voltage Regulator (AVR).

A PSS is installed for the generator connected at Bus 1. Generators

1 and 2 also include a steam turbine and a TG with servo motor

and droop control and dead-band, dbTG = 0.001 pu(Hz), on the

input frequency signal. Time-domain simulations are performed with

Dome [13], whereas the shooting analysis was carried out and Floquet

multipliers were calculated with the PAN simulator [14], [15].

The control scheme of the PSS with dead-band is shown in Fig. 1.

A non-step dead-band model is considered:

ω̂ =











0, −dbPSS ≤ ω ≤ dbPSS

ω − dbPSS, ω > dbPSS

ω + dbPSS, ω < −dbPSS ,

(4)

where ω is the rotor speed of the synchronous machine to which the

PSS is connected.
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Fig. 1. Power system stabilizer control diagram.

Increasing the loading level by 21% with respect to the base case

makes the IEEE 14-bus system unstable without the PSS and the

outage of line 2-5 gives birth to undamped oscillations at 2.93 Hz, as

shown in Fig. 2. The PSS without dead-band (dbPSS = 0) is able to

fully damp the electromechanical oscillations. One can think of the

case with no PSS as a situation where the PSS has a very large dead-

band (dbPSS → ∞), such that the frequency error signal is always

smaller than the dead-band itself and the PSS remains inactive.
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Fig. 2. Line 2-5 outage for IEEE 14 bus system – Trajectories of the rotor
speed of the synchronous generator at bus 1 for different scenarios: no PSS
and PSS without dead-band connected to Generator 1.

Intuitively, since the system is stable for dbPSS = 0 and unstable

for dbPSS → ∞, there has to be a critical value dbc > 0 that defines

the boundary between the stable and unstable conditions. Through

time-domain simulations, we find dbc ≈ 0.000955 pu(Hz) in this

scenario. Figure 3 shows the dynamic behavior of the IEEE 14-bus

system with PSS dead-bands slightly above and below the critical

value dbc: following the line outage, the system with db = 0.00095
pu(Hz) is cheracterized by damped oscillations, while db = 0.001
pu(Hz) leads to a limit cycle with frequency 1.44 Hz.

Finally, Fig. 4 shows the impact of different values of the dead-

band of the TG and the effect of the Automatic Generation Control

(AGC) for the case of a PSS with db = 0.00095 pu(Hz).
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Fig. 3. Line 2-5 outage for IEEE 14 bus system – Trajectories of the rotor
speed of the synchronous generator at bus 1 with a PSS and PSS output signal
for different values of dbPSS.
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Fig. 4. Line 2-5 outage for IEEE 14 bus system – Trajectories of the rotor
speed of the synchronous generator at bus 1 with PSS with dbPSS = 0.00095
pu(Hz) for different scenarios: TGs with dbTG = 0.001 pu(Hz), TGs with
dead-band 0.0005 pu(Hz); and TGs with dbTG = 0.001 pu(Hz) and AGC.

A. Stability Analysis of the Limit Cycles

We did time-domain shooting analyses to check if the oscillatory

transient behaviors presented in this case study go toward a limit

cycle. The shooting method heavily grounds on the computation of

the fundamental solution matrix as outlined in the previous section

and detailed in [8]. This analysis provides both the limit cycle and

its Ψ monodromy matrix and, thus, also the Floquet multipliers.

As far as the “No PSS” scenario in Fig. 2 is concerned, by

neglecting the Floquet multipliers µ1 = µ2 = 1.00, which are always

present,2 the Floquet multiplier with largest modulus is µ3 = 0.986.

In this case no saltation matrices are needed since no dead-bands are

present. Concerning the dbPSS = 0.001 pu(Hz) scenario, µ3 = 0.989

2The presence of µ1 = 1 is a direct consequence of the fact that (1) models
an autonomous system, viz. the time variable t does not explicitly appear in
it. The presence of µ2 = 1 is more involved. It is the counterpart of the
always null eigenvalue of the Jacobian matrix of the power system linearized
at any power flow solution [14].
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and two saltation matrices are inserted along the limit cycle. The

saltation matrices are required because of the discontinuities of some

Jacobian matrix elements introduced by the dead-band of the PSS, as

shown in the lower pane of Fig. 3 and Fig. 5. As for the scenarios with

dbTG = 0.0005 pu(Hz) and with AGC, i.e., the dotted and dashed

lines shown in Fig. 4, they are both characterized by µ3 = 0.986.
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Fig. 5. Limit cycle in the state space of the rotor speed of machine 1 and
the PSS output signal with dbPSS = 0.001 pu(Hz).

These results confirm that the steady-state oscillations are in fact

stable limit cycles. The limit cycles of all oscillatory cases are due to

the dynamic interaction of the AVR of the first synchronous generator

with machine rotor flux dynamics. This leads to very similar Floquet

multipliers in all these scenarios.

B. Taxonomy of the System Stability

Simulation results suggest the following taxonomy of the stability

of the system after the line outage.

1) System without PSS. The system has no stable equilibrium point

and the trajectories of the system after the contingency fall into

a stable limit cycle.

2) System with PSS without dead-band. If properly tuned, the PSS

makes the post-contingency equilibrium point stable and thus

damps the trajectories of the variables of the system.

3) System with PSS and “small” dead-band. The dead-band makes

the PSS insensitive at the beginning of the transient after the line

outage. However, the power unbalance due to the increment of

losses in the system and the non-perfect tracking behavior of the

primary frequency control provided by TGs lead the frequency

of the system to leave the dead-band of the PSS, which thus is

able to damp the oscillations and to drive the system to a new

stable equilibrium point.

4) System with PSS and “large” dead-band. The initial part of

the transient is similar to the case with “small” dead-band.

However, the trajectory of the rotor speed of generator 1 enters

and leaves the dead-band region of the PSS. Inside the dead-

band the trajectory is repelled by the unstable equilibrium that

exists without PSS. Then the rotor speed moves away from the

dead-band region. At this point, the PSS is enabled and the rotor

speed is attracted by the newly formed stable equilibrium point.

While moving along its trajectory the rotor speed returns inside

the dead-band region. These events repeat periodically and cause

the oscillatory behavior shown in Fig. 3.

In the above taxonomy, “small” and “large” are relative to the

critical value of the dead-band, namely 0.000955 pu(Hz). Due to the

nonlinearity of the system, there is no way to determine a priori

whether a dead-band value will lead to a stable or an unstable

equilibrium point for a given loading level and operating condition.

However, there will always be a critical value that discriminates

between stable and unstable conditions if the system, as in this case,

is stable for db = 0 and unstable for db = ∞.

The effect of the dead-band on the stability of the system is

deeply intertwined with the dynamics and parameters of the primary

frequency regulation as well as the loading level of the system. As

discussed above, it is the combination of the value of the dead-bands,

the droop coefficient of the TGs of the synchronous generators and the

power unbalance following the contingency to discriminate between

a stable or unstable post-contingency equilibrium point and/or the

birth of a stable limit cycle.

A small primary frequency control droop or a small dbTG can drive

the system to instability even for small values of dbPSS. This fact also

suggests that the effect of the AGC, whose objective is to reduce the

frequency error to zero by varying the power set-point of the turbine

of synchronous generators, is to destabilize the system, at least on the

long term, regardless the value of the PSS dead-band. The effect of

a smaller dead-band of the TGs as well as the effect of the AGC are

shown in Fig. 4. These results indicate the counterintuitive conclusion

that the design of the parameters of the PSS and, in particular, of

its dead-band, has to be carefully coordinated with the design of

primary and secondary frequency regulators. In future work, we will

consider the impact of anti-dead-band controllers for PSSs such as

the ones proposed in [1] to compensate the dead-band of the TGs of

synchronous machines.
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