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Impact of Time Delays on Power System Stability
F. Milano, Senior Member, IEEE and M. Anghel

Abstract— The paper describes the impact of time-delays on
small-signal angle stability of power systems. With this aim, the
paper presents a power system model based on delay differential
algebraic equations (DDAE) and describes a general technique
for computing the spectrum of DDAE. The paper focuses in
particular on delays due to the terminal voltage measurements
and transducers of automatic voltage regulators and power sys-
tem stabilizers of synchronous machines. The proposed technique
is applied to a benchmark system, namely the IEEE 14-bus
test system, as well as to a real-world system. Time domain
simulations are also presented to confirm the results of the DDAE
spectral analysis.

Index Terms— Time delay, delay differential algebraic equa-
tions (DDAE), automatic voltage regulator (AVR), power system
stabilizer (PSS), small-signal stability, Hopf bifurcation (HB),
limit cycle.

I. I NTRODUCTION

A. Motivation

Including time delays in the classical electromechanical
model leads to formulating power systems in terms of func-
tional differential algebraic equations of retarded type or, more
concisely, delay differential algebraic equations (DDAE). The
study of the stability of DDAE is relatively more complicated
than that of standard differential algebraic equations (DAE).
Nevertheless, both theoretical tools for DDAE and modern
computers are mature enough to allow tackling the stabilityof
large scale DDAE systems. This paper presents a systematic
approach for defining small signal stability as well as time
domain integration of power systems modeled as DDAE.

B. Literature Review

Time delays arises in a wide variety of physical systems
and their effects on stability have been carefully investigated
in several engineering applications, such as signal processing
and circuit design [1]–[4]. Nevertheless, little work has been
carried out so far in the power system area on the effects of
time delays on power system stability. As a matter of fact,
time delays are generally ignored. An exception to this rule

F. Milano is with the Department of Electrical Engineering, Univer-
sity of Castilla-La Mancha, 13071 Ciudad Real, Spain. E-mail: Fed-
erico.Milano@uclm.es.

M. Anghel is with CCS Division, Los Alamos National Laboratory, Los
Alamos, NM 87545, USA. E-mail:manghel@lanl.gov.

Federico Milano is partly supported by the Ministry of Science and
Education of Spain through CICYT Project ENE-2009-07685 and by Junta
de Comunidades de Castilla - La Mancha through project PCI-08-0102.

Marian Anghel research was carried out under the auspices ofthe National
Nuclear Security Administration of the U.S. Department of Energy at Los
Alamos National Laboratory under Contract No. DE C52-06NA25396.

Copyright (c) 2011 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

is [5], which presents a model of long transmission lines in
terms of DDAE.

In recent years, wide measurement areas and recent ap-
plications of phasor measurement unit (PMU) devices make
necessary remote measures, which has led to some research
on the effect of measurement delays. For example, [6] and [7]
present a robust control of time delays for wide-area power
system stabilizers, and [8] tackles the issue of the time domain
integration of DDAE. The effect on small signal stability of
delays due to PMU measurements are studied in [9] based on
a probabilistic approach.

Existing studies on small-signal stability of delayed power
system equations can be divided into two main categories: (i)
frequency-domain methods, and (ii) time-domain methods.

1) Frequency-domain methods: These methods mainly con-
sists in the evaluation of the roots of the characteristic equation
of the retarded system [9]–[11]. This approach is in principle
exact but due to the difficulty in determining the roots of
the characteristic equation (see Section II-A), the analysis is
limited to one-machine infinite-bus (OMIB) systems.

Although an exact explicit analytical method based on the
Lambert W function can be applied to simple cases [12],
the analytical solution of the characteristic equation cannot
be found for practical power systems. Thus, several numerical
methods have been proposed in the literature to approximate
the solution of the characteristic equation. A possible approach
is based on the discretization of the solution operator of
the characteristic equation [13]. Other methods estimate the
infinitesimal generator of the solution operator semi-group
[14], and the solution operator approach via linear multi-
step (LMS) time integration of retarded systems without any
distributed delay term [15]–[17].

Other approaches apply a discretization scheme based on
Chebyshev’s nodes [18]–[20]. These methods are based on
a discretization of the partial differential equation (PDE)
representation of the DDAE. The implementation of such
discretization is surprisingly simple while results proved to
be accurate. Hence, this is the technique used in this paper.
The idea is to transform the original DDAE problem into an
equivalent PDE system of infinite dimensions. Then, instead
of computing the roots of retarded functional differential
equations, one has to solve a finite, though possibly large,
matrix eigenvalue problem of the discretized PDE system.

2) Time-domain methods: These methods are based on the
Lyapunov-Krasovskii’s stability theorem and the Razumikhin’s
theorem. The application of time-domain methods allow defin-
ing robust controllers (e.g.,H∞ control) and dealing with
uncertainties and time-varying delays. However, the conditions
of the Lyapunov-Krasovskii’s stability theorem and the Razu-
mikhin’s theorem are only sufficient and cannot be used to
find the delay stability margin. Moreover, it is necessary to



find a Lyapunov functional or, according to the Razumikhin’s
theorem, a Lyapunov function that bounds the Lyapunov
functional.

Hence, in the nonlinear case, the applicability of time-
domain methods strongly depends on the ability of defining a
Lyapunov function (i.e., the same limitation as DAE systems).
The application to power system analysis are limited to small
test systems [21], [22].

If the DDAE is linear or is linearized around an equilibrium
point, finding the Lyapunov function, in turns, implies finding
a solution of a linear matrix inequality (LMI) problem [23],
[24]. A drawback of this approach is that the size and the
computational burden of LMI highly increase with the size
of the DDAE. As a matter of fact, LMI-based analysis has
become computationally tractable only in the last two decades
[24]. However, in recent years, LMI-based approach has been
applied to several practical problems. In the scope of power
system analysis, we cite, for example, [25].

3) Advantages and drawbacks of frequency- and time-
domain methods: As discussed above, the frequency and the
time-domain methods have both advantages and drawbacks,
which have to be carefully evaluated in order to define the
best application of each method. While time-domain methods
are adequate for synthesizing robust controllers, as any direct
method based on the Lyapunov function, they suffer from
the idiosyncratic lack of necessary and sufficient stability
conditions. Furthermore, the computational burden of solving
the LMI problem cannot be avoided.

On the other hand, while it is true that frequency-domain
methods have difficulties in handling uncertainties, they offer
the advantage of consisting in an eigenvalue analysis of a
(possibly huge) matrix. If one is interested in stability, the
object is not to findall roots, but only a reduced set of
roots that have positive real part of that are close to the
imaginary axis. Some efficient eigenvalue technique, e.g.,
the Arnoldi’s iteration, can highly reduce the computational
burden of frequency-domain techniques.

For these reasons, and since in this paper we are interested
in the small-signal analysis of DDAE more than in its robust
control, we use the frequency-domain approach.

C. Object of the Paper

In this paper, we are interested in determining whether the
inclusion of delays can affect the small-signal stability and
whether such delays can reduce the expected stability margin
of a power system. Both mathematical and computational
aspects are taken into account so that the proposed procedures
for small-signal analysis as well as for time domain integration
can be in principle applied to a power system of any size and
complexity. Moreover, we show that the implementation of
ideal constant delays is particularly straightforward anddoes
not affect the numerical stability of the implicit trapezoidal
method that is used in most power system analysis software
tools.

D. Contributions

The contributions of the paper are the following:

1) To define a general DDAE model of power systems. In
particular, the index-1 Hessenberg form of retarded type
is adopted.

2) To propose a method for defining the small-signal sta-
bility of DDAE based on eigenvalue analysis and an ap-
proximation of the characteristic equation at equilibrium
points.

3) To evaluate the effect on stability of taking into account
delays in measurements. With this aim, the case study
considers delays introduced by the excitation control as
well as by the power system stabilizer of synchronous
machines.

E. Paper Organization

The remainder of the paper is organized as follows. Section
II defines the structure of DDAE that is adequate for power
system modeling. Subsection II-A proposes a technique for
evaluating the small-signal stability of DDAE equilibrium
points based on an approximate solution of the characteristic
equation while Subsection II-B describes the modifications
required by the implicit trapezoidal method for integrating
DDAE. Section III presents the AVR model with inclusion of
a time delay. Section IV discusses simulation results obtained
for the IEEE 14-bus test system and a real-world 1213-bus
system. Conclusions are drawn in Section V.

II. DDAE FOR POWER SYSTEM MODELING

The transient behavior of electric power systems is tradition-
ally described through a set of differential algebraic equations
(DAE) as follows:

ẋ = f(x,y,u) (1)

0 = g(x,y,u)

wheref (f : Rn+m+p 7→ R
n) are the differential equations,g

(g : Rn+m+p 7→ R
m) are the algebraic equations,x (x ∈ R

n)
are the state variables,y (y ∈ R

m) are the algebraic variables,
andu (u ∈ R

p) are discrete variables modeling events, e.g.,
line outages and faults.

In common practice, equations (1) are split into a collection
of subsystems where discrete variablesu are substituted for
if-then rules. Thus, (1) can be conveniently rewritten as a finite
collection of continuous DAEs, one per each discrete variable
change. Such a system is also known ashybrid automaton
or hybrid dynamical system. An in-depth description and
formalization of hybrid systems for power system analysis can
be found in [26].

Despite the fact that (1) are well-accepted and are the
common choice in power system software packages, some
aspects of the reality are missing from this formulation, e.g.,
stochastic processes and variable functional relations. In this
paper, we are interested in defining the possible effects on
stability of time delays. Introducing time delays in (1) changes
the DAE into a set of delay differential algebraic equations
(DDAE). For the sake of simplicity, we only consider ideal
constant time delays in the form:

yd = y(t− τ) (2)
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whereyd is the retarded or delayed variable with respect to
some algebraic variabley, t is the current simulation time,
and τ (τ > 0) is the constant delay. A similar expression,
with obvious notation, can be written in case the delay affects
a state variable:

xd = x(t− τ) (3)

Merging together (1), (2) and (3) leads to:

ẋ = f(x,y,xd,yd,u) (4)

0 = g(x,y,xd,yd,u)

Equations (4) are the most general form of nonlinear DDAE.
However, for practical models of physical systems, some
simplifications can be adopted. In particular, as shown in
Section III, the index-1 Hessenberg form is adequate to model
power systems:

ẋ = f(x,y,xd,yd,u) (5)

0 = g(x,y,xd,u)

which is a simplification of (4). The index-1 Hessenberg form
(5) is used in the remainder of the paper.

In this paper, we are interested in (i) defining the small-
signal stability of (5), and (ii) numerically integrating (5).
These topics are addressed in the following subsections.

A. Small-Signal Stability of Hessenberg DDAE of Retarded
Type

Assume that a stationary solution of (5) is known and has
the form:

0 = f(x0,y0,x0,y0,u0) (6)

0 = g(x0,y0,x0,u0)

Then, linearizing (5) at the stationary solution yields:

∆ẋ = f
x
∆x+ f

xd
∆xd + fy

∆y + f
yd
∆yd (7)

0 = g
x
∆x+ g

xd
∆xd + gy∆y (8)

where, as usual, it can be assumed thatg
y

is non-singular.
Thus, substituting (8) into (7), one obtains:

∆ẋ = A0∆x+A1∆x(t− τ) +A2∆x(t− 2τ) (9)

where:

A0 = f
x
− f

y
g−1
y
g
x

(10)

A1 = f
xd

− f
y
g−1
y
g
xd

− f
yd
g−1
y
g
x

(11)

A2 = −f
yd
g−1
y
g
xd

(12)

The first matrixA0 is the well-known state matrix that is
computed for standard DAE system of the form (1). The other
two matrices are not null only if the system is of retarded
type Appendix I provides the details on how to determine
(10)-(12). Observe that (9) is equivalent to the linearization
of the DDE system obtained by substitutingy for a function
y = ρ(x,xd) that satisfies, at least in a neighborhood of the
stationary solution:

0 = g(x,xd,ρ(x,xd)) (13)

Although the existence of the functionρ is guaranteed by
the implicit function theorem, it is generally impossible to
find explicitly such a function for practical systems. However,
(9) provides the same asymptotic stability information forthe
original DDAE problem (5) as that of the theoretical DDE
problem obtained by substituting the algebraic variable with
the formalρ function.

Equation (9) is a particular case of the standard form of the
linear delay differential equations:

ẋ = A0x(t) +
ν
∑

i=1

Aix(t− τi) (14)

where, in this case,ν = 2, τ1 = τ and τ2 = 2τ . The
substitution of a sample solution of the formeλtυ, with υ
a non-trivial possibly complex vector of ordern, leads to the
characteristic equation of (14):

det∆(λ) = 0 (15)

where

∆(λ) = λIn −A0 −

ν
∑

i=1

Aie
−λτi (16)

is called thecharacteristic matrix [27]. In (16), In is the
identity matrix of ordern. The solutions of (16) are called
the characteristic roots or spectrum, similar to the finite-
dimensional case (i.e., the case for whichAi = 0 ∀i =
1, . . . , ν ). However, since (16) is transcendental, it has
infinitely many roots, and thus one can only approximate the
solution of (16) computing a reduced set of its roots.

Similar to the finite-dimensional case, the stability of (14)
can be defined based on the sign of the roots of (16), i.e.,
the stationary point is stable if all roots have negative real
part, and unstable if there exists at least one eigenvalue with
positive real part.

Although the number of roots is infinite, there are two
useful properties of the characteristic matrix that allowsits
exploitation for stability studies, as follows [27].

1) Equation (16) only has a finite number of characteristic
roots in any vertical strip of the complex plane, given
by {λ ∈ C : α < ℜ(λ) < β}

2) There exists a numberγ ∈ R such that all characteristic
roots of (16) are confined to the half-plane{λ ∈ C :
ℜ(λ) < γ}.

These properties basically imply that the number of solutions
in the right-half of the complex plane is finite and, clearly,if
γ ≤ 0, there is no eigenvalue with positive real part. Thus,
when one is only interested in the small-signal stability ofthe
stationary solution of (5), the problem of finding the roots
of (16) reduces to the problem of finding a finite number
(possibly none) of roots of (16) with positive real part or
poorly damped.

As briefly discussed in the Introduction, the idea to find an
exact explicit solution of (16) has to be abandoned for practical
systems. In this paper we use the technique proposed in [18]–
[20] based on recasting (14) as an abstract Cauchy problem.
This approach consists in transforming the original problem
of computing the roots of a retarded functional differential
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equations as a matrix eigenvalue problem of a PDE system
of infinite dimensions and then approximating such system by
means of a finite element method.

To better illustrate the method, let us assume some simpli-
fications. First, assume that (5) has only one delayτ common
to all retarded variables. Moreover, assume thatA2 = 0. This
hypothesis is actually a consequence of considering that in
(5) only algebraic variables depend on the delay. Hence, (5)
becomes:

ẋ = f(x,y,yd,u) (17)

0 = g(x,y,u)

and from (11) and (12) one obtains:

A1 = −f
yd
g−1
y
g
x
, A2 = 0 (18)

from which, (16) becomes:

∆(λ) = λIn −A0 −A1e
−λτ (19)

Observe that the simplified index-1 Hessenberg form (17) is
generally sufficient to describe electric power systems [8]and
it is also the form used in the case study of this paper.

Then, one has to choose the numbers of nodes compos-
ing Chebyshev’s discretization scheme, sayN . This number
affects the precision and the computational burden of the
method, as it is explained below. LetDN be Chebyshev’s
differentiation matrix of orderN (see Appendix II) and define

M =

[

Ĉ ⊗ In
A1 0 . . . 0 A0

]

(20)

where⊗ indicate Kronecker’s product (see Appendix III);In
is the identity matrix of ordern; andĈ is a matrix composed
of the firstN − 1 rows ofC defined as follows:

C = −2DN/τ (21)

Then, the eigenvalues ofM are an approximated spectrum of
(19).

Roughly speaking, one can seeM as the discretization of a
PDE system where the continuous variable, sayξ, corresponds
to the time delay. Thenξ is discretized along a grid ofN
points. The position of such points are defined by Chebyshev’s
polynomial interpolation. The lastn rows ofM correspond to
the PDE boundary conditionsξ = τ (e.g.,A1) andξ = 0 (e.g.,
A0), respectively. This suggests also how to generalizeM for
a case of characteristic equations withν > 1. For example,
the matrixM for ν = 2 can be formulated as follows:

M =

[

Ĉ ⊗ In
A2 0 . . .0 A1 0 . . .0 A0

]

(22)

whereN+1 must be odd to allowA1 being in the central node
of Chebyshev’s grid. As it can be expected, the general case
with multiple delays can be assessed at the cost of increasing
N and, hence, the size of the matrixM , and of modifying
accordingly its lastn rows. The interested reader can find
further insights on the multiple delay case in [20] and [28].
For the sake of simplicity, in this paper, only the case of a
single delay is considered. This assumption is justified by
the fact that the delays originate from an unique device type,

e.g., the synchronous machine AVR, whose functioning has to
be expected to be very similar, if not the same, for different
machines.

B. Numerical Integration of Hessenberg DDAE of Retarded
Type

Integrating general delay differential equations is not an
easy task and specific methods have to be developed to avoid
numerical instability. For example, despite beingA-stable for
standard DAE equations, the implicit trapezoidal method may
shows numerical issues in case of DDAE. Thus, specific time
integration methods for DDAE have been developed. We cite
for example the two-stage Lobatto IIIC method [19].

Although the general case can show interesting numerical
issues, in this paper we focus only on a subset of DDAE,
namely the index-1 Hessenberg form (5). Furthermore, since
most power system programs internally implement an implicit
trapezoidal method for time domain integration, we provide
the modifications that are required to adapt the implicit trape-
zoidal method to (5).

Let us define, for the sake of generality two general func-
tional expressions:

0 = φ(x,xd, t) = x̂(α(x, t))− xd (23)

0 = ψ(y,yd, t) = ŷ(β(y, t))− yd (24)

whereα(x, t) andβ(y, t) represent the functional dependence
of state and algebraic variables on the delays. For the pure
constant delays (2) and (3), one simply has:

α(x, t) = t− τ , β(y, t) = t− τ , (25)

but, of course, more complex expressions can be considered
[19].

The implicit trapezoidal method for standard DAE (1)
requires factorizing at each iterationi the Jacobian matrix [29]:

A(i)
c =

[

In − 0.5∆tf (i)
x

−0.5∆tf (i)
y

g
(i)
x g

(i)
y

]

(26)

where∆t is the time step at iterationi. Applying the same
rule to (5) and using the functional equations (23) and (24),
one obtains:

Ac = (27)








In − 0.5∆tf
x

−0.5∆tf
y

−0.5∆tf
xd

−0.5∆tf
yd

g
x

g
y

g
xd

0

φ
x

0 φ
xd

0

0 ψ
y

0 ψ
yd









where the superscripti has been omitted to simplify the
notation. From (23) and (24),φ

xd
= −Inxd

and ψ
yd

=
−Inyd

are negative identity matrices, whileφ
x

andψ
y

can
be obtained by the chain rule:

φ
x

= diag
{

˙̂x(x, t)
}

αx (28)

ψ
y

= diag
{

˙̂y(y, t)
}

β
y

(29)

where ˙̂x(x, t) and ˙̂y(y, t) are the rate of change ofx andy
at timeα(x, t) and β(y, t), respectively, i.e., some time in
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Supplementary
Discontinuous
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Fig. 1. General functional block diagram for synchronous machine excitation
control system [30].

the past. While ˙̂x(x, t) is easy to obtain by simply storing
ẋ during the time domain integration,̂̇y(y, t) requires an
extra computation, i.e., solving at each timet the following
equation:

0 = g
x
f + g

y
ẏ + g

xd

˙̂xαt (30)

from which ẏ can be obtained (ifg
y

is not singular) and
stored. Observe thaṫy can be discontinuous.

The simple structure of the Jacobian matrices ofφ andψ
allows rewriting (27) as (see Appendix IV):

Ac = (31)
[

In − 0.5∆t(f
x
+ f

xd
φ

x
) −0.5∆t(f

y
+ f

yd
ψ

y)

g
x
+ g

xd
φ

x
g
y

]

Equation (31) is general and can be used for any kind of time-
varying delay. In case of constant time delays, i.e., (2) and(3),
it is straightforward to observe thatαx = 0 andβ

y
= 0 and,

hence,φ
x
= 0 andψ

y
= 0. Hence, for pure constant delays,

(26) and (31) coincide. This results was to be expected since
at a given timet, both xd and yd, i.e., state and algebraic
variables delayed byτ , are constants.

III. M ODELING THE SYNCHRONOUSMACHINE

EXCITATION CONTROL SYSTEM

The general functional block of a synchronous machine
excitation system is depicted in Fig. 1. The main signals
required by the excitation system are the voltage signalvc, the
field voltagevf and currentif , the reference voltagevref and
additional inputs, such as the power system stabilizer signal
vs and the over- and under-excitation signals,voxl and vuxl,
respectively.

The voltage signalvc is a function of the synchronous
machine terminal voltagēvT and current īT if the load
compensation is used and of the transducer dynamics, as
follows:

v′c = |v̄T ± (rc + jxc)̄iT | (32)

v̇c = (v′c − vc)/Tr (33)

where rc and xc are the load compensation resistance and
reactance, respectively, andTr is a time constant that take
into account the transducer low pass filter and delay [31].

The excitation control system output signalvr depends on
the AVR type. For static exciters,vr is a voltage signal that
is processed through transducers and gate pulse generators
to properly control the thyristor bridge that feeds the field
winding of the generator. Finally, the excitation control system
typically consists of digital hardware [32], [33] or, in most
recent systems, of a programmable logic controller (PLC) [34].

In the common practice, pure delays introduced by the
transducers and the control digital system are neglected. Most
of these delays are negligible indeed. For example digital
amplifiers and analog-to-digital converters have delays ofthe
order of 10 µs, while anti-aliasing-filters have a delay of
about 70 µs and decimation stages of about225 µs [35].
However, the PLC executes the AVR algorithms and other
AVR secondary functions within a3 to 15 ms period [34].
If the voltage controlled by the AVR is on a remote bus,
measurement delays can drastically increase, i.e., more than
100 ms [7].

In this paper, we propose to take into account the delays
introduced by the excitation control system by including an
overall delay in the output signalv′c of the terminal (or remote)
voltage transducer. Thus, equation (33) becomes:

v̇c = (v′c(t− τv)− vc)/Tr (34)

If, for simplicity, but without loss of generality, load compen-
sation is not used, the delay affects directly the synchronous
machine terminal voltage, and (32)-(33) become:

v̇c = (vT (t− τv)− vc)/Tr (35)

Similarly to AVR delays (34) or (35), we also consider
delays in the measures of the PSSvs similarly to the work
that was done in [7]. Also in this case, local measures have at
most a few ms delay while remote measures can be affected
by a delay of up to100 ms or more [7]. In typical PSSs, the
signalvsi is the synchronous machine rotor speedω, which is
a state variable. Hence, in this case, one hasxd = ω(t− τω).
Moreover, a typical PSS control scheme include a washout
filter and two lead-lag blocks (see Fig. 2). Thus the retarded
measure ofω propagates in the PSS equations, as follows:

v̇1 = −(Kwω(t− τω) + v1)/Tw (36)

v̇2 = ((1−
T1

T2
)(Kwω(t− τω) + v1)− v2)/T2

v̇3 = ((1−
T3

T4
)(v2 + (

T1

T2
(Kwω(t− τω) + v1)))− v3)/T4

0 = v3 +
T3

T4
(v2 +

T1

T2
(Kwω(t− τω) + v1))− vs

where v1, v2 and v3 are state variables introduced by the
PSS washout filter and by lag blocks and other parameters
are illustrated in Fig. 2. Observe that equations (36) are in
the form of (5) withx = (v1, v2, v3), xd = ω(t − τω), and
y = vs.
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ω(t− τω) vs

vmax
s

vmin
s

Tws

Tws+ 1

T1s+ 1

T2s+ 1

T3s+ 1

T4s+ 1

Fig. 2. Power system stabilizer control diagram [29].

IV. CASE STUDY

There are at least two possible ways of approaching the
study of bifurcation points and, hence, the small-signal stabil-
ity, of a retarded system.

1) To define the maximum delayτ that drives the system
to the frontier of the stability region. This is basically
thedelay margin definition given in [11]. This definition
makes sense if the delay is an independent variable and
there is only one delay to deal with. In this case, the
delay can be viewed as a bifurcation parameter similarly
to the loading parameter in voltage stability studies [36].

2) To define the properties of the equilibria of the retarded
system. Delays are given as the functionals (23) and
(24). In this case, delays are system variables, i.e.,
xd and yd in (5), of any order, while the bifurcation
parameter can be, for example, a scalar loading factor
µ that multiplies load power consumptions as in voltage
and small-signal angle stability studies [36] and [37].

Both analyses are considered in this paper, however, we
consider that the second approach is the one with most
practical interest. In particular, Subsection IV-B describes the
bifurcation analysis as well as the power system model used
to define the loading margin for the DDAE and IV-C depicts
and discusses some relevant time domain simulation results.

The systems considered in this paper are the IEEE 14-bus
system and a real world 1213-bus system, as follows.

1) The IEEE 14-bus system consists of two generators,
three synchronous compensators, two two-winding and
one three-winding transformers, fifteen transmission
lines, eleven loads and one shunt capacitor (see Fig. 3).
Not depicted in Fig. 3, but included in the system model,
are generator controllers, such as the primary voltage
regulators. All dynamic data of this system as well as a
detailed discussion of its transient behavior can be found
in [29].

2) The real-world transmission system contains 1213 buses,
973 transmission lines, 718 transformers and 113 syn-
chronous generators. The dynamic order of this system
is n = 753. The AVRs of all synchronous machines have
a measurement delayτv. The aim of this case study is
to show the robustness and the computational burden of
the proposed technique.

The AVR control scheme of the dc exciter model used in
this case study and is a simplified version of the classic IEEE
type DC1 that is defined in [30] and fully described in [29].
The standard IEEE type DC1 model does not include time
delays.
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Fig. 3. IEEE 14-bus test system.

All simulations and plots are obtained using a novel
Python-based version of PSAT [38]. This PSAT version re-
quires Python2.7.1 (http://www.python.org), Numpy
1.5.1 (http://numpy.scipy.org), CVXOPT 1.1.3
(http://abel.ee.ucla.edu/cvxopt/), and Matplot-
lib 1.0.0 (http://matplotlib.sourceforge.net/)
and has been executed on a64 bit Linux Fedora Core14
platform running on a1.73 GHz Intel Core i7 with 8 GB of
RAM.

A. Computational Burden of the Spectrum Evaluation

Before entering into the details of the stability analysis
of the DDAE, it is worthwhile to discuss the computational
burden of the proposed technique for evaluating an approx-
imated solution of (16). With this aim, Table I shows the
computational burden of the spectrum analysis for the IEEE
14-bus system forτv = 5 ms and for different values ofN .
Table I also shows the computational burden of the standard
eigenvalue analysis (i.e., no delays) that consists in solving

∆(λ) = Inλ−As (37)

whereAs is the state matrix of the DAE system obtained ne-
glecting time delays in the AVR model. This case is indicated
as N = 1 in Table I. Moreover, NNZ indicates the number
of non-zero elements of matrixM . The size ofM is N · n,
wheren is the dynamic order of the system (in this example,
n = 49). Observe that the matrixM is highly sparse and its
sparsity increases asN increases. CPU times given in Table
I refers to the computation of all eigenvalues ofM . Clearly,
the higherN , the higher the CPU time.

Figure 4 shows the root loci ofM for the IEEE 14-bus
system for different values ofN . Most eigenvalues have a
very high frequency. Actually, only a very reduced number
of eigenvalues is interesting for small-signal stability analysis,
i.e., those that have positive real part or that are closer tothe
imaginary axis. This fact allows using some efficient technique
for determining only a reduced number of eigenvalues of
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TABLE I

COMPUTATIONAL BURDEN OF THE SPECTRUM ANALYSIS FORτv = 5 ms

AND FOR THE IEEE 14-BUS SYSTEM FOR DIFFERENT VALUES OFN

N CPU time (s) N · n (N · n)2 NNZ NNZ/(N · n)2

1 0.031 49 2 401 776 32.3%

5 0.065 245 59 049 1 707 2.83%

10 0.223 490 240 100 5 186 2.15%

20 1.609 980 960 400 19 396 2.02%

40 9.392 1 960 3 841 600 77 216 2.01%
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Fig. 4. Root loci of the IEEE 14-bus system modeled as a DDAE forτv = 5
ms and for different values ofN .

M (e.g., Rayleigh’s iteration, Arnoldi’s iteration, etc.).The
interested reader can see a description of efficient iterative
methods for determining a reduced number of eigenvalues in
[29].

Figure 5 shows a zoom of the eigenvalue loci depicted
in Fig. 4. It is interesting to observe that the eigenvalues of
M closest to the imaginary axis are not sensible toN . The
values shown in Fig. 5 vary less than10−6 when N varies
from 5 to 40. From the computational viewpoint, this is an
important advantage of the proposed method for computing
the spectrum of (16). Since the sensitivity of the rightmostreal
part eigenvalues is small with respect toN , one can keepN
relatively small and, hence, reduce the computational burden
while evaluating the spectrum of (16).

The fact that the sensitivity of the rightmost eigenvalues of
M is small with respect toN is discussed in mathematical
terms in [18]–[20]. Here, we provide only an intuitive justifica-
tion, as follows. The solution of (19) hasn eigenvalues “close”
to the eigenvalues ofA0 (as a matter of fact, if the delays are
zero, the DDAE becomes a DAE), and an infinite number of
other eigenvalues with higher frequency that the firstn ones.
IncreasingN allows finding such higher frequency eigenvalues
while little affecting eigenvalues with small magnitude.

From observing Fig. 5, only two complex eigenvalues ap-
pears to be critical, since have a damping ratio lower than5%.1

1The zero eigenvalue shown in Figs. 4 and 5 is due to the arbitrariness of
the synchronous angle reference and, hence, does not indicate a bifurcation.
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Fig. 5. Zoom close to the imaginary axis of the root loci of the IEEE 14-bus
system modeled as a DDAE forτv = 5 ms and for different values ofN .

The fact that among all eigenvalues only very few are critical
is a quite general result that applies for the majority of power
systems. Thus, a possible efficient strategy for computing the
critical eigenvalues of a DDAE system is as follows:

1) Compute the eigenvalues of the state matrix of order
n of the system without considering delays. This is a
standard eigenvalue analysis of a DAE system.

2) The critical eigenvalues and the associated eigenvectors
obtained in the previous point can be used as initial
guess for starting an iterative and efficient method such
as the Rayleigh’s iteration over the matrixM .

According to this technique, the eigenvalue analysis of the
DDAE system reduces to a standard eigenvalue analysis plus
a certain number of matrix multiplications which have small
computational burden compared to complete eigenvalue anal-
ysis of the full matrixM . Applying such technique to the
IEEE-14 bus system, we obtained a CPU times of about0.67
s for determining the50 eigenvalues with rightmost real part
for the case withN = 40. It has to be expected that the higher
the dynamic ordern of the system, the higher the time saving.
This statement is further discussed in the Subsection IV-D that
presents a real-world case study.

B. Bifurcation Analysis

In this subsection, we consider the bifurcation analysis
for the IEEE 14-bus system using two different bifurcation
parameters: (i) the time delayτv; and (ii) the loading level of
the system. While the first approach was proposed in [11], the
latter technique is the most common bifurcation analysis that
leads to obtain the well-known nose curves [36].

1) Using the time delay as the bifurcation parameter:
The simulation presented in this section are aimed to define
whether the inclusion of delays in the AVR equations of the
IEEE 14-bus system can be approximated using the standard
DAE model. We consider two cases: (i) equations (35), and
(ii) a modified version of (33) in which the delay is summed
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Fig. 6. Real part of the critical eigenvalueλc of the IEEE 14-bus system as
a function of the AVR voltage measure time delayτv .

to the filter time constantTr:

v̇c = (vT − vc)/(Tr + τv) (38)

For similarity with (35), but without lack of generality, noload
compensation is considered in (38). In both cases,Tr = 0.001
s is used.

Figure 6 shows the real part of the critical eigenvalueλc

of the IEEE 14-bus system as a function of the AVR voltage
measure time delayτv, which is varied in the interval[0, 150]
ms. For τv < 15 ms, the difference between the DAE and
the DDAE models is negligible. This result actually confirms
the common practice of neglecting constant delays for local
measures of terminal voltage. However, as the delay increases,
the difference between the DAE and DDAE system is quite
evident. This justifies the use of the DDAE model in case of
remote measures of bus voltages used as input signals of the
AVR system.

The Hopf bifurcation (HB) occurs forτv ≈ 6.3 ms, which
is thus thedelay margin of the AVRs. In this case the HB
occurs in a region for which the DAE and the DDAE models
behave similarly. Thus, there is no clear advantage of using
the DDAE model in this case. The usefulness of the DDAE
model is better shown in Subsection IV-C that concerns the
behavior of the PSS with remote measures.

Observe thatlimℜ(λc) for τv → 0 is the same for both
the DAE and the DDAE models. In fact, asτ → 0, (16)
degenerates as:

lim
τ→0

∆(λ) = Inλ− (A0 +A1) = Inλ−As (39)

The fact thatA0 +A1 → As as τ → 0 can be seen in two
ways, as follows.

1) As τ → 0, yd and xd degenerate into non-delayed
variablesy and x, respectively, henceA1 has to be
merged intoA0

2) If τ = 0, yd = xd = 0 andA1 = 0, whereasA0 has
to be recast andA0 = As.

TABLE II

LOADING LEVELS µHB CORRESPONDING TO THE OCCURRENCE OFHB

FOR THE IEEE 14-BUS SYSTEM FOR DIFFERENT VALUES OFτv

τv [ms] µHB [pu] ∆µ [%]

0 1.202 -

1 1.175 2.24

5 1.048 12.8

10 0.805 33.0

In any case, (39) must hold. Observe also thatM cannot be
computed forτ = 0 due to the definition ofC in (21).

2) Using the loading level as the bifurcation parameter:
In this case, we use a scalar variable, sayµ, to parameterize
the loading level of the overall system, as follows [29]:

pG = (µInG
+ kGΓ)pG0 (40)

pL = µpL0

qL = µqL0

where InG
is the identity matrix of ordernG, being nG

the number of generators,Γ = diag(γ1, γ2, . . . , γnG
) are

generator loss participation factors,kG is a scalar variable used
for accomplishing the distributed slack bus model as discussed
in [29] andpG0, pL0 and qL0 are the “base case” or initial
generator and load powers, respectively. This is the common
model used in continuation power flow studies [36]. For each
value ofµ a power flow solution is found and the equilibrium
of the DAE system is computed.

An HB occurs forµ ≈ 1.202 if considering the standard
DAE model and no contingencies [29]. Table II shows the
values of the loading levelµ for which a HB occurs for
different values ofτv. As it was to be expected from the
discussion in the previous section, asτv increases, the HB
occurs for lower values ofµ. Observe that forτv = 10 ms,
µHB < 1, which means that the base case operating condition
is not stable. Similar tables can be obtained considering
contingencies, which are not included in the paper for the
sake of space. The results of Table II can be viewed in two
different ways:

1) The effect of time delays is actually that of reducing
the loading margin of the system. This is the direct
information given in Table II.

2) The effect of time delays can be interpreted as a “virtual”
load increase. For example,τv = 5 ms is equivalent to
a load increase of12.8%.

In any case, there is a clear interest in reducing as much as
possible control time delays.

C. Time Domain Simulation Results

In this subsection, we illustrate through time domain simula-
tions the effect of the time delay in the measure of synchronous
machine rotor speed when used as input signal for the PSS
device. From [29], it is known that the IEEE 14-bus system is
prone to show an HB if increasing the loading level by20%
with respect to the base case and applying a line2-4 outage.
The HB can be removed by including the PSS of Fig. 2 in the
excitation control scheme of the machine connected to bus1.
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For the sake of example, we assume that such PSS is
affected by a delayτω in the measure ofω. Furthermore,
to force instability, we also assume that the measure ofω
is remote. This hypothesis can be justified by observing that
the machine at bus1 is actually an equivalent model of a
bigger network (in fact the IEEE 14-bus system is obtained
by simplifying the IEEE 30-bus system). Thus, if we assume
that such equivalent network includes an SPSS as described
in [7], we can consider a delay of tens of milliseconds in
the measure ofω (e.g.,100 ms delay is used in [7]). In the
following example, we only consider the delay in the PSS
model and no delays in the AVR measures.

By repeating the analysis of the delay margin, we obtain that
for a20% increase of the loading level with respect of the base
case and for line2-4 outage, a HB occurs forτω ≈ 68.6 ms.
However, without the line outage, the HB occurs forτω > 72
ms. Thus, setting72 > τω > 69 ms, it has to be expected that
the transient following line2-4 outage is unstable, while the
initial equilibrium point without contingency is stable, though
poorly damped.

Figure 7 shows the time response of the IEEE 14-bus system
without PSS, with PSS and with retarded PSS withτω = 71
ms. As already known from [29], the trajectory of the system
without PSS enters into a limit cycle after the line outage while
the system with PSS is asymptotically stable. The behavior of
the system with retarded PSS is similar to the case without
PSS, i.e., shows a limit cycle trajectory. This results was to be
expected, since ifτω → ∞, the PSS control loop opens and
the effect is the same as the system without PSS. However,
the small-signal stability is able to determine the exact value
for which the HB occurs. The added value of the time domain
simulation is to show that the system trajectory enters intoa
limit cycle rather than diverging.

The HB shown Fig. 7 is almost certainly super-critical since
it ends up in a stable limit cycle. In our experience, power
system can show both super- and sub-critical HBs. A famous
example of sub-critical HB is the one that led to the 1996
WSCC blackout. However, regardless their type, HBs have
always to be avoided in power system operation. In fact, sub-
critical HBs likely lead to a system collapse, whereas super-
critical ones lead to loss increase, inter-area power oscillations
and, possibly to untimely intervention of the protections that
may cause dangerous cascading phenomena.

It has to be noted that, for finite-dimensional power system
models (as in the case of standard DAE), HBs, which are co-
dimension one local bifurcations, aregeneric. In other words,
HBs are expected to occur given certain loading conditions
and synchronous machine controllers. However, the case of
infinite-dimensional dynamics such as delay systems requires
further analysis to conclude on the genericity of the bifurcation
points. This is currently an open field of research.

D. Real-world transmission system

Table III shows the computational burden for the 1213-bus
system as a function ofN . N = 1 indicates the standard
eigenvalue analysis (i.e., no delays) and is included in Table III
for the sake of comparison. AsN increases, the computational

Fig. 7. Rotor speedω of machine5 for the IEEE 14-bus system with a20%
load increase and for different control models following line 2-4 outage at
t = 1 s.

burden grows quickly and highly nonlinearly, as it was to be
expected. For the sake of illustration, Figs. 8 and 9 depict the
root loci for N = 20.

TABLE III

COMPUTATIONAL BURDEN OF THE SPECTRUM ANALYSIS FORτv = 10 ms

AND FOR THE 1213-BUS SYSTEM FOR DIFFERENT VALUES OFN

N Method N · n CPU time

1 All 753 0.692 s

5 All 3 675 47.3 s

10 All 7 530 7 m 43 s

20 All 15 060 51 m 40 s

5 50 RM 3 675 0.573 s

10 50 RM 7 530 1.24 s

20 50 RM 15 060 2.19 s

As discussed above, computing all eigenvalues is not actu-
ally needed to assess small-signal stability, since only positive
eigenvalues or those that are closer to the imaginary axis are
of interest. In Table III, the computational burden of the full
eigenvalue analysis as obtained using the QR decomposition
is compared with that of a reduced eigenvalue analysis based
on the Arnoldi’s iteration. The QR decomposition and the
Arnoldi’s iteration are obtained linking Python to the LAPACK
[39] and the ARPACK [40] libraries, respectively. As expected,
computing a reduced set of eigenvalues and taking advantage
of the sparsity of matrixM allows drastically reducing the
CPU time. In Table III “50 RM” indicates that only the50
rightmost eigenvalues have been computed.

Figure 10 shows that, as in the case of the IEEE 14-
bus system, the sensitivity of the eigenvalues closer to the
imaginary axis with respect toN is small. This property is
quite important since it allows keeping a reduced size ofM

even for large systems. Observe that, in this real-world case
study, the number of roots close to the imaginary axis and
with poor damping is relatively high. This is due to two facts,
as follows.
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Fig. 8. Full root loci of the 1213-bus system forτv = 10 ms and for
N = 20.

Fig. 9. Zoom close to the imaginary axis of the root loci of the 1213-bus
system forτv = 10 ms and forN = 20.

1) The system contains a high number of machines and
AVRs, so even if the number of critical eigenvalues is
a small percentage of the dynamic ordern, the absolute
number of poorly damped eigenvalues is relatively high.

2) Available data do not include PSSs, which would be
certainly able to move several eigenvalues to the left of
the complex plane.

The delay stability margin of the 1213-bus system can be
computed in a similar way as discussed for the IEEE 14-bus
system. In particular, a HB occurs forτv ≈ 18.2 ms.

V. CONCLUSIONS

This paper presents a relatively simple, yet efficacious
method to define the small-signal stability of power systems
modeled as DDAE. In particular, the index-1 Hessenberg form
appears to be adequate for modeling the behavior of power
systems when delays are taken into account. The proposed

Fig. 10. Zoom close to the imaginary axis of the root loci of the1213-bus
system forτv = 10 ms and for different values ofN .

technique allows estimating an approximate solution of the
characteristic equation of DDAE based on the Chebyshev’s
differentiation matrix.

The advantage of the method is that it is able to precisely es-
timate the rightmost eigenvalues while maintaining a tractable
computational burden. The proposed technique is then applied
to evaluate the delay margin as well as the effect of delays
on the loading margin of the IEEE 14-bus test system and of
a real-world 1213-bus system. AVR as well as PSS measure
delays are considered and the results of small-signal stability
analysis are confirmed by time domain simulations.

The main conclusion of this papers is that it is important to
properly model time delays since these considerably affectthe
behavior of the overall power system, especially if considering
remote measures. Thus, the applications of the proposed
method are mainly in preventive control and dynamic security
assessment of power systems. In particular, the estimationof
the delay security margin can be used to accurately define the
available transfer capability as defined by NERC [41].

The work presented in the paper suggests some interesting
future research directions, such as considering multiple as well
as time-varying time delays especially in the field of wide-area
measurement systems and PMU devices. A detailed research
on the generic bifurcations that may occur in power systems
modelled as DDAE also appears as a challenging theoretical
research field.
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APPENDIX I
DETERMINATION OFA0,A1 AND A2

This Appendix describes how (10)-(12) are determined
based on (7)-(8). From (8), one obtains:

∆y = −g−1
y
g
x
∆x− g−1

y
g
xd
∆xd (41)
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Substituting (41) into (7) one has:

∆ẋ = (f
x
− f

y
g−1
y
g
x
)∆x+ (42)

(f
xd

− f
y
g−1
y
g
xd
)∆xd +

f
yd
∆yd

In (42), one has still to substitute∆yd for a linear expression
of the actual and/or of the retarded state variable. With this
aim, consider the algebraic equationsg computed at(t− τ).
Since algebraic constraints have always to be satisfied, the
following steady-state condition must hold:

0 = g(x(t− τ),xd(t− τ),y(t− τ)) (43)

Then, observing thatxd = x(t − τ), yd = y(t − τ), and
xd(t− τ) = x(t− 2τ), differentiating (43) leads to:

0 = g
x
∆xd + gxd

∆x(t− 2τ) + g
y
∆yd (44)

In steady-state, for any instantt0, x(t0) = x(t0−τ) = x(t0−
2τ) = x0 and y(t0) = yd(t0) = y0. Hence, the Jacobian
matrices in (44) are the same as in (8). Equation (44) can be
rewritten as:

∆yd = −g−1
y
g
x
∆xd − g

−1
y
g
xd
∆x(t− 2τ) (45)

and, substituting (45) into (42), one obtains:

∆ẋ = (f
x
− f

y
g−1
y
g
x
)∆x+ (46)

(f
xd

− f
y
g−1
y
g
xd

− f
yd
g−1
y
g
x
)∆xd +

(−f
yd
g−1
y
g
xd
)∆x(t− 2τ)

which leads to the definitions ofA0, A1 andA2 given in
(10), (11) and (12), respectively.

APPENDIX II
CHEBYSHEV’ S DIFFERENTIATION MATRIX

Chebyshev’s differentiation matrixDN of dimensionsN +
1 × N + 1 is defined as follows. Firstly, one has to define
N +1 Chebyshev’s nodes, i.e., the interpolation points on the
normalized interval[−1, 1]:

xk = cos

(

kπ

N

)

, k = 0, . . . , N. (47)

Then, the element(i, j) differentiation matrixDN indexed
from 0 to N is defined as [42]:

D(i,j) =























ci(−1)i+j

cj(xi−xj)
, i 6= j

− 1
2

xi

1−x2
i

, i = j 6= 1, N − 1
2N2+1

6 , i = j = 0

− 2N2+1
6 , i = j = N

(48)

wherec0 = cN = 2 and c2 = · · · = cN−1 = 1. For example,
D1 andD2 are:

D1 =





1
2 − 1

2

1
2 − 1

2



 , with x0 = 1, x1 = −1 .

and

D2 =











3
2 −2 1

2

1
2 0 − 1

2

− 1
2 2 − 3

2











, with x0 = 1, x1 = 0, x2 = −1 .

APPENDIX III
KRONECKER’ S PRODUCT

If A is a m × n matrix andB is a p × q matrix, then
Kronecker’s productA⊗B is anmp×nq block matrix [43],
as follows:

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






(49)

For example, letA =

[

1 2 3
3 2 1

]

and B =

[

2 1
2 3

]

.

Then:

A⊗B =

[

B 2B 3B
2B 2B B

]

=









2 1 4 2 6 3
2 3 4 6 6 9
6 3 4 2 2 1
6 9 4 6 2 3









Observe thatA⊗B 6= B ⊗A.

APPENDIX IV
DETERMINATION OF (31)

This Appendix provides the proof of the determination of
matrix (31). At thei-th step of the implicit trapezoidal method
for DDAE, one has to solve the following nonlinear system:

0 = x(i) − x(t−∆t)− 0.5∆t(f (i) + f(t−∆t))(50)

0 = g(i)

0 = φ(i) = x̂(α(x(i), t))− x
(i)
d

0 = ψ(i) = ŷ(β(y(i), t))− y
(i)
d

wherex(t−∆t) andf(t−∆t) are known vectors determined
at the previous step and the unknowns arex(i), y(i), x(i)

d and
y
(i)
d . The solution of (50) can be obtained using the Newton-

Raphson’s method and its differentiation leads to (27), as
follows:

[

0

0

0

0

]

=





In − 0.5∆tf
(i)
x −0.5∆tf

(i)
y −0.5∆tf

(i)
xd

−0.5∆tf
(i)
yd

g
(i)
x g

(i)
y g

(i)
xd

0

φ
(i)
x 0 φ

(i)
xd

0

0 ψ
(i)
y 0 ψ

(i)
yd









∆x(i)

∆y(i)

∆x
(i)
d

∆y
(i)
d





(51)
Taking into account thatx(i)

d and y(i)d are explicit functions
of x(i), y(i) andt, one can manipulate (27) in order to obtain
(31), in fact, from (23) and (24):

∆x
(i)
d = φ(i)

x
∆x(i) (52)

∆y
(i)
d = ψ(i)

y
∆y(i)

Hence, substituting (52) into (51) leads to (31).

REFERENCES

[1] A. Bellen, N. Guglielmi, and A. E. Ruehli, “Methods for Linear
Systems of Circuit Delay Differential Equations of Neutral Type,” IEEE
Transactions on Circuits and Systems - I: Fundamental Theory and
Applications, vol. 46, no. 1, pp. 212–216, Jan. 1999.

[2] S. Oucheriah, “Exponential Stabilization of Linear Delayed Systems
Using Sliding-Mode Controllers,”IEEE Transactions on Circuits and
Systems - I: Fundamental Theory and Applications, vol. 50, no. 6, pp.
826–830, Jun. 2003.

11



[3] B. Liu and H. J. Marquez, “Uniform Stability of Discrete Delay
Systems and Synchronization of Discrete Delay Dynamical Networks
via Razumikhin Technique,”IEEE Transactions on Circuits and Systems
- I: Regular Papers, vol. 55, no. 9, pp. 2795–2805, Oct. 2008.

[4] X. Zhang and Q. Han, “A New Stability Criterion for a Partial Element
Equivalent Circuit Model of Neutral Type,”IEEE Transactions on
Circuits and Systems - II: Express Briefs, vol. 56, no. 10, pp. 798–802,
Oct. 2009.

[5] V. Venkatasubramanian, H. Schattler, and J. Zaborszky, “A Time-delay
Differential-algebraic Phasor Formulation of the Large Power System
Dynamics,” in IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 6, London, England, May 1994, pp. 49–52.

[6] H. Wu and G. T. Heydt, “The Impact of Time Delay on Robust Control
Design in Power Systems,” inProceedings of the IEEE PES Winter
Meeting, vol. 2, Chicago, Illinois, 2002, pp. 1511–1516.

[7] H. Wu, K. S. Tsakalis, and G. T. Heydt, “Evaluation of Time Delay Ef-
fects to Wide-Area Power System Stabilizer Design,”IEEE Transactions
on Power Systems, vol. 19, no. 4, pp. 1935–1941, Nov. 2004.

[8] I. A. Hiskens, “Time-Delay Modelling for Multi-Layer Power Systems,”
in Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS), vol. 3, Bangkok, Thailand, May 2003, pp. 316–319.

[9] S. Ayasun and C. O. Nwankpa, “Probability of Small-SignalStability
of Power Systems in the Presence of Communication Delays,” in
International Conference on Electrical and Electronics Engineering
(ELECO), vol. 1, Bursa, Turkey, 2009, pp. 70–74.

[10] H. Jia, N. Guangyu, S. T. Lee, and P. Zhang, “Study on the Impact of
Time Delay to Power System Small Signal Stability,” inProceedings of
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