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Abstract— The paper describes the impact of time-delays on is [5], which presents a model of long transmission lines in
small-signal angle stability of power systems. With this aim, the terms of DDAE.
paper presents a power system model based on delay differential In recent years, wide measurement areas and recent ap-
algebraic equations (DDAE) and describes a general technique . . ' . .
for computing the spectrum of DDAE. The paper focuses in plications of phasor measuremer)t unit (PMU) devices make
particular on delays due to the terminal voltage measurements Ne€cessary remote measures, which has led to some research
and transducers of automatic voltage regulators and power sys- on the effect of measurement delays. For example, [6] and [7]
tem stabilizers of synchronous machines. The proposed technique present a robust control of time delays for wide-area power

is applied to a benchmark system, namely the IEEE 14-bus o ciam stabilizers, and [8] tackles the issue of the timeadom

test system, as well as to a real-world system. Time domain . . . .
simulations are also presented to confirm the results of the DDAE integration of DDAE. The effect on small signal stability of

spectral analysis. delays due to PMU measurements are studied in [9] based on

' : i . a probabilistic approach.
Index Terms—Time delay, delay differential algebraic equa- Existi tudi ll-si | stability of del d
tions (DDAE), automatic voltage regulator (AVR), power system Xisting studies on small-signal stabiiity or delayed powe

stabilizer (PSS), small-signal stability, Hopf bifurcation (HB), System equations can be divided into two main categorigs: (i
limit cycle. frequency-domain methods, and (ii) time-domain methods.

1) Freguency-domain methods: These methods mainly con-
sists in the evaluation of the roots of the characteristiagiqn
of the retarded system [9]-[11]. This approach is in prilecip
A. Motivation exact but due to the difficulty in determining the roots of
tqe characteristic equation (see Section 1I-A), the ansligs

Including time delays in the classical electromechanicamited to one-machine infinite-bus (OMIB) systems

g)%i?l dli?fz(ernE[?aIfz:meublgizge pl?;vt%nzyjﬁg;réne;e{mZgr;unC_ Although an exact explicit analytical method based on the
9 q yp Lambert W function can be applied to simple cases [12],

concisely, delay differential algebraic equations (DDAEhe the analytical solution of the characteristic equationncdn

study of the stability of DDAE is relatively more complicatte be found for practical power systems. Thus, several nurieric

than that of standard differential algebraic equations ERA methods have been proposed in the literature to approximate

Nevertheless, both theoretical tools for DDAE and modegﬂe solution of the characteristic equation. A possibler
computers are mature enough to allow tackling the statufity . q AP aag:

. is. based on the discretization of the solution operator of
large scale DDAE systems. This paper presents a systemgtic _ : .
- . b . the characteristic equation [13]. Other methods estinfage t
approach for defining small signal stability as well as time

domain integration of power systems modeled as DDAE. infinitesimal genergtor of the solution opera.ttor.seml-groq
[14], and the solution operator approach via linear multi-

step (LMS) time integration of retarded systems without any
B. Literature Review distributed delay term [15]-[17].
Other approaches apply a discretization scheme based on
hebyshev's nodes [18]-[20]. These methods are based on
a discretization of the partial differential equation (PDE
representation of the DDAE. The implementation of such

I. INTRODUCTION

Time delays arises in a wide variety of physical systerrE
and their effects on stability have been carefully investg
in several engineering applications, such as signal psoogs

and circuit design [1]-{4]. Nevertheless, little work haseh discretization is surprisingly simple while results prdvi®
carried out so far in the power system area on the effects or prisingly P . > Pra
e accurate. Hence, this is the technique used in this paper.

time delays on power system stability. As a matter of fa . ) - :

. Y P ys! Y . . he idea is to transform the original DDAE problem into an

time delays are generally ignored. An exception to this rule ~. P . . .
equivalent PDE system of infinite dimensions. Then, instead
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find a Lyapunov functional or, according to the Razumikhin’s 1) To define a general DDAE model of power systems. In
theorem, a Lyapunov function that bounds the Lyapunov  particular, the indexX- Hessenberg form of retarded type
functional. is adopted.

Hence, in the nonlinear case, the applicability of time- 2) To propose a method for defining the small-signal sta-
domain methods strongly depends on the ability of defining a  bility of DDAE based on eigenvalue analysis and an ap-

Lyapunov function (i.e., the same limitation as DAE systgms proximation of the characteristic equation at equilibrium

The application to power system analysis are limited to kmal points.

test systems [21], [22]. 3) To evaluate the effect on stability of taking into account
If the DDAE is linear or is linearized around an equilibrium delays in measurements. With this aim, the case study

point, finding the Lyapunov function, in turns, implies findi considers delays introduced by the excitation control as

a solution of a linear matrix inequality (LMI) problem [23], well as by the power system stabilizer of synchronous

[24]. A drawback of this approach is that the size and the  machines.
computational burden of LMI highly increase with the size
of the DDAE. As a matter of fact, LMI-based analysis hag Paper Organization
become computationally tractable only in the last two desad _ _ . .
[24]. However, in recent years, LMI-based approach has beenTh‘_e remainder of the paper is organl_zed as follows. Section
applied to several practical problems. In the scope of powrdefines the structure of DDAE that is adequate for power
system analysis, we cite, for example, [25]. system. modeling. Sub;ectlon II—A. proposes a tech.n'qu'Je for
3) Advantages and drawbacks of frequency- and time- evgluatlng the smaII-S|gna! stability (_)f DDAE eqU|I|b_r|ur_n
domain methods: As discussed above, the frequency and tfféo'nts_ based_ on an app_roxmate SOIUt'_On of the cha_rz_mte_rlst
time-domain methods have both advantages and drawba(ﬁ&t,‘at'on while Subsggtlon 11-B _descnbes the m_odlﬂcatl_ons
which have to be carefully evaluated in order to define t{gduired by the implicit trapezoidal method for integrgtin
best application of each method. While time-domain metthQAE' Section il .present.s the AVR 'mode! with inclusion Pf
are adequate for synthesizing robust controllers, as aegtdi & time delay. Section IV discusses simulation results obthi
method based on the Lyapunov function, they suffer fromr the |EEE 14-_bus test system and a real-world 1213-bus
the idiosyncratic lack of necessary and sufficient stabiliSyStem: Conclusions are drawn in Section V.
conditions. Furthermore, the computational burden ofiaglv
the LMI problem cannot be avoided. II. DDAE FORPOWER SYSTEM MODELING
On the other hand, while it is true that frequency-domain The transient behavior of electric power systems is trauliti
methods have difficulties in handling uncertainties, théfgro ally described through a set of differential algebraic digus
the advantage of consisting in an eigenvalue analysis of(BAE) as follows:
(possibly huge) matrix. If one is interested in stabilitget .
object is not to findall roots, but only a reduced set of = flzyu) @
roots that have positive real part of that are close to the 0 = g(z,y,u)
imaginary _,axi_s. S_ome effici_ent eigenvalue technique,_ e'%heref (f : Rn+m+P s R™) are the differential equations,
the Arnoldi's iteration, can highly reduce the computasibn (g : R"+™+7 5 R™) are the algebraic equations,(z € R"™)

burden of frequency-domam techmqges. . a}re the state variableg,(y € R™) are the algebraic variables,
For these reasons, and since in this paper we are interested (u € R?) are discrete variables modeling events, e.g,

o oo 1 " he ovtages and auts. o
' ' In common practice, equations (1) are split into a collectio
of subsystems where discrete variabtesare substituted for
C. Object of the Paper if-then rules. Thus, (1) can be conveniently rewritten as a finite
In this paper, we are interested in determining whether tigellection of continuous DAES, one per each discrete véiab
inclusion of delays can affect the small-signal stabilityda change. Such a system is also knownhgbrid automaton
whether such delays can reduce the expected stability margi hybrid dynamical system. An in-depth description and
of a power system. Both mathematical and computatiorf@rmalization of hybrid systems for power system analysis ¢
aspects are taken into account so that the proposed presedbe found in [26].
for small-signal analysis as well as for time domain intéigra Despite the fact that (1) are well-accepted and are the
can be in principle applied to a power system of any size asdmmon choice in power system software packages, some
complexity. Moreover, we show that the implementation afspects of the reality are missing from this formulatiom, e.
ideal constant delays is particularly straightforward alogts stochastic processes and variable functional relationshis
not affect the numerical stability of the implicit trapedal paper, we are interested in defining the possible effects on
method that is used in most power system analysis softwatability of time delays. Introducing time delays in (1) ogas

tools. the DAE into a set of delay differential algebraic equations
(DDAE). For the sake of simplicity, we only consider ideal
D. Contributions constant time delays in the form:
The contributions of the paper are the following: Yya =yt —7) 2



wherey, is the retarded or delayed variable with respect to Although the existence of the functiop is guaranteed by

some algebraic variablg, t is the current simulation time, the implicit function theorem, it is generally impossible t

and 7 (7 > 0) is the constant delay. A similar expressionfind explicitly such a function for practical systems. Howgv

with obvious notation, can be written in case the delay &dfeq9) provides the same asymptotic stability information thoe

a state variable: original DDAE problem (5) as that of the theoretical DDE
xg=2x(t—7T) (3) problem obtained by substituting the algebraic variabléhwi

the formalp function.

Equation (9) is a particular case of the standard form of the
linear delay differential equations:

Merging together (1), (2) and (3) leads to:

T = f(wa Y, mday(h’u’) (4)

0 = T, Y,&Td, U -
9(@ Y, @0, Y, ) o= A(t)+ > At — ) (14)

Equations (4) are the most general form of nonlinear DDAE. i=1
However, for practical models of physical systems, SOMBhere, in this casey = 2, 7, = = and 7, = 2r. The

simpllifications can be adopted. In pa_rticular, as shown N pstitution of a sample solution of the forettv, with
Section lll, the indext Hessenberg form is adequate to mode on.trivial possibly complex vector of order leads to the
power systems: characteristic equation of (14):

& = fl@,y x4y, u) (5) detA(\) =0 (15)

0 = g($avad7u)
where
which is a simplification of (4). The indek-Hessenberg form
(5) is used in the remainder of the paper.

In this paper, we are interested in (i) defining the small-
signal stability of (5), and (ii) numerically integrating)( is called thecharacteristic matrix [27]. In (16), I,, is the
These topics are addressed in the following subsections. identity matrix of ordern. The solutions of (16) are called
the characteristic roots or spectrum, similar to the finite-
dimensional case (i.e., the case for whighh = 0 Vi =

AN =M, — Ag— > Aje 7 (16)
=1

A. Small-Sgnal Sability of Hessenberg DDAE of Retarded

Type 1,...,v ). However, since (16) is transcendental, it has
infinitely many roots, and thus one can only approximate the
Assume that a stationary solution of (5) is known and hag|ution of (16) computing a reduced set of its roots.
the form: Similar to the finite-dimensional case, the stability of (14

can be defined based on the sign of the roots of (16), i.e.,

0 = f(@oyo, 20, Yo, o) © the stationary point is stable if all roots have negativd rea
0 = g(x0,Y0, 20, uo) part, and unstable if there exists at least one eigenvaltie wi
Then, linearizing (5) at the stationary solution yields: positive real part.
Although the number of roots is infinite, there are two
Az = frAz+ f, Azxqa+ f,Ay+ f, Ay, (7) useful properties of the characteristic matrix that allaves
0 = g,Ax+g,,Azxy+g,Ay (8) exploitation for stability studies, as follows [27].

1) Equation (16) only has a finite number of characteristic
roots in any vertical strip of the complex plane, given
by {xeC:a<R(\) <8}

Az = AgAx + A Ax(t — 7) + AsAx(t —27)  (9) 2) There exists a numbere R such that all characteristic
roots of (16) are confined to the half-plaga € C :

where: R(A) < 7).

Ay = f.— fygglgm (10) These properties basically imply that the number of sohstio
o B 1 B 1 in the right-half of the complex plane is finite and, cleaify,
A = fg, 1};99 9oa = Fy,9y 9o (1) ~ < 0, there is no eigenvalue with positive real part. Thus,
Ay = —fy.9y G, (12)  when one is only interested in the small-signal stabilitytref

The first matrix Ag is the well-known state matrix that isstationary solution of (), the problem of finding the roots
(16) reduces to the problem of finding a finite number

computed for standard DAE system of the form (1). The oth F X . ”
two matrices are not null only if the system is of retarde ossibly none) of roots of (16) with positive real part or
oorly damped.

type Appendix | provides the details on how to determin®
ype 1P P As briefly discussed in the Introduction, the idea to find an

(10)-(12). Observe that (9) is equivalent to the lineartat 2. X .
of the DDE system obtained by substitutipgfor a function exact explicit solution of (16) has to be abandoned for jratt
stems. In this paper we use the technique proposed in [18]—

= , that satisfies, at least in a neighborhood of the” )
gtaticfrsgrngt))lution' g [20] based on recasting (14) as an abstract Cauchy problem.

This approach consists in transforming the original proble
0 =g(z, x4, p(x,x4)) (13) of computing the roots of a retarded functional differentia

where, as usual, it can be assumed thgtis non-singular.
Thus, substituting (8) into (7), one obtains:



equations as a matrix eigenvalue problem of a PDE systeng., the synchronous machine AVR, whose functioning has to
of infinite dimensions and then approximating such system bg expected to be very similar, if not the same, for different
means of a finite element method. machines.

To better illustrate the method, let us assume some simpli-
fications. First, assume that (5) has only one del@pmmon g Numerical Integration of Hessenberg DDAE of Retarded
to all retarded variables. Moreover, assume tat= 0. This e
hypothesis is actually a consequence of considering that mI
(5) only algebraic variables depend on the delay. Hence, %53
becomes:

ntegrating general delay differential equations is not an
sy task and specific methods have to be developed to avoid
numerical instability. For example, despite beiAgstable for
z = flz,y,yqu) (17) standard DAE equations, the implicit trapezoidal methog ma
0 = g(z,y,u) ;hows r_1umer|cal issues in case of DDAE. Thus, specific time
integration methods for DDAE have been developed. We cite
and from (11) and (12) one obtains: for example the two-stage Lobatto 11IC method [19].
Although the general case can show interesting numerical

_ -1 _
Ar=—1y,9y 9 42 =0 (18) issues, in this paper we focus only on a subset of DDAE,

from which, (16) becomes: namely the index- Hessenberg form (5). Furthermore, since
- most power system programs internally implement an inplici

A=A, — Ag — Age (19) trapezoidal method for time domain integration, we provide

Observe that the simplified indexHessenberg form (17) is thg modifications that are required to adapt the implicppera

generally sufficient to describe electric power systemsajg] 2°idal method to (5). _

it is also the form used in the case study of this paper. . Let us defm.e, for the sake of generality two general func-

Then, one has to choose the numbers of nodes complignal expressions:

ing Chebyshev’s discretization scheme, gy This number 0 = oz xg,t) = 2(alz,t) — x4 (23)

affects the precision and the computational burden of the 0 = D = 5By, 1) — (24)

method, as it is explained below. Ld?y be Chebyshev’s Y- Ya, v\, Ya

differentiation matrix of orderV (see Appendix Il) and define wherea(x,t) and3(y, t) represent the functional dependence
Col of state and algebraic variables on the delays. For the pure

= A, 0 n 0 A, (20) constant delays (2) and (3), one simply has:

where® indicate Kronecker's product (see Appendix 11§, afz,t)=t-T, Blyt)=t-r, (25)
is the identity matrix of ordern; andC is a matrix composed but, of course, more complex expressions can be considered
of the first NV — 1 rows of C defined as follows: [19].
C = —2Dy/r 1) The implicit_ 'Frapezoidal _ methpd for sta_ndard DAE 1)
requires factorizing at each iteratiothe Jacobian matrix [29]:

Then, the eigenvalues d¥f are an approximated spectrum of
(19). AV = () (i)

Roughly speaking, one can s@&4 as the discretization of a gz 9y
PDE system where the continuous variable, §ayorresponds \where At is the time step at iteration Applying the same

to the time delay. Ther is discretized along a grid oN  ryle to (5) and using the functional equations (23) and (24),
points. The position of such points are defined by Chebysheyne obtains:

polynomial interpolation. The last rows of M correspond to

M

I, —05Atf0  —05Atf) (26)

the PDE boundary conditiors=  (e.g.,A4;) and¢ = 0 (e.g., Ac= (27)
Ayp), respectively. This suggests also how to generdlizdor I, - 0.5Atf, —0.5Atf, —05Atf,, —05Atf,
a case of characteristic equations with> 1. For example, Ja gy 9a, 0
the matrix M for v = 2 can be formulated as follows: D, 0 %; 0
o ¢ol, 22 0 b, 0 ¥y,
A2 0...0 A; 0...0 A where the superscript has been omitted to simplify the
whereN +1 must be odd to allow; being in the central node Notation. From (23) and (24}, = —In,, and ¢, =

of Chebyshev’s grid. As it can be expected, the general casén,« aré negative identity matrices, whitg,, and,, can
with multiple delays can be assessed at the cost of incgashf obtained by the chain rule:

N and, hence, the size of the matrM, and of modifying T o8
accordingly its lastn rows. The interested reader can find = g{w(w’ )}am (28)
further insights on the multiple delay case in [20] and [28]. ¥, = diag{i/(y,t)}ﬁy (29)

For the sake of simplicity, in this paper, only the case of a ) .
single delay is considered. This assumption is justified hyherez(x,t) andy(y,t) are the rate of change of andy
the fact that the delays originate from an unique device,typa time a(x,¢) and B(y,t), respectively, i.e., some time in
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. Terminal Voltage where r. and z. are the load compensation resistance and
o Transducer and | reactance, respectively, arld. is a time constant that take
D Load Compensator into account the transducer low pass filter and delay [31].
or The excitation control system output signal depends on
DL Excitation | v i SKA”;:;;’”?”S . the AVR type. For static exciters,,. is a voltage signal that
oo = Control a and Power is processed through transducers and gate pulse generators

vet [ E'eme”‘i | v System to properly control the thyristor bridge that feeds the field

winding of the generator. Finally, the excitation contrgstem
Power System typically consists of digital hardware [32], [33] or, in nios
Stabilizer and Ui recent systems, of a programmable logic controller (PL@).[3
Supplementary . .
Discontinuous In the common practice, pure delays introduced by the
Excitation Control transducers and the control digital system are neglectest M

of these delays are negligible indeed. For example digital
Fig. 1. General functional block diagram for synchronous mae excitation amplifiers and analqg-to-d!gltgl gonvgrters have delaythef
control system [30]. order of 10 us, while anti-aliasing-filters have a delay of
about 70 us and decimation stages of aba225 us [35].
However, the PLC executes the AVR algorithms and other
the past. Whilez(z,t) is easy to obtain by simply storingAVR secondary functions within @ to 15 ms period [34].
# during the time domain integratiori/(%t) requires an If the voltage controlled by the AVR is on a remote bus,
extra computation, i.e., solving at each tih¢he following measurement delays can drastically increase, i.e., mare th

equation: 100 ms [7].
' . In this paper, we propose to take into account the delays
0=9g,f+9,y+9, Ty (30) introduced by the excitation control system by including an

overall delay in the output signa, of the terminal (or remote)

from which ¢ can be obtained (ifg, is not singular) and |56 transducer. Thus, equation (33) becomes:

stored. Observe thaj can be discontinuous.
The simple structure of the Jacobian matricespoand be = (V.(t = 7y) — ve) /T (34)
allows rewriting (27) as (see Appendix IV):
If, for simplicity, but without loss of generality, load cqran-
A= (31) sation is not used, the delay affects directly the synchueno
I, —0.5A(f5 + fo,Pe) —O0.5ALSf, + fy ¥y machine terminal voltage, and (32)-(33) become:
9o+ 92,P 9y
. . . . Ve = (UT (t - Tv) - U(:)/TT (35)
Equation (31) is general and can be used for any kind of time-
varying delay. In case of constant time delays, i.e., (2) @)d Similarly to AVR delays (34) or (35), we also consider

it is straightforward to observe that, =0 andB, =0 and, gejavs in the measures of the PSSsimilarly to the work
hence.¢, = 0 and, = 0. Hence, for pure constant delaySy, ¢ \as done in [7]. Also in this case, local measures have at
(26) and (31) coincide. This results was to be expected singR 4 few ms delay while remote measures can be affected
at a k?|lver:jtl|meta kz)oth xq4 andy,, i.e., state and algebralcby a delay of up tol00 ms or more [7]. In typical PSSs, the
variables delayed by, are constants. signalwvy; is the synchronous machine rotor spegdvhich is
a state variable. Hence, in this case, one has- w(t — 7).
I1l. M ODELING THE SYNCHRONOUSMACHINE Moreover, a typical PSS control scheme include a washout
EXCITATION CONTROL SYSTEM filter and two lead-lag blocks (see Fig. 2). Thus the retarded

_ ~measure otv propagates in the PSS equations, as follows:
The general functional block of a synchronous machine

excitation system is depicted in Fig. 1. The main signaly = —(Kypw(t — 1) +v1) /Ty (36)
required by the excitation system are the voltage signahe Ty

field voltagev; and current ¢, the reference voltage.. and Y2 = ((1 - E)(wa(t = Tw) +01) —02)/Th

additional inputs, such as the power system stabilizerasign Ts T

vs and the over- and under-excitation signalsy and v, ¢3 = ((1-— T)(Uz + (?(Kw (t—7w) +v1))) —v3)/T4
respectively. ! 2

T: T
vy + —3(1)2 + —1(Kw (t—710)+v1)) — s
4 2

The voltage signal,. is a function of the synchronous 0 T T

machine terminal voltagesz and currentir if the load
compensation is used and of the transducer dynamics,wisere v;, v, and vz are state variables introduced by the

follows: PSS washout filter and by lag blocks and other parameters
, - o are illustrated in Fig. 2. Observe that equations (36) are in
ve = |0 % (re +jue)ir (32)  the form of (5) withe = (vy,vs,v3), T4 = w(t — 7,,), and
Ve = (vh.—wv.)/T, (33) y=ws.
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Fig. 2. Power system stabilizer control diagram [29].

IV. CASE STuDY

There are at least two possible ways of approaching tffges mere
study of bifurcation points and, hence, the small-signabist
ity, of a retarded system. ,

1) To define the maximum delay that drives the system . 8
to the frontier of the stability region. This is basically
the delay margin definition given in [11]. This definition
makes sense if the delay is an independent variable dn@ 3. IEEE 14-bus test system.
there is only one delay to deal with. In this case, the
delay can be viewed as a bifurcation parameter similarly ) ) ) .
to the loading parameter in voltage stability studies [36]. All simulations and plots are obtained using a novel
2) To define the properties of the equilibria of the retardddython-based version of PSAT [38]. This PSAT version re-
system. Delays are given as the functionals (23) afdires Pythor2.7.1 (ht t p: // www. pyt hon. or g), Numpy
(24). In this case, delays are system variables, i.é:>-1 (http://nunpy.scipy.org), CVXOPT 1.1.3
x, andy, in (5), of any order, while the bifurcation (_ht tp://abel . ee. ucl a. ed_u/ cvxopt /), and Matplot-
parameter can be, for example, a scalar loading fact#t 1.0.0 (http://matplotlib. sourceforge. net/)
1« that multiplies load power consumptions as in voltag@"d has been executed on6a bit Linux Fedora Corel4
and small-signal angle stability studies [36] and [37]. platform running on al.73 GHz Intel Core 7 with 8 GB of

Both analyses are considered in this paper, however, we
consider that the second approach is the one with most
practical interest. In particular, Subsection IV-B delses the A. Computational Burden of the Spectrum Evaluation

bifurcation analysis as well as the power system model usedzefore entering into the details of the stability analysis
to define the loading margin for the DDAE and IV-C depictgf the DDAE, it is worthwhile to discuss the computational
and discusses some relevant time domain simulation resuli§,cden of the proposed technique for evaluating an approx-
The systems considered in this paper are the IEEE 14-Qifated solution of (16). With this aim, Table | shows the
system and a real world 1213-bus system, as follows.  computational burden of the spectrum analysis for the IEEE
1) The IEEE 14-bus system consists of two generatofs}-bus system for, = 5 ms and for different values aW.
three synchronous compensators, two two-winding afd@ble | also shows the computational burden of the standard
one three-winding transformers, fifteen transmissiogigenvalue analysis (i.e., no delays) that consists inirsglv
lines, eleven loads and one shunt capacitor (see Fig. 3).
Not depicted in Fig. 3, but included in the system model, AR) = InA — A, (37)

are generator controllers, such as the primary voltagghere A, is the state matrix of the DAE system obtained ne-
regulators. All dynamic data of this system as well as @ecting time delays in the AVR model. This case is indicated
detailed discussion of its transient behavior can be fouRd v — 1 in Table I. Moreover, NNZ indicates the number
in [29]. of non-zero elements of matridZ. The size ofM is N - n,

2) The real-world transmission system contains 1213 busgeren, is the dynamic order of the system (in this example,
973 transmission lines, 718 transformers and 113 syp-—— 49). Observe that the matrid/ is highly sparse and its
chronous generators. The dynamic order of this syst&fBarsity increases a¥ increases. CPU times given in Table

isn = 753. The AVRs of all synchronous machines havg refers to the computation of all eigenvalues &f. Clearly,
a measurement delay,. The aim of this case study isthe highernV, the higher the CPU time.

to show the robustness and the computational burden ofrjgyre 4 shows the root loci oM for the IEEE 14-bus

the proposed technique. system for different values oiV. Most eigenvalues have a
The AVR control scheme of the dc exciter model used ivery high frequency. Actually, only a very reduced number
this case study and is a simplified version of the classic IEEE eigenvalues is interesting for small-signal stabilibabysis,
type DC1 that is defined in [30] and fully described in [29]i.e., those that have positive real part or that are closéneo
The standard IEEE type DC1 model does not include tinimaginary axis. This fact allows using some efficient teqlei
delays. for determining only a reduced number of eigenvalues of
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COMPUTATIONAL BURDEN OF THE SPECTRUM ANALYSIS FOR, = 5 ms

TABLE |

10.0 T T
AND FOR THEIEEE 14BUS SYSTEM FOR DIFFERENT VALUES ORV o o N=5
N=
N [CPUtime ()| N-n | (N-n)2 | NNZ | NNZ/(N -n)2 e
1 0.031 49 2401 776 32.3% soll+ + N=d0
5 0.065 245 59 049 1707 2.83%
10 0.223 490 240100 | 5186 2.15%
20 1.609 980 960400 | 19396 2.02% _ w7
= 00F g o0 %=
40 9.392 1960 | 3841600 | 77216 2.01% & . o
L4
—5.0F
20000.0 T T
o o N=5 +
150000 H ¥V vV N=10 +
X x N=20 —10.0 . . L L L : : il
100000 L T+ N=40 —14 —-1.2 —-1.0 —U.SW(/\) —0.6 —0.4 -0.2 0.0
5000.0 - + +* ;
oo+
= oo Fig. 5. Zoom close to the imaginary axis of the root loci of tR&E 14-bus
& Rl B system modeled as a DDAE fat, = 5 ms and for different values aW.
++—+ N
—5000.0 | + - R
~10000.0 | The fact that among all eigenvalues only very few are cilitica
+ . . . . .
x is a quite general result that applies for the majority of pow
—15000.0 |- + . . . .
systems. Thus, a possible efficient strategy for computieg t
+ oy . .
200000 ‘ critical eigenvalues of a DDAE system is as follows:

n n n n n n
—16000.0 —14000.0 —12000.0 —10000.0 —8000.0 —6000.0 —4000.0 —2000.0 0.0

RN 1) Compute the eigenvalues of the state matrix of order
n of the system without considering delays. This is a
standard eigenvalue analysis of a DAE system.

2) The critical eigenvalues and the associated eigenwector
obtained in the previous point can be used as initial

. . _ o . guess for starting an iterative and efficient method such
M (e.g., Rayleigh's iteration, Arnoldi’s iteration, etcJhe as the Rayleigh’s iteration over the mati.
interested reader can see a description of efficient iterati

methods for determining a reduced number of ei envaluesAccordmg o this technique, the eigenvalue analysis of the
[29] 9 9 ODAE system reduces to a standard eigenvalue analysis plus

a,certain number of matrix multiplications which have small

Figure 5 shows a zoom of the eigenvalue loci deDICtecdomputational burden compared to complete eigenvalue anal

in Fig. 4. It is interesting to observe that the eigenvalugs o_. . : ;
M c?osest to the imagir?ary axis are not sensib?d\?toThe ysis of the full marix M. Applying such technique to the

values shown in Fig. 5 vary less thda0—% when N varies EEE-14 bus system, we obtained a CPU times of albai

. . . o s for determining thé0 eigenvalues with rightmost real part
from 5 to 40. From the computational viewpoint, this is a%or the case withV = 40. It has to be expected that the higher

important advantage of the proposed method for computiﬂge dynamic ordern. of the system, the higher the time saving.

thetspgctrurr: of (1.6)' Sm”ce The sensnyjlg of the ngf:(tmeaﬂ This statement is further discussed in the Subsection WD t
part eigenvalues is small with respec one can keepV dpresents a real-world case study.

relatively small and, hence, reduce the computational éaur
while evaluating the spectrum of (16).

The fact that the sensitivity of the rightmost eigenvalués ®. Bifurcation Analysis
M is small with respect taV is discussed in mathematical
terms in [18]—-[20]. Here, we provide only an intuitive juita-
tion, as follows. The solution of (19) haseigenvalues “close
to the eigenvalues ofi, (as a matter of fact, if the delays ar

Fig. 4. Root loci of the IEEE 14-bus system modeled as a DDAEfo& 5
ms and for different values av.

In this subsection, we consider the bifurcation analysis
, for the IEEE 14-bus system using two different bifurcation
arameters: (i) the time delay;; and (ii) the loading level of

I?e system. While the first approach was proposed in [11], the

Zero, the DDAE becpme; a DAE), and an |nf|n|te.number Ptter technique is the most common bifurcation analysid th
other eigenvalues with higher frequency that the firsines. leads to obtain the well-known nose curves [36]

IncreasingV allows finding such higher frequency eigenvalues 1) Using the time delay as the bifurcation parameter:

while little affecting eigenvalues with small magnitude. ; . . . : . '
. ; ) The simulation presented in this section are aimed to define
From observing Fig. 5, only two complex eigenvalues ap- : . . .
ears to be critical, since have a damping ratio lower 898 whether the inclusion of delays in t_he AVR equations of the
P ' IEEE 14-bus system can be approximated using the standard
DAE model. We consider two cases: (i) equations (35), and

1The zero eigenvalue shown in Figs. 4 and 5 is due to the arbiéss of - = - ] " .
(i) a modified version of (33) in which the delay is summed

the synchronous angle reference and, hence, does nottmdidaifurcation.



TABLE Il
LOADING LEVELS g CORRESPONDING TO THE OCCURRENCE OHB
— DDAE model FOR THEIEEE 14BUS SYSTEM FOR DIFFERENT VALUES OF,

- - DAE model
20} 7o [Ms] | pup [pU] | Ap[%]
0 1.202 -
L 1 1.175 2.24
5 1.048 12.8
10 0.805 33.0

R(\)
s

In any case, (39) must hold. Observe also thdtcannot be
computed forr = 0 due to the definition of” in (21).

2) Using the loading level as the bifurcation parameter:
In this case, we use a scalar variable, gayo parameterize

0.0

049 200 100 G(;?m“M“f(:)[m] 1000 1200 1100 the loading level of the overall system, as follows [29]:
pg = (ulne +keT)pgo (40)
Fig. 6. Real part of the critical eigenvalue of the IEEE 14-bus system as br = HKPro
a function of the AVR voltage measure time delay. _
qr, = MKdro
where I,,., is the identity matrix of ordem¢, being ng
to the filter time constant;.: the number of generatord, = diag(v1,72,...,7ne) are
generator loss participation factots; is a scalar variable used
Ve = (vr —ve) /(T + Ty) (38)  for accomplishing the distributed slack bus model as disedis

in [29] and p. P, and g, are the “base case” or initial
generator and load powers, respectively. This is the common
model used in continuation power flow studies [36]. For each

s is used. L e
. . . value of u a power flow solution is found and the equilibrium
Figure 6 shows the real part of the critical eigenvalue of the D/;\E spystem is computed q

of the IEEE 14-bus system as a function of the AVR voltage An HB occurs foru ~ 1.202 if considering the standard

measure time delay,, which is varied in the intervalD, 150] A model and no contingencies [29]. Table Il shows the
ms. Forr, < 15 ms, the difference between the DAE an alues of the loading level, for which a HB occurs for

the DDAE models _is negligible. '_I'his result actually Conﬁrmﬁiﬁerent values ofr,. As it was to be expected from the
the common practice of neglecting constant delays for Iocfﬁgcussion in the previous section, as increases, the HB
measures of terminal voltage. However, as the delay ineseasbccurs for lower values of.. Observe that for, = 10 ms

. v T 1

thgddlfferer?.ce_ be_t]yveenh the DAIfE gnd DDAE sﬁStFm IS quite . < 1, which means that the base case operating condition
evident. This justifies the use of the DDAE model in case ol ' staple. Similar tables can be obtained considering

remote measures of bus voltages used as input signals of ct,Bﬁtingencies, which are not included in the paper for the

AVR system. _ ~ sake of space. The results of Table Il can be viewed in two
The Hopf bifurcation (HB) occurs for, ~ 6.3 ms, which jittarent ways:

is thus thedelay margin of the AVRs. In this case the HB
occurs in a region for which the DAE and the DDAE models
behave similarly. Thus, there is no clear advantage of using
the DDAE model in this case. The usefulness of the DDAE
model is better shown in Subsection IV-C that concerns the
behavior of the PSS with remote measures.

Observe thalim ®(\.) for 7, — 0 is the same for both
the DAE and the DDAE models. In fact, as — 0, (16)
degenerates as:

For similarity with (35), but without lack of generality, oad
compensation is considered in (38). In both cagés: 0.001

1) The effect of time delays is actually that of reducing
the loading margin of the system. This is the direct
information given in Table II.

2) The effect of time delays can be interpreted as a “virtual”
load increase. For example, = 5 ms is equivalent to
a load increase 0f2.8%.

In any case, there is a clear interest in reducing as much as

possible control time delays.

hﬂ) AN) =TI ,\—(Ag+ A))=I,\— A, (39) C. Time Domain Smulation Results
’ ) In this subsection, we illustrate through time domain sanul
The fact that4, + A; — A, as7 — 0 can be seen in WO tjons the effect of the time delay in the measure of synchueno
ways, as follows. machine rotor speed when used as input signal for the PSS
1) Ast — 0, y, and =4 degenerate into non-delayeddevice. From [29], it is known that the IEEE 14-bus system is
variablesy and x, respectively, henced; has to be prone to show an HB if increasing the loading level /%

merged intoA, with respect to the base case and applying a firleoutage.
2) If r=0,y; =24 =0 and A; = 0, whereas4d, has The HB can be removed by including the PSS of Fig. 2 in the
to be recast andiy = A,. excitation control scheme of the machine connected tolbus



For the sake of example, we assume that such PSS
affected by a delayr,, in the measure ofv. Furthermore, LooL T — R
to force instability, we also assume that the measurevof | . PSS with delay (. — 71 ms) |]
is remote. This hypothesis can be justified by observing tr No PSS
the machine at bug is actually an equivalent model of a 10
bigger network (in fact the IEEE 14-bus system is obtaine
by simplifying the IEEE 30-bus system). Thus, if we assunr
that such equivalent network includes an SPSS as descril oo}
in [7], we can consider a delay of tens of milliseconds i
the measure ofy (e.g.,100 ms delay is used in [7]). In the
following example, we only consider the delay in the PS 000k
model and no delays in the AVR measures.

By repeating the analysis of the delay margin, we obtainth 97y
for a20% increase of the loading level with respect of the bas ‘ ‘ ‘ ‘ ‘
case and for lin@-4 outage, a HB occurs for,, ~ 68.6 ms. o o Y ey o e
However, without the line outage, the HB occurs fgr> 72
ms. Thus, setting2 > 7, > 69 ms, it has to be expected that . _
the transient following line-1 outage s unstable, whie thefi8,7, Foorspee offectier or e FEE fo s Sy i,
initial equilibrium point without contingency is stablddugh ,— o
poorly damped.

Figure 7 shows the time response of the IEEE 14-bus system
without PSS, with PSS and with retarded PSS with= 71 burden grows quickly and highly nonlinearly, as it was to be
ms. As already known from [29], the trajectory of the system@xpected. For the sake of illustration, Figs. 8 and 9 depiet t
without PSS enters into a limit cycle after the line outagélevh root loci for N' = 20.
the system with PSS is asymptotically stable. The behavior o TABLE Il
the Sy_Stem Wlth ret_arqed PSS I_S S|m|Iar tO the case WIthOHSMPUTATIONAL BURDEN OF THE SPECTRUM ANALYSIS FOR, =
PSS, i.e., shows a limit cycle trajectory. This results veabe
expected, since if, — oo, the PSS control loop opens and

0.9995 |-

0.9985 -

10 ms
AND FOR THE 1213-BUS SYSTEM FOR DIFFERENT VALUES ORV

the effect is the same as the system without PSS. However, N | Method | N-n | CPU time
. N , 1 All 753 0.692 s
the small-signal stability is able to determine the exadtiera
. . . 5 Al 3675 47.3 s
for which the HB occurs. The added value of the time domain 10 Al 7530 | 7mass
s_|m_ulat|on is to show th_at th_e system trajectory enters ato 20 Al 15060 | 51 m40s
limit cycle rather than diverging. 5 | 50rM | 3675 | 0573 s
The HB shown Fig. 7 is almost certainly super-critical since 10 | 50RM | 7530 194 s
it ends up in a stable limit cycle. In our experience, power 2 | 50RM | 15060 219 s

system can show both super- and sub-critical HBs. A famous
example of sub-critical HB is the one that led to the 1996
WSCC blackout. However, regardless their type, HBs haveAs discussed above, computing all eigenvalues is not actu-
always to be avoided in power system operation. In fact, suily needed to assess small-signal stability, since ongjtipe
critical HBs likely lead to a system collapse, whereas supeigenvalues or those that are closer to the imaginary aris ar
critical ones lead to loss increase, inter-area powerlasioihs of interest. In Table 1ll, the computational burden of thdl fu
and, possibly to untimely intervention of the protectiohatt eigenvalue analysis as obtained using the QR decomposition
may cause dangerous cascading phenomena. is compared with that of a reduced eigenvalue analysis based
It has to be noted that, for finite-dimensional power systefn the Arnoldi’s iteration. The QR decomposition and the
models (as in the case of standard DAE), HBs, which are ofrnoldi’s iteration are obtained linking Python to the LAGK
dimension one local bifurcations, ageneric. In other words, [39] and the ARPACK [40] libraries, respectively. As expestt
HBs are expected to occur given certain loading conditiog®@mputing a reduced set of eigenvalues and taking advantage
and synchronous machine controllers. However, the caseobfthe sparsity of matrixM allows drastically reducing the
infinite-dimensional dynamics such as delay systems reguiCPU time. In Table 11l “50 RM” indicates that only th&0
further analysis to conclude on the genericity of the bifian  rightmost eigenvalues have been computed.
points. This is currently an open field of research. Figure 10 shows that, as in the case of the IEEE 14-
bus system, the sensitivity of the eigenvalues closer to the
imaginary axis with respect t& is small. This property is
quite important since it allows keeping a reduced sizeéVbf
Table 11l shows the computational burden for the 1213-bweven for large systems. Observe that, in this real-worle: cas
system as a function ofV. N = 1 indicates the standardstudy, the number of roots close to the imaginary axis and
eigenvalue analysis (i.e., no delays) and is included ifeThb  with poor damping is relatively high. This is due to two facts
for the sake of comparison. AS increases, the computationalas follows.

D. Real-world transmission system
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Fig. 8.  Full root loci of the 1213-bus system fof, = 10 ms and for Fig. 10. Zoom close to the imaginary axis of the root loci of #f#3-bus

N = 20.

30.0

20.0

10.0

system forr, = 10 ms and for different values aW.

technique allows estimating an approximate solution of the
characteristic equation of DDAE based on the Chebyshev’s
differentiation matrix.

The advantage of the method is that it is able to precisely es-
timate the rightmost eigenvalues while maintaining a thlet

computational burden. The proposed technique is thenexppli
to evaluate the delay margin as well as the effect of delays
on the loading margin of the IEEE 14-bus test system and of
a real-world 1213-bus system. AVR as well as PSS measure
delays are considered and the results of small-signallisyabi
analysis are confirmed by time domain simulations.

The main conclusion of this papers is that it is important to
properly model time delays since these considerably affect
behavior of the overall power system, especially if congide
remote measures. Thus, the applications of the proposed
method are mainly in preventive control and dynamic segurit
Fig. 9. Zoom close to the imaginary axis of the root loci of tt#13-bus assessment of power systems. In particular, the estimafion
system forr, = 10 ms and forN = 20. the delay security margin can be used to accurately define the

available transfer capability as defined by NERC [41].
The work presented in the paper suggests some interesting

1) The system contains a high number of machines afgture research directions, such as considering multipleell

AVRs, so even if the number of critical eigenvalues igs time-varying time delays especially in the field of wideea
a small percentage of the dynamic orderthe absolute measurement systems and PMU devices. A detailed research
number of poorly damped eigenvalues is relatively higlyn the generic bifurcations that may occur in power systems

2) Available data do not include PSSs, which would bgodelled as DDAE also appears as a challenging theoretical
certainly able to move several eigenvalues to the left @ésearch field.

the complex plane.
The delay stability margin of the 1213-bus system can be VI. ACKNOWLEDGMENTS
computed in a similar way as discussed for the IEEE 14-busThe first author would like to thank Dr. Luigi Vanfretti,

system. In particular, a HB occurs fof ~ 18.2 ms. from KTH, Sweden, for the interesting discussion about AVR
schemes.
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V. CONCLUSIONS
APPENDIX |

DETERMINATION OF Ay, A; AND A,
This Appendix describes how (10)-(12) are determined

This paper presents a relatively simple, yet efficacious
method to define the small-signal stability of power systems
modeled as DDAE. In particular, the indéx-lessenberg form .
appears to be adequate for modeling the behavior of povxk/)éarsed on (7)-(8). From (8), one obtains:

systems when delays are taken into account. The proposed Ay = —g;lgwA:c —g;lgwdA:Ed (42)
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Substituting (41) into (7) one has: APPENDIXIII

Ai  — (fm*fygglgw)ﬁw+ 42) KRONECKER S PRODUCT
_ -1 If Ais am x n matrix andB is a p x ¢ matrix, then
(Fas = Fy9y go,)ATa+ Kronecker's productd @ B is anmp x nq block matrix [43],
fy,AYa as follows:
In (42), one has still to substitutdy, for a linear expression B - a,B
of the actual and/or of the retarded state variable. With thi
aim, consider the algebraic equatiopsomputed af(t — 7). A®B= : : (49)
Since algebraic constraints have always to be satisfied, the am1B - amnB
following steady-state condition must hold:
1 2 3 2 1
0 = gla(t —7),zat — 7).yt — 7)) (43) For example, letd = [ 3 2 1 } and B = { 2 3 }

Then, observing that, = a(t — ), y, = y(t — 7), and 'hen:

xq(t — 1) = z(t — 27), differentiating (43) leads to: 21 4 2 6 3
_ B | B 2B 3B | |2 3 4 6 6 9
0=g,Axq+g,, Azt —27) +g,Ay, 44 A®B-= [ °B 2B B ] =16 34 2 21

In steady-state, for any instafit, x(to) = x(to —7) = x(to— 6 9 4 6 2 3

21) = xo and y(to) = y,(to) = yo. Hence, the Jacobian
matrices in (44) are the same as in (8). Equation (44) can B8Serve thad ® B # B © A.
rewritten as:

Ay, =—g,'9. 8¢5 — g,'g,,Ax(t —27)  (45)
and, substituting (45) into (42), one obtains:

APPENDIX IV
DETERMINATION OF (31)

This Appendix provides the proof of the determination of

Ad = (fp— Fy9y'9a)Az + (46) matrix (31). At thei-th step of the implicit trapezoidal method
(fo — fygglg ~f, 9;19 YAz + for DDAE, one has to solve the following nonlinear system:
xq Tq d x
(—fy,9y ' 9a,)Aw(t — 27) 0 = a0 —ax(t—At) — 0.5ALF) + f(t — At))(50)
which leads to the definitions afty, A; and A, given in 0 = g
(10), (11) and (12), respectively. 0 = ¢ =a(a(z?,t) - azy)
APPENDIXII 0 = %9 =98y, -y

CHEBYSHEV' S DIFFERENTIATION MATRIX N (t— Af) and £t — A) " tors determined
- . . . . wherex(t — an - are known vectors determine
Chebyshev's differentiation matrik 5 of dimensionsV + at the previous step and the unknowns af8, (), %(j) and

1 x N + 1 is defined as follows. Firstly, one has to define i . .
N +1 Chebyshev’s nodes, i.e., the interpolation points on tf# The solution of (50) can be obtained using the Newton-

normalized interva[—1, 1]: Raphson’s method and its differentiation leads to (27), as

follows:
km , . . .
T =cCos | — |, k= 0, ey N. (47) I, — o.sAt,f(m” —O.SAtfgf) —O.SAth(J()l —O.SAtfg(; Aw(i)
N ° B NQ) Q) gg% o Ay%
Then, the elementi, j) differentiation matrix D indexed | s o *%) o peg
. . T k3 A
from 0 to N is defined as [42]: Y Yyg (;‘i)
(—1)itd . . . . ; i . .
%7 i#j Taking into account that!) andy! are explicit functions
Slm 4 N1 of z¥, y( andt, one can manipulate (27) in order to obtain
D=4 21w 'TIJ7h (48) : .
(3) = Y an241 i j=0 (31), in fact, from (23) and (24):
6 —J = ; . .
_21\/;-‘:—17 i :j - N ACES) — d)(ml)Aw(t) (52)
wherecy = ey =2 andey = --- = ey_1 = 1. For example, Ayff) = ¢§])Ay(’)
D, and D, are: i .
! 2 Hence, substituting (52) into (51) leads to (31).
1 1
D, = |2 2 withzy =1, 27 = —1.
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