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Abstract— The paper presents a comprehensive study of small-
signal stability analysis of power systems based on matrix
pencils and the generalized eigenvalue problem. Both primal
and dual formulations of the generalized eigenvalue problem are
considered and solved through a variety of state-of-art solvers.
The paper also discusses the impact on the performance of
the solvers of two formulations of the equations modelling the
power systems, namely, the explicit and semi-implicit form of
differential-algebraic equations. The case study illustrates the
theoretical aspects and numerical features of these formulations
and solvers through two real-world systems, namely, a 1,479-bus
model of the all-island Irish system, and a 21,177-bus model of
the ENTSO-E network.
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I. INTRODUCTION

A. Motivations

In his seminal monograph, Wilkinson wrote: The eigen-

value problem has a deceptively simple formulation and the

background theory has been known for many years; yet the

determination of accurate solutions presents a wide variety of

challenging problems [1]. After half a century, this statement

is still actual. The ability to solve large eigenvalue problems

is crucial in several fields of applied mathematics, physics

and engineering, e.g., [2]–[5]. Eigenvalue analysis is also a

fundamental tool of the small-signal stability analysis of power

systems.

There are several variants of the eigenvalue problem. The

simplest form, which is the one commonly solved for power

system small-signal stability analysis, is formulated as the

problem of finding a complex scalar s and a non-zero vector

v that solve:

Av = sv (1)

where A is a square real matrix of order n × n. For every

solution of (1), s is an eigenvalue, and v is the associated

eigenvector. Equation (1) is known as Linear Eigenvalue

Problem (LEP).

This paper provides a thorough discussion of an alterna-

tive formulation, namely, the Generalized Eigenvalue Problem

(GEP):

Av = sBv (2)

where B is a real n× n matrix, and its dual version:

Bv̂ = ŝAv̂ (3)
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where ŝ and v̂ are the eigenvalue and corresponding eigen-

vector, respectively, of the dual GEP. Both theoretical and

computational aspects of (2) and (3) and their impact on

power system small-signal stability analysis are discussed in

the paper.

B. Literature and Software Review

In several applied research fields, the generalized formula-

tion (2) has been successfully utilized to solve large eigen-

value problems (see, for example, [6]–[15]). In power system

analysis, however, the eigenvalue problem has been mostly

formulated as in (1) [16]–[23]. A recent paper that discusses

the primal GEP for power system analysis is [24]. The impor-

tance of preserving sparsity of the state matrix has been first

identified in [17] and then assumed in following works. Since

power systems are modelled as a set of Differential Algebraic

Equations (DAEs), preserving sparsity implies considering an

augmented matrix of the linearized system that has the size of

the combined vector of state and algebraic variables. In [17]–

[19], available algorithms to solve (1) are adapted in order to

allow adopting the augmented matrix. This basically consists

in solving the subsystem of algebraic variables and substituting

them into the linearized differential equations. In this paper,

we show that the GEP formulation (2) is a more natural and

general way to preserve sparsity, because, in (2), there is no

need to distinguish between state and algebraic variables.

The dual problem (3) has been considered in recent years in

applied mathematics [25] and in signal processing applications

[26], [27]. These references focus on the Hermitian GEP, for

which A and/or B are symmetric or Hermitian. However, the

structure of power systems always leads to a non-Hermitian

A and, hence, the dual eigenvalue problem (3) is never

Hermitian.

The most common formulation of power system DAEs is

explicit. Explicit DAEs (Ex-DAEs) show a diagonal B, where

diagonal elements are 1 or 0. This leads to an eigenvalue

problem where A is non-Hermitian but B is Hermitian and

positive semi-definite. On the other hand, if a Semi-Implicit

DAE (SI-DAE) formulation is used as in [28], neither A nor B

are Hermitian. Hence, solvers that admit a fully non-Hermitian

GEP are needed. LAPACK [29] can handle the most generic

form of GEPs, but works only with dense matrices and is

thus suitable for small size problems. The GPU-based library

MAGMA [30], which is a port of LAPACK routines, currently

only support LEPs as in (1).

ARPACK [31] provides a state-of-art implementation of the

Arnoldi iteration, including the implicit shift-&-invert and

Caley transformation, but requires that B is positive semi-



definite and can thus solve only (1) and (2) for the Ex-DAE

formulation.

To the best of our knowledge, there are currently only

three libraries that allows solving fully non-Hermitian GEPs

and, thus, can handle equally well problems (1), (2) and (3).

These are SLEPc [32], Z-PARES [33] and FEAST [34]. SLEPc

includes Jacobi-Davidson, generalized Davidson and Krylov-

Schur methods that are basically variants of the Arnoldi itera-

tion. Z-PARES and FEAST implement a numerical quadrature

computation and solves several linear systems along a complex

contour and computes eigenvalues inside such a contour. The

advantage of this procedure is that the size of each quadrature

problem is smaller than that of the original GEP. Moreover,

the quadrature problems can be solved in parallel as they are

fully decoupled from each other.

Commercial software tools, such as PSS/E and DSATools,

implement explicit DAEs. For small networks, e.g., for less

than 800 state variables, these software packages use QR-

based eigenvalue analysis as in LAPACK. For larger networks,

the NEVA (Netomac Eigenvalue Analysis) module of PSS/E

provides an implicit inverse iteration and a transfer function-

based dominant pole method, which, in turn, is solved using

subspace techniques, such as the Krylov subspace method.

Apart from the QR algorithm, DSATools includes implicitly

restarted Arnoldi and an enhanced version of the AESOPS

algorithm [35], which is an iterative method to find local

modes – typically those of a given machine – and is not

comparable to the techniques considered here. Thus, except

for the enhanced AESOPS algorithm, this paper considers

standard industry-grade techniques through available open-

source libraries.

C. Contributions

The paper presents a comprehensive study of the solution

of the GEP for the small-signal stability analysis of power

systems. Several aspects are covered leading to the following

specific contributions.

• The formulation of the small-signal stability analysis in

terms of a GEP considering both Ex-DAE and SI-DAE

formulations of power system models.

• A rigorous proof of the equivalency of the primal and

dual GEPs.

• A fair and complete comparison of state-of-art solvers of

non-Hermitian GEP problems.

D. Contents

The remainder of the paper is organized as follows. Section

II defines the primal and dual GEPs and provides a theoretical

proofs of their equivalency. Section III presents power system

models based on DAEs. These are the conventional explicit

model and a semi-implicit formulation, as recently proposed

in [28]. Section IV presents a variety of state-of-art solvers

for large non-Hermitian GEPs. These are LAPACK, MAGMA,

ARPACK, SLEPc, FEAST, and Z-PARES. Section V presents

numerical results based on two real-world systems, namely a

1,479-bus model of the all-island Irish system, and a 21,177-

bus model of the ENTSO-E network. Finally, Section VI duly

draws conclusions.

II. PRIMAL AND DUAL GENERALIZED EIGENVALUE

PROBLEMS

This section provides relevant definitions on matrix pencils

and GEPs and presents a theorem that shows the equivalency

between the primal and dual GEPs. The main objectives of

this section is to state the mathematical equivalency of the

primal and dual GEPs and of the properties of the eigenvectors

associated with null, finite and infinite eigenvalues.

It is important to note that, while we can prove that the

primal and dual GEPs are equivalent from the mathematical

point of view, the two problems behave differently when

solved numerically and have certainly different computational

burdens. For example, A is generally less sparse than B.

Numerical techniques are thus expected to performs differently

and, possibly, to provide different results, depending on the

GEP formulation, as discussed in Section V.

Let us consider the following singular system of differential

equations of the form

Bz′(t) = Az(t) (4)

where B,A ∈ R
n×n, z : [0,+∞) → R

n and the matrix

B is singular. Note that B is always singular for DAEs and

hence (4) is of interest for power systems modelled as it is

discussed in the next section. The importance of systems of

type (4) has been further emphasized by their role in defining

notions of duality. The notion of dual configuration and of the

dual problem originates from projective geometry. The essence

of the dual system defined next, is of similar nature to that of

projective geometry may be stated for autonomous differential

systems. Using this principle, if a proposition is true on one

system, the dual proposition is true for the dual system. We

define the system

Aẑ
′(t) = Bẑ(t) (5)

Definition 1. The system (4) will be referred as the primal

system and (5) will be defined as the proper dual system, or

simply dual.

Definition 2. Given B,A ∈ R
n×m and an arbitrary s ∈ C,

a matrix pencil is a family of matrices sB−A, parametrized

by a complex number s. The pencil is then called:

1) Regular when n = m and det(sB − A) = p(s) 6≡ 0.

Where p(s) is a polynomial of order equal to the finite

eigenvalues of the pencil;

2) Singular when n 6= m or n = m and det(sB−A) ≡ 0.

In this article, since B, A are defined based on a physical

dynamical system (see Section III), the resulting pencil sB−A

is always regular. Hence, hereinafter, n = m will be always

assumed. A regular pencil has p finite eigenvalues (FEs) and

q infinite eigenvalues (IEs), with p+ q = n. The FEs are the

zeros of the polynomial det(sB − A) = p(s) which is of

order p. The existence of IEs can be seen by means of the

generalized eigenvalue problem sBu = Au in the reciprocal

form Bu = s−1Au. Since B is singular there exists a null

vector u such that Bu = 0n,1 and consequently s−1Au =
0n,1, so that u is an eigenvector of the reciprocal problem

corresponding to eigenvalue s−1 = 0, i.e., s → ∞. Since B

is singular, the pencil B− ŝA has always the zero eigenvalue
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with algebraic multiplicity q ≥ 1 and consequently q is the

algebraic multiplicity of the infinite eigenvalue of sB −A.

The corresponding pencil of (4) is sB − A and of (5)

B − ŝA. It is clear that the essence of the above type of

duality depends on the relationships between the associated

pencils. The study of duality between (4) and (5) is reduced

to an investigation of the links between their pencils. The main

result is that, if the solution of one of those systems is known,

the solution of the other two systems can be represented,

without further computation.

The complete set of invariants of sB−A is of the following

type:

• Zero eigenvalues of algebraic multiplicity p0;

• Non-zero finite eigenvalues ai of algebraic multiplicity

pi;
• Infinite eigenvalues of algebraic multiplicity q.

Where
∑ν

i=0 pi = p (ν is the number of the distinct non-zero

eigenvalues).

The duality between (4) and (5) or between their pencils

sB−A, B− ŝA, can be seen as a consequence of the special

bilinear or projective transformation on a straight line:

s −→ 1

ŝ
,

which clearly transforms the points 0, si 6= 0, ∞ of the com-

pacted complex plane to the points ∞, 1
si

, 0, correspondingly.

The notions of duality may be qualified algebraically in terms

of relationships between the strict equivalence invariants of the

associated pencils. These relationships are summarized below.

• A zero eigenvalue of sB−A is an infinite eigenvalue of

B − ŝA and vice versa;

• A non-zero finite eigenvalue ai of sB − A defines a

nonzero finite eigenvalue 1
ai

of B − ŝA and vice versa;

• An infinite eigenvalue of sB−A is a zero eigenvalue of

B − ŝA and vice versa.

The Appendix provides a rigorous discussion on the equiv-

alence of the primal and dual GEPs and presents a theorem

that formalizes such equivalence.

III. POWER SYSTEM MODELS FOR SMALL-SIGNAL

STABILITY ANALYSIS

A. Explicit Differential-Algebraic Equations

Let us recall first conventional DAE models, described by

the following equations:

x′ = f(x,y) (6)

0q,1 = g(x,y)

where f (f : Rp+q 7→ R
p) are the differential equations; g

(g : Rp+q 7→ R
q) are the algebraic equations; x (x ∈ R

p) are

the state variables; and y (y ∈ R
q) are the algebraic variables.

We also assume that (6) is autonomous, i.e., does not depend

explicitly on time t. Finally, 0i,j is the zero matrix of i rows

and j columns.

Assume that a stationary solution of (6) is known and has

the form:

0p,1 = f(x0,y0) (7)

0q,1 = g(x0,y0)

Then, differentiating (6) at the stationary solution yields:

∆x′ = fx∆x+ fy∆y (8)

0q,1 = gx∆x+ gy∆y (9)

The state matrix of the system, namely As, is defined as

As = fx − fyg
−1
y gx (10)

which can be defined only if gy is non-singular. The character-

istic equation to be solved based on the state matrix As is (1)

with matrix pencil sIp−As and provides p finite eigenvalues

and p associated eigenvectors.

In [17] and most of the following papers on power system

small-signal stability analysis, the state matrix As is not

utilized because it tends to be dense even if matrices fx, fy ,

gy and gx are sparse. Hence, the approach adopted in [17]

and references thereafter has been to use the system augmented

matrix, as follows:

Ac =

[

fx fy

gx gy

]

(11)

which, however, complicates the computation of the eigen-

values, as these are defined only for a subset of Ac. The

characteristic equation defined in [17] is:
[

fx − sIp fy

gx gy

][

x

y

]

=

[

v

0q,1

]

(12)

where v is the eigenvector associated with the eigenvalue

s and y is required to solve the augmented problem but is

immaterial for the computation of the eigenvalues s. Two

remarks are relevant: (i) the assumption that y is decoupled

from x is correct but was not proven in [17] – such a proof

is a contribution of this paper and is given in the Appendix;

and (ii) the solution of (12) requires computing the term:

gy − gx(fx − sIp)
−1fy (13)

as many times as the number of iterations of the algorithm

that solves the eigenvalue problem.

In this paper we propose a more general formulation for the

characteristic equation of (6), which consists in considering a

generalized eigenvalue problem as in (2), with matrix pencil

sBc −Ac, where

Bc =

[

Ip 0p,q

0q,p 0q,q

]

(14)

and we assume an augmented state vector z = [xT ,yT ]T . The

matrix Bc is positive semi-definite, which allows using most

available algorithms, e.g., ARPACK, to solve the primal GEP

based on the matrix pencil sBc−Ac. The dual GEP based on

the matrix pencil Bc − ŝAc, however, cannot be solved with

commonly-used libraries as Ac is never Hermitian and cannot

be guaranteed to be positive semidefinite.

It is also important to note that the GEP formulation is

more general than the conventional (12) as the identity matrix

Ip can be substituted, without any change in the resulting

problem to be solved, with a diagonal matrix Γp, whose i-th
diagonal element γi is 1 if the dynamic of the state variable
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xi is enabled, 0 otherwise. Hence, one can still use (2), with

matrix pencil sBγ −Ac, where:

Bγ =

[

Γp 0p,q

0q,p 0q,q

]

(15)

On the other hand, switching a state variable to an algebraic

one is involved if considering the augmented formulation (12).

B. Semi-Implicit Differential-Algebraic Equations

In [28], a semi-implicit formulation of the DAEs describing

power system models has been proposed, as follows:

Tx′ = f̃(x,y) (16)

Rx′ = g̃(x,y)

where f̃ (f̃ : Rp+q 7→ R
p) are the differential equations; g̃

(g : Rp+q 7→ R
q) are the algebraic equations; T is a p × p

matrix and R is a q × p matrix.

Linearizing (16) at an equilibrium point, leads to:

T∆x′ = f̃x∆x+ f̃y∆y (17)

R∆x′ = g̃x∆x+ g̃y∆y (18)

Reference [28] shows that the Jacobian matrices that appear

in the right-hand-side of (17)-(18) are sparser than those that

appear in (8)-(9) and that the semi-implicit formulation (16)

has several advantages with respect to (6) for the transient

stability analysis of power systems. The interested reader

can find in [28] a thorough discussion on the semi-implicit

formulation.

The resulting primal and dual matrix pencils based on (17)-

(18) are sB̃c − Ãc and B̃c − ŝÃc, respectively, where

Ãc =

[

f̃x f̃y

g̃x g̃y

]

, B̃c =

[

T 0p,q

R 0q,q

]

(19)

Since matrix T is, in general, not diagonal and not positive

semi-definite, and R 6= 0q,p, both primal and dual GEPs

are non-Hermitian. However, since Ãc is sparser than Ac,1

solving the GEP for the semi-implicit formulation (16) can be

more efficient than solving the GEP for the standard explicit

DAE formulation given in (6). This point is further discussed

in Section V.

IV. SOLVERS FOR THE GENERALIZED EIGENVALUE

PROBLEM

A. Solvers based on QR factorization

For dense matrices, the standard de facto for the solution

of both LEP and GEP is LAPACK [29]. This public-domain

library implements a QR factorization that has the ability to

find all finite eigenvalues and eigenvectors. In recent year, it

has been developed a GPU-based implementation of LAPACK,

namely, MAGMA, that provides an efficient GPU-based imple-

mentation of LAPACK functions [30]. The QR factorization is

known to have computational complexity O(n3) and is thus

impractical for large systems. Moreover, LAPACK and MAGMA

1In particular, [28] shows that Ãc has about 15% less non-zero values than
Ac for large real-world power systems.

work only with dense matrices.2 Note also that MAGMA can

currently solve only LEPs as in (1). LAPACK and MAGMA are

considered in this paper only for comparison with the other

libraries discussed in the remainder of this section.

B. Arnoldi Iteration and its Variants

The Arnoldi iteration is widely considered the most efficient

method to compute a reduced number of dominant eigenvalues

of a non-Hermitian pencil sIn−A. The most used implemen-

tation of such a method, ARPACK [31], also allows to solve

GEPs, i.e., sB − A, but requires that B is positive semi-

definite.

Since the dominant eigenvalues of a matrix are those with

largest modulus, which are not of interest for small-signal

stability analysis, the Arnoldi iteration cannot be used as is.

In this paper, two methods are considered, namely, the shift-

&-invert and the Caley transformations. The shift-&-invert

transformation utilizes a shift point σ and finds the eigenvalues

of the shifted-inverse matrix (A − σB)−1, where σ ∈ C

and dominant eigenvalues are found in the neighborhood of

σ. The Caley transformation is similar to the shift-&-invert

approach and consists in using two shift points, σ and κ, and

solves the matrix (A−σB)−1(A−κB). This method has the

advantage to map the symmetry axis with abscissa (σ+ κ)/2
to a unit circle where dominant eigenvalues are those with

modulus greater than 1. The interested reader can find more

details on the mathematical aspects of the shift-&-invert and

Caley transformations in the ARPACK documentation [31], and

practical implications for the determination of the eigenvalues

of a physical system in [19].

In the case study discussed in Section V, some variants or

alternative approaches of the Arnoldi iteration, provided by

the software tool SLEPc, are considered, as follows:

• Krylov-Schur, a variation of Arnoldi with a very effective

restarting technique. In the case of symmetric problems,

this is equivalent to the thick-restart Lanczos method.

• Generalized Davidson, a simple iteration based on the

subspace expansion by the preconditioned residual.

• Jacobi-Davidson, a preconditioned eigensolver with an

effective correction equation.

Similarly to the Arnoldi iteration, the methods above also

allow using the shift-&-invert and Caley transformations.

The SLEPc solvers indicated above allow solving fully non-

Hermitian GEPs, but requires a careful tuning of the shifting

quantities σ and/or κ to avoid singularities and/or poor con-

ditioning of the matrices that have to be inverted during the

iterative solution process.

C. FEAST and Z-PARES

Both libraries FEAST [34] and Z-PARES [33] solves the GEP

(2) for eigenvalues located inside a search contour, which can

be an interval, an ellipse or a custom user-defined path in the

complex plane. The first step is to define a set of N quadrature

2Recently, a support for sparse matrices has bee added to MAGMA but
this support is limited to the Hermitian eigenvalue problem, which is not of
interest in this paper.
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Fig. 1. FEAST and Z-PARES compute eigenvalues within the a contour path
on the complex plane defined by a set of quadrature points z̄1, . . . , z̄N .

points on the contour, say {z̄1, . . . , z̄j , . . . z̄N} (see Fig. 1),

then the basis of the subspace that is utilized to compute

the eigenpairs are computed by solving the following linear

system with multiple right hand sides:

(z̄jB −A)Zj = BV , j = 1, 2, . . . , N (20)

for Zj , where V and Zj are n × L matrices. V is called

source matrix. The N problems (20) are independent and thus

can be straightforwardly parallelized.

Note that ARPACK, FEAST and Z-PARES delegate the so-

lution of linear systems and matrix vector multiplications to

external libraries through the Reverse Communication Inter-

face (RCI). In this paper, ARPACK, FEAST and Z-PARES are

coupled with the libraries KLU,3 PARDISO [36], and MUMPS

[37], respectively, for sparse matrix operations and factoriza-

tion.

D. Remarks on Time and Space Complexity of the Solvers

All solvers considered in this paper heavily rely on matrix

factorization, which is also the most consuming part both in

terms of time and space complexity. Then, the differences in

the performance of the solvers are due the number of times

such a factorization has to be performed and the size and

representation of the matrices to be factorized.

The most demanding solver is LAPACK as it utilizes a dense

matrix representation and the QR factorization algorithm. The

space complexity of the QR factorization is O(N2) while the

time complexity is O(N3), which explains why LAPACK is

expected to be not suitable for very large systems. MAGMA

has same space complexity as LAPACK, but time complexity

is scaled down thanks to parallelization. The concrete amount

of the scaling depends on the number of cores of the GPU.

All other algorithms considered in this paper utilize a sparse

matrix factorization (mostly based on the LU algorithm) which

drastically reduces the space complexity as matrices A and

B obtained for power systems are very sparse (see Tables

II and IV in Section V). Then, the time complexity of the

factorization of a sparse matrix can be estimated as O(N1.5).
Finally, Z-PARES and FEAST are expected to be more efficient

than other algorithms as they factorize matrices of reduced size

with respect to the full system matrices. This is confirmed by

the simulation results presented in the following section.

3Available at faculty.cse.tamu.edu/davis/suitesparse.html

V. CASE STUDIES

In this section, two real-world systems are considered,

namely the all-island Irish system and the ENTSO-E network.

These systems show different features which are comple-

mentary for the analysis carried out in this case study. The

all-island Irish system includes both conventional and non-

conventional generation, which consists mainly of wind power

plants and hence is useful to test the ability of eigenvalue

problem solvers for a spectrum which is not limited to the

classical electromechanical modes of synchronous machines.

The ENTSO-E network, on the other hand, is a large system

and allows properly discussing the performance of the numer-

ical libraries considered in this paper.

All simulations are obtained using Dome, a Python-based

power system software tool [38]. The Dome version utilized

in this case study is based on Python 3.4.3; ATLAS 3.10.2 for

dense vector and matrix operations; CVXOPT 1.1.8 for sparse

matrix operations; and SUITESPARSE 4.5.3 for sparse matrix

factorization. The libraries used for solving the eigenvalue

problems and their main dependencies for matrix operations

and factorization are summarized in Table I.

TABLE I

LIBRARIES TO SOLVE THE EIGENVALUE PROBLEM

Library Version Dependency Version

LAPACK 3.6.1 ATLAS 3.10.2

MAGMA 2.0.1 CUDA 7.5

ARPACK 3.3.0 KLU 1.3.8

SLEPc 3.7.1 PETSc 3.7.1

FEAST 3.0 INTEL-MKL 2016

Z-PARES 0.9.6a
MUMPS 5.0.1

OPENMPI 1.10.2

The libraries considered in this case study have been care-

fully tested on several small test systems – e.g., the New

England 39-bus 10-machine system and the IEEE 145-bus

50-machine system – and proved to provide nearly identical

results for the LEP and primal and dual GEPs and for both

the Ex-DAE and SI-DAE formulations. We can thus assume

that is fair to say that the results presented in the following

subsections are accurate and properly reflect the performance

of each library.

Simulations were executed on a server mounting two quad-

core Intel Xeon 3.50 GHz CPUs, 1 GB NVidia Quadro 2000

GPU, 12 GB of RAM, and running a 64-bit Linux OS.

A. All-island Irish System

In this subsection, the all-island Irish transmission system is

utilized to compare the solvers for the generalized eigenvalue

problem that are discussed in Section IV. The topology and

the steady-state data of the system are based on the actual real-

world system provided by the Irish TSO, EirGrid. However,

all dynamic data are estimated based on the knowledge of the

various power plant technologies used. The dynamic model of

the Irish system includes both conventional and wind power

generation. The system consists of 1,479 buses, 1,851 trans-

mission lines and transformers, 245 loads, 22 conventional

synchronous power plants modeled with 6th order synchronous
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Fig. 2. Rightmost eigenvalues for the all-island Irish system. Solution
obtained using LAPACK and the standard eigenvalue problem (1) with the
pencil sIp − As. The dash-dot line indicate the locus of eigenvalues with
5% damping.

machine models with AVRs and turbine governors, 6 PSSs

and 176 wind power plants, of which 142 are equipped with

doubly-fed induction generators and 34 with constant-speed

wind turbines. Statistics for the all-island Irish system are

shown in Table II.

TABLE II

STATISTICS FOR THE ALL-ISLAND IRISH SYSTEM

Matrix Size NNZ NNZ [%]

As 5, 669, 161 894, 675 15.781%
Ac 97, 199, 881 41, 197 0.0423%
Bγ 97, 199, 881 2, 381 0.0024%

Ãc 97, 199, 881 40, 373 0.0415%

B̃c 97, 199, 881 2, 625 0.0027%

Table III shows the performance of the solvers considered

in this paper for different pencils. The size of the system

is not big enough to prevent using LAPACK and MAGMA

libraries, which work on dense matrices. For ARPACK and

SLEPc libraries, σ = −0.01 and κ = −0.01 has been used.

Note, however, that, in our tests, the Caley transformation

performed similarly to the shift-&-invert transformation and

provided basically same results. For the SLEPc library, the

Krylov-Schur, Jacobi-Davidson and generalized Jacobi proved

to work similarly and results for the Krylov-Schur solver only

are shown. Finally, for the libraries FEAST and Z-PARES, the

search contour is a circle with center c̄ = (−0.1, 5) and radius

r = 5.25. The rightmost eigenvalues obtained with LAPACK

solving (1) with the pencil sIp −As is shown in Fig. 2. The

figure also shows the search contour used with FEAST and

Z-PARES solved. It can be noted that the solution shows a

poorly damped eigenvalue (i.e., an eigenvalue whose damping

is lower than 5%) and no positive eigenvalue.

Figure 3 shows the solution obtained with Z-PARES using

pencils sIp −As and sB̃c − Ãc. As it can be observed, the

solution of pencil sIp −As retains the poorly damped eigen-

value, but also shows several spurious positive eigenvalues. On

the other hand, the solution obtained using pencil sB̃c − Ãc

does not show the poorly damped eigenvalue and some of the

positive eigenvalues.

As expected, LAPACK does not perform well when dealing

with GEPs. This is a consequence of the high computational
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Fig. 3. Rightmost eigenvalues for the all-island Irish system. Top panel:
solution obtained using Z-PARES and the standard eigenvalue problem (1)
with the pencil sIp −As. Bottom panel: solution obtained using Z-PARES

and the primal GEP problem with the pencil sB̃c − Ãc.

complexity of the QR factorization. The solution of the LEP,

however, only requires 26.03 s, which is very competitive,4

considering the fact that LAPACK returns the full spectrum. In

this case, also MAGMA performs well and shows a significant

speed-up with respect to LAPACK. Note also that, depending

on the GEP, LAPACK can show numerical issues, i.e., the pair

of positive eigenvalues. Such issues can be shown by other

solvers, e.g., ARPACK. With this regard, dual problems appear

to be less prone to numerical issues.

Among the libraries that can handle sparse matrices and the

full range of primal and dual GEPs, the one that performs the

best is Z-PARES. Z-PARES appears to work better with the

SI-DAE formulation.

Whenever the maximum number of iterations is reached,

the solution provided by FEAST is not accurate, in particular

the solutions of the two primal GEPs show high errors. It

is interesting to note that, similarly to Z-PARES, FEAST is

faster if the SI-DAE formulation is used and that the only

problem that converges is the dual GEP with pencil B̃c− ŝÃc.

FEAST requires generally longer times and a high number of

iterations.

The divergence of the SLEPc library depends mostly on the

factorization provided by PETSC, which, in this case, prevented

to obtain solutions. Note that, with these results, we are not

saying that the SLEPc library cannot handle large eigenvalue

4Note that to compute As using (10) requires about 0.9 s. This time is not
included in the results shown in Table III.
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TABLE III

SMALL-SIGNAL STABILITY ANALYSIS OF THE ALL-ISLAND IRISH SYSTEM

Library Pencil Which Time [s] Notes

LAPACK

sIp −As All 26.03 OK

sBγ −Ac All 8, 039.94 24 eigs. > 0

sB̃c − Ãc All 6, 568.81 2 eigs. > 0
Bγ − ŝAc All 6, 060.84 OK

B̃c − ŝÃc All 6, 876.06 OK

MAGMA sIp −As All 17.27 OK

ARPACK
sIp −As 50 SM 99.89 2 eigs. > 0
sBγ −Ac 50 SM 5, 746.77 OK

SLEPc

sIp −As 50 SM 122.65 no eig., diverge

sBγ −Ac 50 SM 1.31 no eig., diverge

sB̃c − Ãc 50 SM 1.38 no eig., diverge

Bγ − ŝAc 50 LM 180.32 no eig., diverge

B̃c − ŝÃc 50 LM 179.49 no eig., diverge

FEAST

sIp −As c̄, r 362.95 no eig., diverge

sBγ −Ac c̄, r 5, 327.41 39 eigs., max. # iters.

sB̃c − Ãc c̄, r 232.06 40 eigs., max. # iters.

Bγ − ŝAc c̄, r 5, 025.13 55 eigs., 1 eig. > 0

B̃c − ŝÃc c̄, r 240.04 54 eigs., 1 eig. > 0

Z-PARES

sIp −As c̄, r 56.87 250 eigs., 12 eigs. > 0
sBγ −Ac c̄, r 59.46 250 eigs., 4 eigs. > 0

sB̃c − Ãc c̄, r 14.13 253 eigs., 4 eigs. > 0
Bγ − ŝAc c̄, r 57.36 6 eigs., 2 eigs. > 0

B̃c − ŝÃc c̄, r 12.89 146 eigs., 3 eigs. > 0

SM: smallest magnitude; LM: largest magnitude; c̄ = (−0.1, 5); r = 5.25

problems but, rather, that making it work properly for the

solution of power system problems is not straightforward

and further tuning of the library is required. This is clearly

beyond the scope of this paper, whose purpose is to show

the performance of existing software tools with off-the-shelf

parameters and settings.

B. ENTSO-E System

This subsection considers a dynamic model of the ENTSO-

E transmission system. The model includes 21,177 buses

(1,212 off-line); 30,968 transmission lines and transformers

(2,352 off-line); 1,144 coupling devices, i.e., zero-impedance

connections (420 off-line); 15,756 loads (364 off-line); and

4,828 power plants. Of these power plants, 1,160 power plants

are off-line. The system also includes 364 PSSs. Statistics of

the state matrices of the ENTSO-E system are given in Table

IV. Note that As could not be computed due to a memory

error which is likely a consequence of its low sparsity.

TABLE IV

STATISTICS FOR THE ENTSO-E NETWORK

Matrix Size NNZ NNZ [%]

As 1, 578, 631, 824 n/a n/a

Ac 21, 363, 914, 896 590, 874 0.0027%
Bγ 21, 363, 914, 896 39, 732 0.0002%

Ãc 21, 363, 914, 896 568, 134 0.0026%

B̃c 21, 363, 914, 896 53, 992 0.0003%

Given the huge size of the matrices, even for the simple

LEP case, the dense representation required by LAPACK and

MAGMA, is not feasible as a memory error is returned when

trying to allocate the memory. Among the libraries that support

sparse matrices, we test only FEAST and Z-PARES for the

primal and dual GEPs problems of obtained with the SI-DAE

formulation. These are, in fact, the cases that have shown best

performances for the all-island Irish system discussed in the

previous section.5 These two libraries return nearly identical

solutions. Also in this case, Z-PARES outperforms FEAST –

especially for the primal GEP – from the point of view of

computational efficiency. Note that the dual problem is not

able to find the eigenvalues closest to the origin of the complex

plane, as these lay outside the considered circle. This, however,

is not a major issue as critical eigenvalues tend to have a

non-negligible imaginary part and, thus, it is not necessary to

consider a “huge” search contour for the dual GEP.

TABLE V

SMALL-SIGNAL STABILITY ANALYSIS OF THE ENTSO-E NETWORK

Library Pencil Time [s] # of eigs. Notes

FEAST
sB̃c − Ãc 11, 155.69 476 40 eigs. > 0

B̃c − ŝÃc 853.44 476 40 eigs. > 0

Z-PARES
sB̃c − Ãc 180.08 381 36 eigs. > 0

B̃c − ŝÃc 179.99 476 40 eigs. > 0

c̄ = (−2.5, 2.5); r =
√

2 · 2.5

C. Concluding Remarks

1) On the different solution of the primal and dual GEPs:

It is relevant to note that the results of the primal and dual

GEPs (see Figs. 3 and 4) are different. This is because the

primal GEP finds the eigenvalues (say, s) within a given

circumference, while the dual GEP finds the inverse of the

eigenvalues of the primal GEP (i.e., ŝ = 1/s) within the same

circle. Note that Figs. 3 and 4 show s and 1/ŝ for the primal

and dual GEPs, respectively. This fact also explains why, in

the case of dual GEP problem, some eigenvalue falls outside

the circumference.

The solutions of the primal and dual problems are com-

plementary as they are able to find different sets eigenvalues.

The primal GEP can find eigenvalues very close to the origin,

while the dual GEP is able to find eigenvalues with small real

part but relatively high imaginary part (i.e., poorly damped

eigenvalues). This can be clearly observed in Fig. 3.

2) On the spuriousness of positive eigenvalues: Based on

the results shown in Tables III and V, it is clear that the

formulation and the solver have a significant impact on the

small-signal stability analysis. In particular, it is very important

to be able to understand whether a positive eigenvalue is just a

spurious solution or actually indicate that the operating point

is unstable.

A simple way to double-check the results of the eigenvalue

analysis and verify whether the system is stable is to solve a

time-domain simulation. If the initial operating point is stable,

a small perturbation, e.g., a small variation of a state variable,

5Note that, in this case, ARPACK, while converging, does not provide a
meaningful solution for the pencil sBγ − Ac and takes about 21 hours to
complete.

7



−6.0 −5.0 −4.0 −3.0 −2.0 −1.0 0.0

Real

−1.0

−0.5

0.0

0.5

1.0
Im

a
g

−6.0 −5.0 −4.0 −3.0 −2.0 −1.0 0.0

Real

−1.0

−0.5

0.0

0.5

Im
a
g

Fig. 4. Eigenvalues in the circle with center c̄ = (−2.5, 2.5) and radius

r =
√

2 · 2.5, and spuriousness indicator 0.05, as found with the library

Z-PARES. Upper panel: pencil sB̃c − Ãc; lower panel: pencil B̃c − ŝÃc.

will lead the system to diverge.6 In this case, the time-domain

simulation indicates that the operating points of both the all-

island Irish system and the ENTSO-E grid are stable, hence

positive eigenvalues are certainly spurious.

Among the considered solvers, the only one that allows

filtering spurious eigenvalues by means of a spuriousness

indicator threshold is Z-PARES. Such an indicator can take

values in the interval [0, 1]. For the all-island Irish system,

if the indicator is set to 0.001, all positive eigenvalues are

discarded but so are some genuine ones. Note that the value

of the indicator has been defined heuristically. Based on the

tests that we have done, we got to the conclusion that the same

threshold can be used for different operating points of a given

system. In other words, an ISO could use always the same

threshold for the same network.

For sake of example, Fig. 4 shows the eigenvalues for the

ENTSO-E system obtained using Z-PARES for the primal and

dual GEP based on the SI-DAE formulation and considering a

spuriousness operator equal to 0.05. Both problems are solved

using a search contour defined by a circumference with center

c̄ = (−2.5, 2.5) and radius r =
√
2 ·2.5. Note that no positive

eigenvalue is shown. This is consistent with time domain

simulations following a perturbed initial operating point.

Hence, the spuriousness indicator has to be utilized with

6Note that the software tool Dome implements analytical Jacobian matrices,
not a numerical differentiation based on DAEs, hence the eigenvalue analysis
and the time domain simulation can be considered fairly independent, i.e., no
common mode errors.

caution. A good practice is to solve the eigenvalue problem

with different solvers (including time-domain analysis) and

different settings.

VI. CONCLUSIONS

The paper discusses the small-signal stability analysis of

large power systems considering primal and dual GEPs as well

as two formulations of the power system equations, namely, an

explicit and a semi-implicit form of DAEs. The equivalence of

the primal and dual problems is rigorously proven. The perfor-

mance of a variety of libraries that are able to solve a fully non-

Hermitian GEP are duly discussed. Simulation results show

that, for the all-island Irish transmission grid LAPACK and

MAGMA libraries perform well. Hence, for networks of the

size of the Irish system or smaller, the LEP formulation and

QR factorization are viable options. For larger systems, e.g.,

the ENTSO-E network, results show that available solvers tend

to perform better with the SI-DAE formulation than with the

Ex-DAE one and that the dual problem appears relatively more

numerically reliable than the primal one. However, only two

libraries can efficiently solve the non-Hermitian GEP, namely,

FEAST and Z-PARES. In particular, the latter appears to be

the most efficient and numerically stable solver among those

considered in this paper.

Future research will focus on testing the proposed pri-

mal/dual formulation and the solvers considered in this paper

to eigenvalue problems originated from problems other than

power systems.7
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APPENDIX

This appendix provides a rigorous proof of the equivalence

of the primal and dual GEPs. The main characteristic of this

type of equivalence is the inversion of frequency which is

defined by the dual role of the different types of eigenvalues.

This is the first time such a rigorous mathematical proof is

presented.

If we assume that

det(sB −A) = sp0(s− a1)
p1 . . . (s− aνs)

pν ,

then the finite eigenvalues are the roots of the polynomials,

sp0 , (s− a1)
p1 , . . . , (s− aν)

pν .

7With this regard, a large variety of matrices is available at:
http://www.cise.ufl.edu/research/sparse/matrices/
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Where pi ∈ {0, 1, 2, ..., p}, i = 0, 1, ..., ν. From the above

eigenvalues we can compute the Jordan matrix Jp0
of the zero

eigenvalue and the Jordan matrix Jp of the finite eigenvalues.

The Jordan matrix Jq of the infinite eigenvalues is equal to the

Jordan matrix of the zero eigenvalue of the pencil B − ŝA.

Finally, we will denote with Qp0
the matrix with columns

the p0 linear independent eigenvectors of the zero eigenvalue,

with Qp the matrix with columns the p linear independent

eigenvectors of the non-zero eigenvalues and with Qq the

matrix with columns the q linear independent eigenvectors of

the infinite eigenvalues.

Theorem 1. Consider the system (4). Then its solution is

given by

z(t) = Qp0
eJp0

tcp0
+Qpe

Jptcp . (21)

Where Jp0
, Jp are the Jordan matrices of the zero & non-

zero eigenvalues of sB−A respectively, Qp0
the matrix with

columns the p0 linear independent eigenvectors of the zero

eigenvalue, with Qp the matrix with columns the p linear

independent eigenvectors of the non-zero eigenvalues and

cp0
∈ R

p0 , cp ∈ R
p are constant vectors. Without resorting to

further processes of computations, the solution of (5) can be

explicitly represented by,

ẑ(t) = Qpe
J−1

p tĉp +Qqe
Jqtĉq . (22)

Where Jq , Jp are the Jordan matrices of the infinite & non-

zero eigenvalues of sB − A respectively, Qq the matrix

with columns the q linear independent eigenvectors of the

infinite eigenvalue, with Qp the matrix with columns the p
linear independent eigenvectors of the non-zero eigenvalues

and ĉq ∈ R
q , ĉp ∈ R

p are constant vectors.

Proof of Theorem 1. There exist n × n non-singular

matrices P , Q such that

PBQ = blockdiag{ Ip0
Ip Jq } ,

PAQ = blockdiag{ Jp0
Jp Iq } .

The matrix Q has columns the p0 + p+ q linear independent

eigenvectors of the zero, non-zero and infinite eigenvalues of

sB −A and can be written as:

Q = [ Qp0
Qp Qq ] .

Then by considering the transformation z(t) = Qw(t) and

substituting it into (4) we obtain

BQw′(t) = AQw(t),

Whereby multiplying by P and setting

w(t) = [ wT
p0

wT
p wT

q ]T ,

we obtain three subsystems of (4):

w′

p0
(t) = Jp0

wp0
(t) (23)

w′

p(t) = Jpwp(t) (24)

Jqw
′

q(t) = wq(t) . (25)

The subsystems (23) and (24) have the solutions

wp0
(t) = eJp0

tcp0
,

wp(t) = eJptcp .

For the subsystem (25), since Jq is the Jordan matrix of the

zero eigenvalue of B − ŝA, we have a nil-potent matrix,

i.e. there exists q∗ such that Jq∗
q = 0q,q. In order to find the

solution of the system (24), we obtain the following equations

Jqw
′

q(t) = wq(t),

J2
qw

′′

q (t) = Jqw
′

q(t),

...

Jq∗−1
q w(q∗−1)

q (t) = Jq∗−2
q w(q∗−2)

q (t),

Jq∗
q w(q∗)

q (t) = Jq∗−1
q w(q∗−1)

q (t),

whereby taking the sum of the above equations and by using

the fact that Jq∗
q = 0q,q we arrive at the solution of (25)

wq(t) = 0q,1. (26)

By using the above solutions of the three subsystems, we arrive

at the solution of (4):

z(t) = Qp0
eJp0

tcp0
+Qpe

Jptcp .

For the dual system (5), we consider the transformation ˆz(t) =

Q ˆw(t) and substituting it into (5) we obtain.

BQŵ(t) = AQŵ
′(t).

Whereby multiplying by P and setting

ŵ(t) = [ ŵT
p0

ŵ
T
p ŵT

q ]T ,

we arrive at three subsystems:

ŵp0
= Jp0

ŵ
′

p0
, ŵp = Jpŵ

′

p, Jqŵq = ŵ
′

q.

with solutions:

ŵp0
= 0p0,1, ŵp = eJ

−1

p tĉp, ŵq = eJqtĉq.

By using the above solutions of the three subsystems, we arrive

at the solution of (4):

z(t) = Qpe
J−1

p tĉp +Qqe
Jqtĉq .

The proof is completed. �
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