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Abstract— This paper addresses the optimal placement of
static var compensators (SVCs) in a transmission network in
such a manner that its loading margin is maximized. A multi-
scenario framework that includes contingencies is considered.
This problem is formulated as a nonlinear programming problem
that includes binary decisions, i.e., variables to decide the actual
placement of the SVCs. Given the mixed-integer non-convex
nature of this problem, a Benders decomposition technique within
a restart framework is used. Detailed numerical simulations on
realistic electric energy systems demonstrate the appropriate
behavior of the proposed technique. Conclusions are duly drawn.

Index Terms— Benders decomposition, maximum loading mar-
gin, SVC placement, voltage stability.

NOTATION

The main notation used throughout the paper is stated below.

A. Constants:

pDi
Active power demand at busi.

qDi
Reactive power demand at busi.

B. Variables:

pGi
Active power generation at busi.

qGi
Reactive power generation at busi.

bCi
Susceptance of an SVC at busi.

ui Binary variable associated with placing an SVC at
bus i.

vi Voltage magnitude at busi.
θi Voltage angle at busi.
µ Network loading margin.
ψk Current magnitude through transmission linek.

C. Sets:

Ωb Set of possible SVC placement buses.
ΩG Set of generator buses.

D. Numbers:

ℓ Number of constraints involving only binary vari-
ables.

m Number of continuous variables.
n Number of buses and of discrete variables.
nd Number of SVCs.
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ndl Cardinality of Ωb, i.e., number of possible SVC
locations.

nL Number of lines.
ns Number of simulations.
nc Number of cases including the base case and the

contingencies.
ps Probability of cases.
p Number of constraints involving continuous and

binary variables.
Vectors and matrices are in boldface, while scalar variables
are in italic (e.g.,v is the vector of all voltage magnitudes
vi; i = 1, . . . , n). Other symbols are defined as required in
the text.

I. I NTRODUCTION

A. Motivation and approach

SVCs make it possible to enhance the functioning of a
transmission network by increasing significantly its loading
margin. Thus SVCs are increasingly used in nowadays stressed
transmission systems.

Being the load flow equations nonlinear, to identify in which
buses SVCs should be located is a complex problem mostly
treated heuristically in the available literature. Therefore, it
naturally arises the need to tackle this problem in a systematic
and formal way so that the best or a near-best solution is found.

This paper provides an optimization procedure based on
Benders decomposition that incorporates multiple restarts for
determining in which buses of a transmission network SVCs
should be installed. Diverse scenarios including the base case
and contingencies are considered. The target is to maximize
the loading margin. The proposed multi-start Benders frame-
work allows avoiding local minima and reaching eventually the
global minimum. It should be emphasized that the methodol-
ogy proposed in this paper can be straightforwardly applied
to locate any type of FACTS devices. However, for the sake
of clarity and simplicity, we consider only the placement of
SVCs.

B. Literature review

In the technical literature, the allocation of FACTS devices
has been carried out through different strategies. In [1], alinear
iterative method is proposed to find the best placement of
FACTS devices in order to minimize the expected thermal
generation cost and the investment cost on these devices in
a hydrothermal coordination problem. In [2], a sensitivity
analysis is used to locate thyristor-controlled series capaci-
tors (TCSCs) and unified power flow controllers (UPFCs) to
increase the maximum power transfer level of the system. In
[3], a method based on a voltage stability index is used to find
the best location of the FACTS to avoid the voltage collapse.
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In [4] and [5] the FACTS location problem is solved by
means of genetic algorithms to lower the cost of energy
production and to improve the system loading margin, re-
spectively. A two-step procedure is proposed in [6] to locate
thyristor controlled phase shifting transformers (TCPSTs) in
a system using a DC load flow model. In the first step, the
system loading margin is maximized, while in the second step
the total investment cost or the total number of phase shifters is
minimized. In both steps a mixed-integer linear programming
problem is solved. Reference [7] provides a VAr planning
tool which considers simultaneously static constraints aswell
as voltage stability constraints. The formulation and imple-
mentation is based on a three-level hierarchical decomposition
scheme where each sub-problem is solved by the interior point
method. In [8], the FACTS location problem is formulated as
a mixed-integer nonlinear programming problem. The optimal
placement is obtained optimizing both the investment cost in
FACTS and the security in terms of the cost of operation under
contingency events. The problem is considered convex and
solved by Benders decomposition.

The Benders decomposition is a particularly attractive
technique for the FACTS location problem because it al-
lows treating binary and continuous variables separately,thus
achieving solution efficiency for moderate computational ef-
fort. However, the Benders decomposition requires that the
objective function of the considered problem, projected onthe
subspace of the complicating variables, has a convex hull.
Unfortunately this is not the case for the SVC allocation
problem. Nevertheless, since the global minimum must lie
in a convex sub-region, we solve the above drawback by
restarting Benders decomposition with points that cover most
of the solution space and that allows searching convex sub-
regions, which make it possible identifying local minima and
eventually the global minimum. We consider this technique
particularly appropriate to the SVC placement problem since
the alternative is a fully heuristic search (e.g., a genetic
algorithm), which generally does not allow taking into account
in detail the physics of the problem.

C. Contributions

The contributions of this paper are threefold:
1) A novel technique: A Benders decomposition technique

incorporating multiple restarts is used to place SVCs in
a transmission network. This technique allows tackling
non-convexities.

2) An efficacious and robust algorithm: The proposed de-
composition is efficacious in locating globally optimal
or near-optimal solutions and robust in what refers to
computational behavior.

3) A proven procedure: Detailed numerical simulations
considering different realistic electric energy systems
prove the good behavior of the proposed technique.

D. Paper organization

The rest of this paper is organized as follows. Section II
provides the detailed formulation of the considered problem.
In Section III the proposed solution algorithm is stated. Section

IV provides and analyzes results for a 40-bus system, and two
realistic systems, namely, the IEEE 300-bus test system and
a 1228-bus Italian network. Section V gives some relevant
conclusions.

II. FORMULATION

In this paper, the following mixed-integer nonlinear pro-
gramming problem is used to compute the maximum loading
condition of a network:

Minimize
u, µ, v, θ, pG, qG, bC , ψ

z = −µ (1)

subject to

0 = pGi
− µ pDi

−

n
∑

j=1

(vivjBij sin(θi − θj) + vivjGij cos(θi − θj));

i = 1, . . . , n, (2)

0 = qGi
− µ qDi

+ bCi
v2

i

−

n
∑

j=1

(vivjGij sin(θi − θj)− vivjBij cos(θi − θj));

i = 1, . . . , n, (3)

ψmax
k ≥ |j

bk0

2
vie

jθi + (gk + jbk)(vie
jθi − vje

jθj )|

k = (i, j) = 1, . . . , nL, (4)

0 = ui; ∀i ∈ ΩG, (5)

0 = θref , (6)

and

pmin
Gi
≤ pGi

≤ pmax
Gi

∀i = 1, . . . , n (7)

qmin
Gi
≤ qGi

≤ qmax
Gi

∀i = 1, . . . , n (8)

vmin
i ≤ vi ≤ v

max
i ∀i = 1, . . . , n (9)

− π ≤ θi ≤ π ∀i = 1, . . . , n (10)

ui b
min
Ci
≤ bCi

≤ ui b
max
Ci

∀i = 1, . . . , n (11)
n

∑

i

ui ≤ nd , (12)

where the notation of most variables, constants and numbers
is given at the beginning of this paper andGij + jBij are the
elements of the admittance matrix of the network, andgk+jbk
and bk0 are the series admittance and the shunt susceptance,
respectively of the transmission linek. The discrete variables
u ∈ {0, 1}n define the placement of the SVCs, i.e. ifui = 1,
an SVC is placed at busi.

The objective function and the equality and inequality
constraints in (1)-(12) are explained below.

A. Objective function

Minimizing −µ corresponds to find the maximum loading
condition that can be associated with either [9]:

1) a voltage stability limit (collapse point) corresponding
to a system singularity (saddle-node bifurcation); or

2) system controller limits such as generator reactive power
limits (limit-induced bifurcation); or
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3) a thermal or bus voltage limit.

Observe that (1) is the simplest objective function that
allows taking into account voltage stability constraints [10].
Other more sophisticated models have been proposed in [11]
and [12]. Nevertheless, the main goal of this paper is to for-
mulate the maximum loading condition problem as a mixed-
integer nonlinear programming problem and solve it by means
of a robust technique. Thus, the conclusions to be drawn using
(1) can be extended to other objective functions and OPF
models of the form (1)-(12).

B. Equality constraints

The system functioning is represented by the power flow
equations (2) and (3), and the current flows in transmission
lines and transformers (4). According to typical assumptions
in voltage stability studies [9], the loading marginµ is a scalar
value that increases uniformly the active and reactive powers
of all loads. Thus, the power factor of load powers is assumed
to be constant. Equations (5) impose that the SVCs cannot be
installed at generator buses, as it is common practice. Finally
(6) is needed to fix the reference bus phase angle.

For simplicity it is assumed that there is at most one
generator (pGi

, qGi
) at each bus. If no generator is connected

at busi, then

pmax
Gi

= pmin
Gi

= 0 , qmax
Gi

= qmin
Gi

= 0 . (13)

For the sake of simplicity, but without lack of generality,
SVC devices are modeled as variable susceptances. More
sophisticated models (e.g., the fundamental frequency firing
angle model) can be implemented but doing so does not
change the solution technique that is proposed in this paper.
It should also be noted that different steady-state models of
FACTS, i.e., TCSCs, UPFCs, TCPSRs, etc., can be straight-
forwardly incorporated in problem (1)-(12).

C. Inequality constraints

The physical and security limits considered in this paper
are similar to those proposed in [13], and take into account
generator active (7) and reactive limits (8), voltage magnitude
limits (9) and transmission line thermal limits (4). Inequalities
(10) are used for limiting voltage angles, eventually improving
the convergence of the optimization method. Inequalities (11)
are used for limiting the susceptance of installed SVCs; if the
SVC is not placed at the busi, the associated SVC susceptance
limits are set to zero. Finally, (12) imposes that the maximum
number of installed SVCs isnd.

III. SOLUTION

A. Compact formulation

The SVC placement problem formulated in Section II can
be expanded to consider multiple scenarios (base case and
contingencies) and reformulated in a compact manner as

minimize
u,x

z =

nc
∑

s=1

psfs(u,xs) (14)

subject to

hs(u,xs) ≤ 0; s = 1, . . . , nc (15)

gs(u) ≤ 0; s = 1, . . . , nc (16)

where u ∈ {0, 1}n, xs ∈ IRm, fs(u,xs) : {0, 1}n ×
IRm → IR , hs(u,xs) : {0, 1}n × IRm → IRp, and g(u) :
{0, 1}n → IR ℓ, and constraints (15) and (16) include both
equality and inequality constraints. Note that

∑nc

s=1 ps = 1.
Note also thats refers to different scenarios (i.e. base case
and contingencies) andps is the probability associated with
the occurrence of scenarios. It should be noted that the above
formulation considers simultaneously one base case scenario
and several contingency scenarios. Observe also that SVC
placement variablesu do not depend on the scenario while
operational variablesxs do.

Note that the objective function (14) provides a measure
of the average impact on system security (average loading
margin) resulting from the availability of SVCs. This average
value is computed for all plausible loading and contingency
scenarios properly weighted by their corresponding probabil-
ities of occurrence.

B. Solution algorithm

The proposed multi-start Benders decomposition procedure
for problem (14)-(16) shown in Fig. 1 works as follows [14]:

1) Global initialization. Set the simulation counter toj = 0
and zopt = ∞, wherezopt is the global minimum of
problem (14)-(16).

2) Random initial solution. Place randomly the available
SVCs in the network, i.e., initializeu0, and update the
simulation counterj ← j + 1.

3) Benders initialization. Set the Benders iteration counter
to ν = 1, u(ν) = u0, andz(ν)

down = −∞.
Note that the lower bound of the objective function
optimal value is initialized to−∞.

4) Subproblem solutions. Solve for all cases considereds =
1, . . . , nc (base case and contingencies)

minimize
xs

z = fs(u,xs) (17)

subject to

hs(u,xs) ≤ 0 (18)

u = u(ν) : λ(ν)
s . (19)

The solution of this subproblem providesx(ν)
s ,

fs(u
(ν),x

(ν)
s ) and λ(ν)

s . It should be noted thatλ(ν)
s

is the dual variable associated with (19).
Update the objective function upper bound,z(ν)

up =
∑nc

s=1 psfs(u
(ν),x

(ν)
s ).

Note that sinceu(ν) is not generally optimal,z(ν)
up

constitutes an upper bound of the objective function
optimal value.
Observe that (1)-(12) corresponds to one instance of
problem (17)-(19) once variablesu are fixed to trial
values. An interesting feature of the Benders decom-
position technique is that thenc problems (17)-(19),
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nd: Number SVC devices

j = 0; zopt =      

Step 2: Initial random

 device simulation

allocation: u0

Step 3: Initializing Benders

ν = 1;  u (ν)  = u0; zdown
 (ν) = -      

Step 8:Master problem solution 

u
 (ν); zdown

 (ν) = α; ν = ν+1

Step 5: 

Infeasibility

check

Step 6: 

Convergence

check

End 

simulations

Yes

Yes

Yes

No

No

No

End 

program

End 

simulations

No

Yes

j = j+1

j = j+1

∞

Step 4: Subproblem solutions

(base case and contingencies) 

zup
 (ν) =          ps fs(xs

(ν),u (ν))Σs =1

np

Step 7: 

Update global solution

if zup
 (ν) < zopt:

 u opt = u (ν); zopt = zup
 (ν) 

∞

j = j+1

Step 1:

Fig. 1. Structure of the proposed multi-start Benders framework.

corresponding to the base case and the contingencies,
are decoupled and can thus be solved in parallel.

5) Infeasibility check. If z
(ν)
up < z

(ν)
down or ν = νmax

a non-convex region is wrongly reconstructed and no
solution can be identified; if the number of prespecified
rounds (ns) has not been reached go to 2), otherwise
the algorithm concludes. In any other case the algorithm
continues below.

6) Convergence check. If|z(ν)
up − z

(ν)
down|/|z

(ν)
down| ≤ ε, a

solution with a level of accuracyε has been found:

u∗ = u(ν),

and the algorithm continues below, otherwise it contin-
uous in 8).

7) Global solution update. If z(ν)
up < zopt update the global

solution zopt = z
(ν)
up , uopt = u∗ and the algorithm

continues in 2) if the number of prespecified rounds has
not been reached, otherwise the algorithm concludes. In
any other case the algorithm continues below.

8) Master problem solution. Update the iteration counter
ν ← ν + 1 and solve

minimize
α,u

α (20)

subject to

gs(u) ≤ 0; s = 1, . . . , nc. (21)

α ≥

nc
∑

s=1

psfs(u
(i),x(i)

s ) +

nc
∑

s=1

n
∑

k=1

λ
(i)
sk

(

uk − u
(i)
k

)

;

i = 1, . . . , ν − 1 (22)

α ≤ zopt. (23)

Note that at each iteration one additional constraint (22)
is added to problem (20)-(23). Constraint (23) forces to
look for solutions with objective function value lower
than or equal to the current optimumzopt thus seeking
better and better solutions. Note that (23) increases the
failure rate of the Benders scheme but ensures that
solutions found are successively better and better. The
solution of this master problem providesu(ν) andα(ν).
Update the objective function lower boundz(ν)

down =
α(ν).
The algorithm continues in 4).
It should be noted that problem (20)-(23) approximates
successively problem (14)-(16). Note thatα(ν) consti-
tutes a lower bound of the optimal value of the objective
function because problem (20)-(23) approximates from
below problem (14)-(16). If the Benders decomposition
technique converges, then,α(ν) = z(ν).

C. Generation of initial solutions

A relevant issue concerning the performance of the proposed
method is how to generate random initial SVC allocations in
order to restart the Benders procedure. It should be noted that
the SVC locations are randomly generated just as starting
points for the Benders algorithm and with the purpose of
exploring the whole feasibility region so that the global
maximum is not missing.

Let us consider a 10-bus system with 3 generation buses
corresponding to buses 2, 5, and 8, respectively, as indicated
in Fig. 2 (a) using gray shadows. The aim is to generate an
initial random positioning fornd = 6 SVCs. As no device can
be located at generation buses, for the first iteration setΩb

with nd components is initialized including just the positions
where SVCs can be located as shown in Fig. 2 (a). Next,



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 5

1

1

2

2

3

3

4 5 6 7 8 9 10

1 3 4 6 7 9

10

10 1st iteration

1 3 6 7 9 2nd iteration

(a)

(b)

(c)

1 2 3 4 5

Ωb

Fig. 2. Simulation procedure for a 10-bus system.

a random integer value between 1 and the cardinality ofΩb

(ndl = 7) is generated using “round(uniform(0.5, ndl +0.5))”,
where a uniformly random number between0.5 andndl+0.5 is
rounded to the nearest integer. Note that using this expression
the probability of obtaining any of the integers on the list is
equally likely. Considering that a 3 has been obtained, the
first device is located at the position indicated by the third
component of setΩb, i.e., bus 4 (see Fig. 2 (b)). For the next
iteration, setΩb is updated because no additional SVCs can
be installed in bus 4. The cardinality ofΩb is updatedndl =
ndl − 1 = 6, and a random integer value is obtained using
the same expression. Considering the resulting random integer
number to be 5, the second SVC is located at the position
indicated by the fifth component of setΩb, i.e., bus 9 (see
Fig. 2 (c)). The procedure continues until all SVCs have been
placed.

Note that this procedure allows us to randomly generate a
feasible initial solution for the Benders decomposition proce-
dure with a probability of occurrence of

(

ndl

nd

)

−1

=
nd!

ndl(ndl − 1)(ndl − 2) · · · (ndl − nd + 1)
. (24)

In general, the algorithm to generate initial solutions pro-
ceeds as stated in the following.

1) Data and initialization: Required data include the set of
possible device locationsΩb, its cardinalityndl and the
number of SVCs to be installednd.
Set the iteration counter toν = 1, and all the compo-
nents ofu0 to zero.

2) Random number generation: Obtain the first random
integer numberrn using the expression:

rn = round(uniform(0.5, ndl + 0.5)). (25)

3) SVC placement: Set thej-th component in vectoru0

corresponding to thern-th element in setΩb to 1.
4) Stopping criterion: Ifν = nd the procedure concludes,

otherwise update the iteration counterν = ν + 1, the
set Ωb and the remaining number of possible device
locationsndl = ndl − 1, and continue in 2).

The flow chart of the algorithm to generate random initial
solutions is shown in Fig 3.

IV. CASE STUDIES

A. Southwest England 40-bus system

This section discusses a case study based on the 40-bus test
system shown in Fig. 4. This system is based on a simplified

nd: Number SVC devices

ndl: Number possible locations

Initialializing:

ν = 1;  u0 = 0; Ωb

Random number generation:

rn = round(uniform(0.5,ndl+0.5))

Updating: 

ν = ν+1; ndl = ndl −1; Ωb

ν = nd

Yes

End 

program

No

Set the u0 component:

u0( j ) = 1; j = Ωb(rn)

Fig. 3. Flow chart of the algorithm to generate random initial solutions.
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4038

15
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Fig. 4. 40-bus test system.

model of the Southwest England power system and firstly
appeared in [15]. Most power flow data can be found in [16]
while the system limits used in this paper are provided in the
Appendix. The network includes 40 buses, 65 lines and 17
loads for a total base-case load of 41 MW and 7 MVAr. There
are three voltage levels, namely 132, 33 and 11 kV. A feeding
substation is located at bus 40 at 132 kV. Buses 20, 22, and
29-37 are at 11 kV, while all remaining buses are at 33 kV.
Generators are located at buses 6, 13, 18, 20, 22, 24 and 39.

The original network does not contain SVCs. In this case,
compensation is obtained through a static condenser at bus
12 and proper values of tap ratios of 33/11 kV transformers.
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These are the transformers that connect buses 1-29, 2-30, 3-
31, 4-31, 5-32, 8-36, 9-35, 10-33, 11-34, 27-37 and 28-37,
respectively. For the sake of simplicity, we assume that the
tap ratios of these transformers are fixed.

The maximum number of SVCs that can be allocated in this
system is 33, i.e., the number of buses minus the number of
generators (no SVC is located at generator buses).

In the simulations, we consider the base case scenario
and the four “worst case” contingencies corresponding to the
outages of the lines 29-1, 26-39, 17-18, and 5-6, respec-
tively. Contingency scenarios are sorted in increasing order
of potential damage. Furthermore, we also study a multi-
scenario model where the objective function (14) is the average
loading margin for the different cases multiplied by their
corresponding probabilities of occurrence, i.e.,

z = −

nc
∑

s=1

psµs, (26)

where theps-values for this example arep1 = 80% for the
base case, andp2 = 8%, p3 = 4%, p4 = 4%, andp5 = 4%
for the line outage cases, respectively.

Up to 5 SVCs (i.e.nd ∈ [1, 5]) and 200 different initial
solutions for each number of SVCs have been considered
for each scenario. Observe that fornd = 1, it is sufficient
to place the SVC at each bus and then to check which
placement provides the maximum loading margin. However,
the casend = 1 is included for the sake of completeness. The
optimization problems are solved using CPLEX 10.0 (master
problem) and MINOS 5.51 (subproblems) under GAMS [17]
with a Sun Fire V20Z with 2 processors at 2.40 GHz and 8
GB of RAM memory.

Table I provides the results for each scenario and for each
value of nd. The first column shows the maximum loading
margin without SVC placement (µ0) and the percentage of
times the Benders procedure fails to converge (NC%) for the
first 200 × 5 runs (5 cases considering from 1 to 5 SVCs
and 200 simulations for each case). The loading marginµ
provided in the third column of Table I is the maximum value
obtained after the 200 simulations. The fourth column provides
the number of times that the Benders procedure converges to
the global optimal solution using different initial solutions. The
SVC placement depicted in the fifth column corresponds to the
maximum value of the loading marginµ. The last column of
Table I shows the CPU time in seconds needed to complete the
200 simulations for each scenario. Observe that the number
of SVCs located is always equal tond, although (12) only
imposes that the number of SVCs is smaller than or equal to
nd. This result is to be expected since the higher the number
of SVCs installed in the network, the higher the loadabilityof
the network.

It is relevant to note that for the outage of line 29-1
(contingency 1), the solution without SVCs is not feasible,
in fact µ0 = 0.637 < 1. After the SVC placement, the system
complies the N-1 security criterion, i.e.,µ > 1 for nd ≥ 1.

Note that for the multi-scenario case, the result up to 3 SVCs
is equal to the results for the base case and the contingency
case 4, while for 4 and 5 SVCs the result of the multi-scenario
case is the same as that of contingency case 4.

TABLE I

MAXIMUM LOADING MARGIN AND SVC LOCATIONS FOR DIFFERENT

SCENARIOS FOR THE40-BUS TEST SYSTEM.

Case nd µ Freq. Positions CPU(s)

Base case 1 1.991 55 29 21.69
µ0 = 1.865 2 2.092 73 29,30 31.87
NC% = 84.85 3 2.191 10 29,30,32 59.28

4 2.290 6 29,30,31,32 79.27
5 2.369 4 28,29,30,31,32 117.53

Contingency 1 1 1.267 182 29 95.03
µ0 = 0.637 2 1.411 200 29,30 116.58
NC% = 44.7 3 1.431 28 29,30,31 336.06

4 1.444 11 2,29,30,31 432.26
5 1.450 10 1,2,29,30,33 637.29

Contingency 2 1 1.534 183 26 26.75
µ0 = 1.471 2 1.576 200 25,26 39.39
NC% = 53.15 3 1.592 198 12,25,26 96.22

4 1.610 196 12,25,26,33 152.75
5 1.630 193 12,15,25,26,33 198.83

Contingency 3 1 1.759 11 29 20.70
µ0 = 1.640 2 1.848 130 29,30 27.5
NC% = 86.78 3 1.939 21 29,30,36 50.31

4 2.026 5 29,30,32,37 95.24
5 2.096 2 27,28,29,30,32 164.61

Contingency 4 1 1.839 60 29 17.97
µ0 = 1.720 2 1.932 75 29,30 27.40
NC% = 83.5 3 2.021 18 29,30,32 56.11

4 2.087 1 28,29,30,32 83.16
5 2.145 19 1,2,19,30,31 148.68

Multi-scenario case 1 1.897 29 29 1597.84
µ0 = 1.736 2 1.997 131 29,30 1696.54
NC% = 91.6 3 2.084 114 29,30,32 3463.68

4 2.170 2 28,29,30,32 4320.69
5 2.226 1 1,2,19,30,31 6269.62

µ0: Maximum loading margin without SVC.
NC%: Percentage of convergence failures.

Figure 5 illustrates the loading marginµ as a function of
the number of installed SVCs,nd. For the sake of illustration,
in this case up to 20 SVCs (i.e.,nd ∈ [1, 20]) have been
considered. The black dots indicate the best values ofµ
found, while light gray dots indicate the values ofµ obtained
with sub-optimal SVC placements. Figure 5 (a) depicts the
solution for the base case and for each contingency considered
separately. As expected, the base case leads to the highest
loading margins. Observe that the optimal value ofµ saturates
below 20 SVCs for contingencies 1 and 2. This result is to
be expected, since the maximum loading condition is given
by the transmission line thermal limits or by the saddle-node
bifurcation if there is no reactive power problem. Figure 5
(b) depicts the solution of the multi-scenario problem that
includes a weighted average of the base case and the 4
worst contingencies. Observe that the low probability of the
contingencies with respect to the base case leads to high values
of the loading marginµ. Simulation results considering the
20 cases show that the % of variation, which is equal to the
difference between the maximum and the minimum obtained
loading margins divided by the average value (µ̄), is between
0 and 4% for all cases. The percentage of times the Benders
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Fig. 5. Evolution of the loading marginµ as a function of the number
of installed SVCsnd for the different cases. (a) Separate solutions for the
base case and each contingency. (b) Solution of the multi-scenario model that
includes the base case and all contingencies.

TABLE II

QV SENSITIVITY ANALYSIS FOR THE40-BUS TEST SYSTEM

JME Most Related Bus JME Most Related Bus

0.06915 29 0.32905 27

0.16723 37 0.35115 34

0.19875 33 0.37380 34

0.23486 35 0.50884 30

0.30984 29 0.56537 2

JME: Jacobian Matrix Eigenvalue.

decomposition fails to converge varies between 0 and 98%
across the cases considered. The simulation number where the
maximum loading margin is obtained ranges from 1 to 194.

For the sake of comparison, Table II provides the ten small-
est eigenvalues of the reduced power flow Jacobian matrix
of the 40-bus system obtained using the well-knownQV
sensitivity approach proposed in [18]. The Jacobian matrix
is computed for the base case loading condition.

According to theQV sensitivity analysis, the buses associ-
ated through participation factors with the lowest eigenvalues
are the best candidates for reactive power compensation. The
weakest bus is bus 29, which is also the bus provided in Table

TABLE III

COMPARISON BETWEENBENDERSDECOMPOSITION ANDQV

SENSITIVITY ANALYSIS FOR THE40-BUS TEST SYSTEM

Benders Decomposition QV Sensitivity Analysis

nd Bus # µ Bus # µ

1 29 1.991 29 1.991

2 29, 30 2.092 29, 37 2.088

3 29, 30, 32 2.191 29, 33, 37 2.129

4 29, 30, 31, 32 2.290 29, 33, 35, 37 2.209

5 28, 29, 30, 31, 32 2.369 27, 29, 33, 35, 37 2.283

TABLE IV

COMPARISON BETWEEN MULTI-START BENDERSDECOMPOSITION AND

STANDARD BENDERS DECOMPOSITION FOR THE40-BUS TEST SYSTEM

Multi-start Benders Decomposition Standard Benders

nd Bus # µ Bus # µ

1 29 1.991 7 1.951

2 29, 30 2.092 29, 30 2.092

3 29, 30, 32 2.191 29, 30, 32 2.191

4 29, 30, 31, 32 2.290 29, 30, 31, 32 2.290

5 28, 29, 30, 31, 32 2.369 2, 29, 30, 31, 32 2.353

I for nd = 1. However, as the maximum number of devicend

increases, the sensitivity analysis is only able to providerough
information on the best bus candidates for the placement of
SVC devices. For example, fornd = 2, the optimal solution
in Table I for the base case provides buses 29 and 30. On
the other hand, the sensitivity analysis is only able to show
that buses 29 and 30 are among the 10 weakest buses of the
system. Table III shows a comparison of the maximum loading
marginsµ obtained using the proposed Benders decomposition
technique and theQV sensitivity analysis method. Observe
that the Benders decomposition technique is able to find better
SVC placement solutions fornd > 1.

It should also be noted that if a standard Benders procedure
is used [14] (with no re-start), the solution attained is generally
worse than the one obtained by the proposed multi-start
Benders algorithm. Table IV compares the solutions of both
methods.

TABLE V

OPTIMAL LOADING MARGIN AND SVC LOCATIONS FOR THEIEEE

300-BUS SYSTEM

Case nd µ Freq. Positions CPU(s)

Base case 1 1.079 120 154 16395.43

µ0 = 1.068 2 1.128 1 105,124 19614.56

NC% = 68.4 3 1.147 8 124,136,270 39129.58

4 1.192 2 96,124,130, 270 45958.82

5 1.207 5 97, 111, 152, 159, 27072836.48

µ0: Maximum loading margin without SVC.
NC%: Percentage of convergence failures.
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TABLE VI

RESULTS UP TO5 SVCS FOR THEIEEE 300-BUS SYSTEM

nd µ µ̄ σ range % variation % failure nsim ndif nsol

1 1.079 1.078 0.00395 0.01190 1.10379 70.20 169 4 231

2 1.129 1.128 0.00527 0.06129 5.43239 20.20 466 5 26565

3 1.147 1.143 0.00699 0.07946 6.95149 66.00 186 9 2027795

4 1.192 1.171 0.04576 0.12433 10.61796 91.00 243 4 115584315

5 1.207 1.173 0.05930 0.13977 11.91395 94.60 87 3 5247527901

B. IEEE 300-bus test system

This section presents and discusses a case study based on
the IEEE 300-bus test system [19]. The aim of this case study
is to show that the proposed Benders decomposition technique
is feasible for large networks. Due to space limitations, only
the base case is considered in this case study.

The maximum number of SVCs that can be allocated in this
system is 231, i.e., the number of buses minus the number of
generators.

For this case study, we consider up to 5 SVCs (i.e.nd ∈
[1, 5]), and 500 different initial solutions for each valuend of
SVCs.

Results for the IEEE 300-bus test system are given in
Table V, which provides similar information as Table I but
for the IEEE 300-bus system.

Table VI provides simulation results up to 5 SVCs, whereµ̄
is the loading margin mean value for the 500 simulations,σ is
the loading margin standard deviation, range is the difference
between the maximum and the minimum loading margins
obtained, “% of variation” is equal to the range divided by
the average value (µ̄), “% of failure” is the percentage of
times the Benders decomposition fails to converge,nsim is
the simulation number corresponding to the maximum loading
margin,ndif is the number of different solutions obtained by
means of the Benders decomposition, andnsol is the number
of different possible SVC placement configurations obtained
through the inverse of formula (24).

Note that the solution for more than one SVC does not
include the optimal position for 1 SVC, showing that theQV
sensitivity analysis method fails to obtain the global optimum
if the number of SVC is greater than 1.

The most likely global optima for the placement of 1 to
5 SVCs are obtained at iterations 169, 466, 186, 243 and
87, respectively (see Table VI). Note that in most cases the
optimum is obtained in fewer iterations than 500 (number of
restarts).

C. 1228-bus Italian network

For the sake of completeness the proposed method is applied
to a real-world 1228-bus model of the Italian transmission grid.
Due to space limitations only the base case is considered.

For this case study, we consider up to 3 SVCs and 200
different initial solutions for each valuend of SVCs.

Results are given in Table VII, which provides similar
information as Table I. Table VII also provides information
about the first solution of the method, corresponding to the

TABLE VII

OPTIMAL LOADING MARGIN AND SVC LOCATIONS FOR THE1228-BUS

ITALIAN SYSTEM

Case nd µ Freq. Positions CPU(s)

Base case 1 1.8846∗ 30 240 463.55

µ0 = 1.8716 1.8847 1 313 92710.35

NC% = 88.2 2 1.8975∗ 5 240,241 819.51

1.8975 10 240,241 or 242 163902.57

3 1.9090∗ 1 240,242,358 935.82

1.9104 28 240,241,242 187163.98

µ0: Maximum loading margin without SVC.
NC%: Percentage of convergence failures.
∗: Standard Benders solution.

standard Benders approach. The following observations are
pertinent:

1) The solution provided by the multi-start Benders method
is better than the one provided by the sensitivity based
technique. Note that the three nodes associated with
the weakest eigenvalues of the Jacobian matrix are 483,
758 and 413, respectively. The objective function values
corresponding to the positioning of one SVC at node
483, two SVCs at nodes 483 and 758, and three SVCs
at nodes 483, 758 and 413, areµ1 = 1.8752, µ2 =
1.8755 andµ3 = 1.8788, respectively, which are worse
solutions than those provided by the proposed technique
(see Table VII).

2) Even if the Benders decomposition method with only
one starting point is considered (standard Benders),
results are better than those obtained using the sensitivity
method.

3) For 2 SVCs there are two equivalent solutions because
the corresponding objective functions are almost the
same and nodes 241 and 242 are geographically very
close. Since this is the only solution obtained through the
simulation process, we can affirm with a high confidence
level that this is the global optimum.

4) For the case of three SVCs, only two different solutions
are obtained through the simulation process. Note that
the optimal solution corresponds to nodes 240, 241, and
242.

Buses 483 and 413 are located in the North-East of Italy,
while bus 758 is in the South. These buses belong to scarcely
interconnected sub-transmission networks at 132 kV. Hence
these buses present high participation factors with respect to
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the lowest eigenvalues of the power flow Jacobian matrix.
Although placing SVC devices at these buses can locally
improve voltage levels, this does not necessarily implies a
benefit for the whole Italian grid.

Buses 313, 240, 241 y 242 are well interconnected 400 kV
buses located in the North of Italy, in between Switzerland and
the industrial area of Milan. These buses are not particularly
weak since they are well interconnected to the HV network.
However, a voltage support of the heavily loaded area of Milan
improve the loading margin of the whole Italian grid. Observe
also that to place several SVCs at buses geographically close
basically means that the requirement of reactive power of the
area of Milan is higher than the maximum capacity of a single
SVC. This information cannot be deduced from the sensitivity
analysis.

Finally, note that the computing time needed by the sensi-
tivity technique is basically the time required to compute the
eigenvalues of the corresponding power flow Jacobian matrix.
This time is generally much smaller than the computing time
required by the proposed Benders procedure. For example,
to locate 3 SVCs in the 1228-bus Italian network, the time
required by the sensitivity technique is 10 seconds (that is,
the CPU time needed to compute the 3 smallest eigenvalues
of the power flow Jacobian matrix and the associated bus
participation factors) whereas the time required by the Benders
technique considering 200 restarts is about 52 hours.

D. Remarks

From the results obtained in the case studies, the following
observations are pertinent:

1) The maximum loading margin saturates as the number of
SVC devices increases under two different situations: a)
the maximum loading condition is imposed by transmis-
sion line thermal limits or b) a saddle-node bifurcation
occurs if there is no reactive power shortage. For both
cases adding new SVCs does not improve significantly
the loading margin.

2) Differences inµ range up to 7%. This fact can be useful
in case that a suboptimal solution is more acceptable
than the optimal one for practical reasons (e.g. reacha-
bility of the bus, availability of the area around the bus
for the installation of the SVC, etc.).

3) The number of times that the Benders procedure fails to
converge, ranging from0% to 98%, and the number of
repetitions of the different solutions obtained show both
the globally non-convex character of the problem and
the existence of local convex regions.

4) Simulations point out the existence of clearly different
local minima.

5) The number of occurrences of the globally optimal
solution varies considerably with the number of SVCs
to be installed.

6) For the considered case-studies, the proposed method
performs better than the sensitivity method. For the base
case, the optimal loading margins obtained from 2 up
to 5 SVCs is always higher than the solution obtained
through the sensitivity method (see Table III).

7) The proposed method allows an easy implementation
of multi-scenario problems, which can be solved in a
distributed fashion. This allows considering all different
situations at once.

8) The proposed technique is feasible for realistic size
networks. Note that CPU time varies fairly linearly
with the number of SVCs. Computational times are
reasonable considering that a design problem is solved.

9) Even thought the proposed technique requires higher
computing time than the sensitivity method, results are
considerably better, which makes this approach more
appropriate for the allocation of SVCs.

V. CONCLUSIONS

This paper presents a multi-start Benders decomposition
technique to maximize the loading margin of a transmission
network through the placement of SVCs. A base case and
different contingency cases are considered. The proposed al-
gorithm proves to be efficacious in identifying optimal or near-
optimal solutions and robust in what refers to computational
behavior. The three case studies analyzed provide detailed
numerical simulations and prove the good behavior of the
proposed technique. The solutions obtained are superior to
those obtained using a sensitivity analysis procedure for a
number of installed SVCs greater than one.

Future work will focus on modeling other FACTS different
than SVCs (e.g. series FACTS devices).

APPENDIX

This appendix provides the limit values used in the 40-bus
case study so that the interested reader can readily reproduce
paper results. All p.u. values shown in this section are referred
to a 100 MVA power base and to transformer voltage ratings.
Table VIII provides transmission line and transformer thermal
limits, while Table IX provides generator reactive power limits.
Maximum and minimum voltage limits are considered to be
1.1 and 0.9 p.u., respectively, for all buses. Finally, SVC
maximum and minimum susceptance limits arebmax

Ci
= 0.02

p.u. andbmin
Ci

= −0.02 p.u., respectively.
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