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Frequency Divider as a Continuum
Georgios Tzounas, IEEE Member, Ioannis Dassios, and Federico Milano, IEEE Fellow

Abstract— The letter describes a novel, continuum-based ap-
proach, to capture the evolution of electromechanical dynamics
in a power network following a disturbance. Such approach is
based on the frequency divider formula (FDF), which was recently
proposed by the third author. A key point in obtaining the FDF
as a consequence of a continuum, is to show that the spatial
rate of change, at a given time, of the frequency along a lossless
line is constant. The proposed derivation is then compared with
the electromechanical wave approach (EWA), which has been
discussed in the literature in a variety of hues and is aimed
at modeling the propagation in a power system of frequency
oscillations following a disturbance. The discussion illustrates
similarities and differences between FDF and EWA.

Index Terms— Electromechanical dynamics, continuum, fre-
quency divider, electromechanical wave theory.

I. INTRODUCTION

The letter deals with an important problem in power en-
gineering, i.e. how to accurately capture electromechanical
dynamics along transmission lines following a disturbance in
the system. A well-known approach to this problem is to treat
the power system as a distributed continuum [1]–[7].

Modeling power system electromechanical dynamics as a
continuum was first proposed in [1]. Therein, Semlyen intro-
duced the electromechanical wave theory, according to which,
distributing the parameters of lines and generators as a contin-
uum allows representing angle and frequency disturbances as
traveling waves. The EWA was fostered by the development
of phasor measurement units (PMUs) in the 1990s, when
tests of synchronized PMUs observed cases where devices
remote to the disturbance location appeared to respond with
a significant delay [2]. In the EWA, this response is linked to
the disturbance’s travel speed, which is estimated to be much
lower than the speed of light.

Being the focus on electromechanical dynamics, network
electromagnetic transients can be assumed to be in quasi-
steady state, as they are much faster than the time-scale of
interest. Under this assumption, several authors have worked
on different aspects of the EWA. Some studies have focused on
removing a part of assumptions of [1], thus resulting in more
complex models that allow for anisotropy, non-homogeneity,
and losses in the system, e.g. [3]. Recent works have further
investigated properties of the EWA and contributed to the
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definition of relevant protection and control schemes, e.g. [4]–
[7].

This letter revisits the idea of modelling power systems as
a continuum, and shows that the frequency divider formula
(FDF) – see [8] for its theoretical foundation and [9] for a
hardware-in-the-loop validation – is in effect a consequence
of a continuum-based model. In contrast to EWA, the FDF
continuum does not require to distribute the synchronous
machines (SMs) but works directly on the original system.
This has significant consequences, as shown below, on the
interpretation of the dynamic behavior of the system and the
propagation of electromechanical oscillations.

The novel contributions of the paper are as follows:
• It is shown that the spatial distribution of frequency varia-

tions along a transmission line is linear. As a consequence
of the above linearity, the FDF – first proposed to estimate
bus frequencies – is formulated as a continuum model
that captures the frequency variations along transmission
lines.

• A comprehensive comparison between the EWA and
FDF-based continuum is provided which features the
several advantages that the second has over the first. In
particular, it is shown that the EWA leads to inconsis-
tent results, namely, fast dynamics that cannot originate
from the actual electromechanical models of synchronous
machines.

II. FREQUENCY DIVIDER-BASED CONTINUUM MODEL

The active power flow between two connected buses in a
power network, say from bus h to bus k, is as follows:

phk = vhvk [Ghk cos(θh − θk) +Bhk sin(θh − θk)] , (1)

where Ghk+ȷBhk is the element (h, k) of the grid admittance
matrix and vi∠θi is the voltage phasor at bus i = {h, k}.

Let us assume a lossless connection (i.e., Ghk ≈ 0),
negligible voltage bus voltage magnitude variations (i.e., vh ≈
vk ≈ const. pu), and that the voltage phase angle difference
is small (i.e., sin(θh−θk) ≈ θh−θk). These assumptions lead
to rewrite (1) as follows:

p̃hk ≈ vhvk
θ̃h − θ̃k

X
, (2)

where X = 1/Bhk and ∼ denotes variation of a quantity
with respect to a known operating condition, i.e. ỹ = y − yo.
Differentiation of (2) with respect to time gives:

dp̃

dt
= −ωbvhvk

ω̃h − ω̃k

X
= −γ

ω̃h − ω̃k

X
, (3)

where ωb is the nominal frequency in rad/s; γ = ωbvhvk;
p̃ = −p̃hk is taken with negative sign for consistency with the
notation utilized in [1]; and ω̃i is the frequency variation in pu



at bus i = {h, k}. The equations so far are written considering
a lumped model of the line. Assuming a homogeneous line,
one can consider an infinitesimal section of the line conductor
with reactance ℓdX = Xdx, with ℓ being the length of the
line. Since there are no losses, the variation dp̃ of active power
along dx is zero:

∂p̃

∂x
= 0 , (4)

which means that the active power is only a function of time
p̃(x, t) = p̃(t). Equation (4) implies that, at any given time
t, ∂p̃/∂t is the same at every point of the line. Then, if
∂ω̃ denotes the frequency variation along the infinitesimal
section ∂x of the line, we get that the spatial rate of change
of the frequency ∂ω̃/∂x = const., and thus the following
relationship holds:

ω̃h − ω̃k

l
=

∂ω̃

∂x
.

Then, (3) can be rewritten in terms of partial derivatives, as
follows:

∂p̃

∂t
= −κ

∂ω̃

∂x
, (5)

where κ = γ ℓ/X . The result above indicates that the assump-
tion made in [8] that the frequency distributes linearly along
a line is true if the line is lossless.

The same conclusion on the distribution of the frequency
can be obtained also by removing the hypothesis of lossless
line. Assuming an homogeneous lossy conductor with constant
cross section, one has:

∂p̃

∂x
=

ρ ı2

A
, (6)

where A and ρ are the cross-section and the resistivity of the
line, respectively; and ı2 is the square of the current injection
imposed in the line. If there is no dispersion, the current is
the same in every point of the line at any given t. Hence, the
right-hand side of (6) depends only on time and the solution
of the partial differential equation (6) has the form:

p̃(x, t) = p̃1(x) + p̃2(t) , (7)

where p̃1(x) = (ρ ı2/A)x and p̃2(t) is an arbitrary function
of time. That is, the active power is the sum of two functions,
one dependent only on the position and the other only on
time. Hence, we also have that, at a given time, the derivative
∂p̃(x, t)/∂t = ∂p̃2(t)/∂t is that same at every point of the
line. This confirms, also for lossy lines, the main conclusion
of the FDF, namely that ∂ω̃/∂x = const. along a transmission
line at any given time t.

Finally, in [8], the SM rotor speed ωr is linked to the bus
frequency through the classical model, i.e.:

∂p̃

∂t
= − ω̃r − ω̃h

X ′
d

, (8)

where X ′
d is the lumped transient reactance behind the emf e′q

of the machine connected to bus h, and where it is assumed
that e′q ≈ vh ≈ 1 [8]. Losses are ignored. With a proper
coefficient κ, (8) can be rewritten as a continuum in the form
of (5).

III. ELECTROMECHANICAL WAVE APPROACH

The original EWA-based continuum power system model,
presented in [1], considers a distributed classical machine
model with X ′

d = 0 in a homogeneous, lossless, and radial
system with constant voltages. Under these assumptions, and
using the notation described in the previous section, the rate
of change of the active power along the line becomes:

∂p̃

∂x
= −m

∂ω̃r

∂t
= −m

∂ω̃

∂t
, (9)

where m = M/ℓ, with M being the starting time of the
lumped SM1 and ω̃r = ω̃ because X ′

d = 0. Combining (5)
and (9), the following expression can be obtained:

∂2ω̃

∂x2
=

m

κ

∂2ω̃

∂t2
, (10)

which describes a wave with travel speed [1]:

c =

√
κ

m
= ℓ

√
vhvk
X

ωb

M
, (11)

where vhvk/X is in pu and ωb/M has the units of s−2.

IV. FDF-BASED CONTINUUM VS EWA

The expressions of ∂p̃/∂x given by (9) and (4) indicate a
conceptual difference between the two approaches. That is, as
opposed to the EWA, the FDF continuum does not require to
distribute the inertia of SMs. It works directly on the original
topology of the system using the standard power equations.
This point has several relevant consequences.

In the first place, we note that the accuracy of the FDF
is largely independent from the location of SMs. On the
other hand, the accuracy of the EWA is known to be highly
topology-dependent. In particular, the EWA should be ex-
pected to show good accuracy only in part of the grid where a
large number of small-capacity SMs are located very close
to each other, to an extent that they can be reasonably
approximated with a continuum [2]. Large distances between
generators, which are common in real-world networks, com-
bined with a rough distribution of SM parameters, result to
an EWA continuum model of compromised fidelity. A simple
example that illustrates this issue is discussed in Section V-A.

As a second remark, we observe that the implementation
of the EWA comes with a need for extensive model simplifi-
cation. For example, most works based on the EWA assume
that SMs are represented using a classical second-order SM
model. Moreover, the family of EWAs is intended for SM-
dominated power systems. On the other hand, the FDF can
handle higher-order machine models and can be generalized to
take into account any device connected to the network (and, in
turn, any boundary condition imposed to the partial differential
equations that describe the continuum), including converter-
based resources [10].

It is also relevant to note that, in [1], it is assumed that
∂ω̃/∂x = const., as opposed to deriving it as we have done

1M can be obtained as the sum of the starting times of the machines
distributed along the line. Note that the distribution of the machines does
not represent an actual topology but is fictitious; it serves to facilitate the
application of the EWA to the examined system.
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in Section II. In [1], assuming linear variation of the frequency
is required to impose the following identity:

ℓ

X

∂ω̃

∂x
=

∂ω̃

∂X
≡ ω̃h − ω̃k

X
. (12)

However, imposing (12) is not satisfied by the wave equation
(10). This point is further illustrated in Section V.

Finally, from (11), we note that c depends on the length of
the line ℓ. The longer the line, thus, the faster the propagation
of the electromechanical waves. This appears to be another
inconsistency of the EWA as the travel speed is expected to
depend on the properties of the medium (e.g., on the reactance
per unit length) but not on its geometry (the length itself).

V. CASE STUDY

In this section we discuss two examples. The first example
provides a comparison of the FDF-based continuum with the
EWA, based on an one-machine infinite bus (OMIB) system.
The second example is based on a multi-machine system and
focuses on the ability of the FDF continuum to capture the
evolution of electromechanical dynamics in a power network.

A. One-Machine Infinite-Bus System

Consider the example of a classical SM connected to an
infinite bus through a lossless line of length l. The follow-
ing parameter values are assumed: SM starting time M =
20 MWs/MVA; damping coefficient D = 2 pu; transient
reactance X ′

d = 0.3 pu; line reactance X = 0.085 pu.
Figure 1 shows the angle, frequency, and active power

variations along the transmission line, as obtained using the
FDF and the EWA. The disturbance considered is a step
variation of the SM’s rotor angle. Figures 1a and 1c indicate
that all points along the line respond instantaneously following
the disturbance. On the contrary, Figs. 1b and 1d suggest a
wave-like response, where points remote to the disturbance
show a delayed reaction. Compared to the response of the FDF
continuum which, as expected, lies in the electromechanical
time scale, the EWA leads to an inaccurate representation of
frequency variations, since it produces fast dynamics that are
apparently spurious, see Fig. 1.{b, d, f}. Small-signal stability
analysis of the system further confirms these results. The
deviations are a consequence of distributing the SM, i.e. of (9)
as opposed to (4). Figures 1e and 1f show that, as expected,
the active power flow with the FDF is the same in every point
of the line for any given t, whereas in the EWA, the active
power varies as a continuum.

B. Multi-Machine Chain System

This section considers the 5-machine test system shown
in Fig. 2. The following parameters are assumed: Mi =
10 MWs/MVA; Di = 3 pu, i = {1, 2, . . . , 5}; X = 0.1 pu.
This system is not realistic per se. However, in the same vein
as in [1] and following works based on the EWA, we assume
that the system in Fig. 2 approximates a long power corridor
of a complex and meshed grid.

The disturbance is a step variation of the rotor angle of the
SM at bus 1. Figure 3 shows the response of the FDF for two
values of the SM transient reactances.
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Fig. 1: OMIB system: FDF compared to EWA approach.
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Fig. 2: 5-machine radial system.

a) X ′
d,i = 2 pu: Results show that, in this scenario, rotor

speeds are not representative of the frequency variations at
the buses to which the SMs are connected. Moreover, in the
first instants after the disturbance, all buses appear to respond
instantaneously, with the slope of the response at each bus
depending on the distance from the disturbance location.

b) X ′
d,i → 0 pu: In this scenario, SM rotor speeds rep-

resent the bus frequency variations in the system. Some buses
appear to respond with a considerable “delay.” This effect is
triggered by the values of the transient reactances being very
small, which leads the initial slopes of the frequency variations
at buses far away from the source of the disturbance to be
close to zero. With the FDF and given that line dynamics are
neglected, all buses respond instantaneously to the disturbance.
Thus, potential bus responses that appear delayed are in effect
simply slow. In chain-like systems that include multiple small
machines, this time response is, ultimately, proportional to the
electrical distance from the disturbance location.

VI. CONCLUSIONS

The letter shows that the linear distribution of the frequency
along transmission lines can be deduced from the power
flow equations under proper approximations. The letter also
shows how this distribution leads to the FDF. The EWA,
while imposing this linear distribution, ultimately leads to
a wave model that may be inconsistent with the hypothesis
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Fig. 3: 5-machine test system: FDF response.

on which it is built. The case study discusses two examples
that provide a comparison between the FDF and the EWA.
The comparison features limitations and inconsistencies of
the EWA, and illustrates the ability of the FDF continuum to
study the evolution of electromechanical dynamics, including
frequency and power variations, in a power network. Future
work will focus on removing some of the simplifications on
which the FDF is based, and deduce the consequences of a
more realistic model on the continuum modeling approach.

REFERENCES

[1] A. Semlyen, “Analysis of disturbance propagation in power systems
based on a homogeneous dynamic model,” IEEE Trans. on Power
Apparatus and Systems, no. 2, pp. 676–684, 1974.

[2] J. S. Thorp, C. E. Seyler, and A. G. Phadke, “Electromechanical wave
propagation in large electric power systems,” IEEE Trans. on Circuits
and Systems I: Fundamental Theory and Applications, vol. 45, no. 6,
pp. 614–622, 1998.

[3] M. Parashar, J. S. Thorp, and C. E. Seyler, “Continuum modeling
of electromechanical dynamics in large-scale power systems,” IEEE
Trans. on Circuits and Systems I: Regular Papers, vol. 51, no. 9, pp.
1848–1858, 2004.

[4] H. Zhang, F. Shi, Y. Liu, and V. Terzija, “Adaptive online disturbance
location considering anisotropy of frequency propagation speeds,” IEEE
Trans. on Power Systems, vol. 31, no. 2, pp. 931–941, 2015.

[5] T. Bi, J. Qin, Y. Yan, H. Liu, and K. E. Martin, “An approach for
estimating disturbance arrival time based on structural frame model,”
IEEE Trans. on Power Systems, vol. 32, no. 3, pp. 1741–1750, 2016.

[6] T. Li, G. Ledwich, Y. Mishra, J. H. Chow, and A. Vahidnia, “Wave aspect
of power system transient stability—part ii: Control implications,” IEEE
Trans. on Power Systems, vol. 32, no. 4, pp. 2501–2508, 2016.

[7] D. Huang, J. Qin, H. Liu, J. H. Chow, J. Zhao, T. Bi, L. Mili, and
Q. Yang, “An analytical method for disturbance propagation investiga-
tion based on the electromechanical wave approach,” IEEE Trans. on
Power Systems, vol. 36, no. 2, pp. 991–1001, 2020.
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