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Summary

In this article we use a generalized system of differential equations of fractional order
to incorporate memory into an electricity market model. By using this idea, essential
information from the past, such as the behavior of market participants, namely sup-
pliers and consumers, can be used and have impact on future decisions. We construct
the fractional–order dynamical model, study its solutions, and provide closed formu-
las of solutions. Finally, we provide an application by using the proposed formula of
solutions as well as a numerical example which also compares the proposed model
with a conventional, integer-order electricity market model. Results indicate that the
inclusion of memory leads market participants to adopt a conservative behaviour.
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1 INTRODUCTION

Electricity markets are essential tools due to the fact that they offer flexibility to a power system by maintaining the power
balance until physical generation or consumption.
With the rise of several renewable sources such as wind and solar energy, see1, the importance of studying and go deeper into

electricity market models has become more important than ever.
It can be said that time scale of electricity markets is similar to long-term power system dynamics like secondary frequency

control2. However, this similarity on the timescales causes also a concern on the coupling between the dynamic response of the
power system and electricity markets, see3,4,5.
The model described in the present work is a generalized system of differential equations of fractional order. It is highly

realistic since it succeeds to describe the dynamic aspects of systems and incorporate the desired memory into the electricity
market model by adding the essential information how the memory of market participants, namely suppliers and consumers,
impacts on their behavior, i.e., on their bids. Thus it incorporates more of the factors that determine the model than any of
the previous works seen in the literature. In other words, taking into account the memory of market participants is of utmost
importance in economic processes as they can remember the changes of economic indicators and factors in the past6. These
changes can then impact their behaviour and decisions.
Generalized systems of differential equations, see7,8,9,10,11,12, and difference equations, see13,14,15 have attracted the interest

of several researchers in the last few decades. Some interesting results have also been obtained for singular systems of equations
evolving fractional operators, see16,17,18,19,20,21,22,23,24. A generalized system of linear differential equations has the form:

E x′(t) = Ax(t) + !(t) , (1)

where E,A ∈ ℂr×m, x ∶ [0,+∞) → ℂm×1, ! ∶ [0,+∞) → ℂr×1. The matrices E, A can be non-square (r ≠ m), or, square
(r = m) with E regular (detE ≠ 0) or singular (detE=0). In the case that the matrices are non-square or square with E singular
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we will refer to (1) as a singular system. In the case that the matrices are square with E regular we will refer to (1) as a regular
system.
The pencil of a regular system has finite eigenvalues, while the pencil of a singular system has additional type of invariants,

an infinite eigenvalue in the case of a regular pencil, see21, and in addition row-column minimal indices in the case of a singular
pencil, see12. This type of systems appear in control theory, see25,26,27, and in several applications in electrical engineering such
as the modeling of electrical circuits, see11, and power system dynamics, see28,29,30,31. Despite several studies, most articles deal
with regular systems and avoid the case of singularities, a case that is also included in this article.
The paper is organized as follows. Section 2 contains the description of the proposed model, a system of fractional differential

equations equations governing the whole model. In section 3 we study the solutions of the system and provide closed formulas
of solutions. Section 4 contains an example using the obtained formula of solutions, and a practical application that provides
further insight and better understanding as regards the control actions, system design by using a special and realistic case of the
fractional order dynamical system. Section 5 concludes the entire paper.

2 THE MODEL

The original version of Alavarado’s model proposes a dynamic market model to study the couplings between the dynamics of
the power network and the short-term electricity market, see4. It is based on the following equations:

• The first equation accounts for the system power imbalance indirectly, i.e., through the deviation frequency of the Center-
of-Inertia (CoI) with respect to the reference frequency:

T�
d�(t)
dt

= −Hd�(t) +KE(!ref − !CoI(t)), (2)

where d�(t)
dt

, �(t) is the marginal electricity price, and the electricity price respectively; !ref represents the reference fre-
quency; !CoI(t) represents the frequency of the CoI, i.e. !ref − !CoI(t) is the deviation frequency of the CoI with respect
to the reference frequency; T� is the time constant; Hd is the deviation with respect to a perfect tracking integrator and
for a Low-Pass Filter (LPF) it isHd = 1; and KE can be written as K ⋅ �(t) and be used as feedback gain.

• The second equation assumes that a generator will increase its power production if the electricity price is higher than its
marginal cost:

Tgi
dΔPgi(t)
dt

= �(t) − cgiΔPgi(t) − bgi, (3)

where ΔPgi(t) is the generator active power; cgi, bgi are the parameters of the marginal cost and benefit of the generator,
respectively; and Tgi is the time constant;

• The third equation assumes that a load will decrease its power consumption if the electricity price �(t) is higher than its
marginal benefit.

Tdi
dΔPdi(t)

dt
= −�(t) + cdiΔPdi(t) + bdi, (4)

whereΔPdi(t) is the load active power; cdi, bdi are the parameters of the marginal cost and benefit of the load, respectively;
Tdi is the time constant.

If one assumes loads to be inelastic (i.e., not considering (4)), then the market model (2)-(3) has a very similar structure to that
of a conventional secondary frequency control, i.e. the automatic generation control (AGC)27. To better illustrate similarities,
the control diagrams of a conventional AGC and that of the market model (2)-(3) (or MAGC) are depicted in Fig. 1 and Fig. 2 ,
respectively. It can be seen that the input of both controllers is the same. The AGC includes an integrator with gainKo that has a
similar function with the LPF block of the market, namely, to reduce the frequency oscillations. Finally, the outputs of the AGC
and MAGC are distributed to the turbine governors (TGs) of the synchronous generators proportionally to their droops (Ri) and
bids, respectively.
Equations (2)-(3) can be written as a matrix equation and form the generalized system of differential equations (1) with

E =
⎡

⎢

⎢

⎣

T� 0 0
0 Tgi 0
0 0 Tdi

⎤

⎥

⎥

⎦

, A =
⎡

⎢

⎢

⎣

−Hd 0 0
1 −cgi 0
0 0 cdi

⎤

⎥

⎥

⎦

, x(t) =
⎡

⎢

⎢

⎣

�(t)
ΔPgi(t)
ΔPdi(t)

⎤

⎥

⎥

⎦

,
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FIGURE 1 AGC control diagram.
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FIGURE 2 MAGC control diagram.

and

B =
⎡

⎢

⎢

⎣

!ref − !CoI(t) 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, u =
⎡

⎢

⎢

⎣

KE
−bgi
bdi

⎤

⎥

⎥

⎦

, ! = Bu.

Next we will define the Caputo fractional derivative that we will use as tool for our model.

Definition 1.1. (see19,21) Let Y ∶ [0,+∞) → ℝm×1, t → Y , denote a column of continuous and differentiable functions. Then,
the Caputo (C) fractional derivative of order a, 0 < a < 1, is defined by:

Y (a)
C (t) ∶= Y (a)(t) = 1

Γ(1 − a)

t

∫
0

[

(t − x)−aY ′(x)
]

dx .

In order to simply explain why the proposed fractional derivative and its memory effect will relate to our model, we will use the
discrete version of (1). An alternative way to represent this system, formed through (2)-(4), is the following generalized discrete
time system:

E xk+1 = Axk + !k, k ∈ ℕ . (5)
Where

E =
⎡

⎢

⎢

⎣

T� 0 0
0 Tgi 0
0 0 Tdi

⎤

⎥

⎥

⎦

, A =
⎡

⎢

⎢

⎣

−Hd 0 0
1 −cgi 0
0 0 cdi

⎤

⎥

⎥

⎦

, xk =
⎡

⎢

⎢

⎣

�k
ΔPgik
ΔPdik

⎤

⎥

⎥

⎦

.

and

B =
⎡

⎢

⎢

⎣

!ref − !CoI(t) 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, u =
⎡

⎢

⎢

⎣

KEk
−bgi
bdi

⎤

⎥

⎥

⎦

, ! = Buk.

Equation (5) is a first-order matrix difference equation. It cannot account for the memory of the market participants. The term
xk+1 is only related to just a previous step in time namely the term xk. Hence, when using (5), we obtain the values of �k+1,
ΔPgik+1, ΔPdik+1 by only absorbing information from just a previous step in time k, and not considering all the ”history”’ of
changes at times k − 1, k − 2, ..., k0, where k0 the initial time step which can be assumed zero, i.e. k0 = 0. To include the
information from all these time steps we will use the fractional nabla operator.
To define this fractional operator and how it is formed, we initially have to to define the backward difference operator of first

order, denoted by ∇ (nabla operator), which when applied to a vector of sequences Y k ∶ ℕ → ℂm it produces the following
result:

∇Y k = Y k − Y k−1;
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while the backward difference operator of second order, denoted by ∇2, is defined by:

∇2Y k = ∇(∇Y k) = Y k − 2Y k−1 + Y k−2;

Similarly, the �th backward difference operator, ∇� , is defined by:

∇�Y k =
1

Γ(� + 1)

�
∑

j=0
(−1)j 1

Γ(j + 1)Γ(� − j + 1)
Y k−j , � ∈ ℕ.

Where Γ(⋅) is the Gamma function. In order to define the fractional nabla operator, see20, we set:

∇�Y k = f k.

Where f k, known vector of sequences. By solving for Y k we get:

Y k =
1
Γ(�)

k
∑

j=�
(k − j + 1)�−1f j = ∇−�f k.

Where bc̄ = Γ(b+c)
Γ(b)

. Based on this expression, i.e. ∇−�f k = 1
Γ(�)

∑k
j=�(k − j + 1)�−1f j , if we define ℕ� by ℕ� =

{�, � + 1, � + 2, ...}, � positive integer, and n fractional then the nabla fractional operator of n-th order for any Y k ∶ ℕa → ℂm

is defined by:

∇−n� Y k =
k
∑

j=�
bk−jY j ,

where bk−j =
1
Γ(n)
(k − j + 1)n−1, j = �, � + 1, ..., k − 1, k.

As already written, one has to consider not only one time step to absorb information from the past but also the ”history”
of changes throughout the timeline 0, 1, ..., k − 1, k. This should be applied to three equations that form system (5) and have a
different effect in each case:

T��k+1 =
k
∑

j=0

1,k−j

{

−Hd�j +KE(!ref − !CoIj)
}

TgiΔPgik+1 =
k
∑

j=0

2,k−j

{

�j − cgiΔPgij − bgi
}

TdiΔPdik+1 =
k
∑

j=0

3,k−j

{

−�j + cdiΔPdij + bdi
}

,

where 
i,k−j , i = 1, 2, 3, represents the memory functions. Assuming a power-law fading memory, the functions 
(t) can be
written as follows:


i,k−j =
1

Γ(ni)
(k − j + 1)ni−1, j = 0, 1, ..., k − 1, k ,

where Γ(ni) are gamma functions; Equivalently we then have:

T�∇n1� �k+1 = −Hd�k +KE(!ref − !CoIk)
Tgi∇n2� ΔPgik+1 = �k − cgiΔPgik − bgi

Tdi∇
n3
� ΔPdik+1 = −�k + cdiΔPdik + bdi .

(6)

Where 0 ≤ ni ≤ 1 are the fractional-orders of the nabla discrete operator; Returning to the continues time system (1), and by
using the previous discussion, we propose the following fractional-order version of the dynamic electricity market model:

T��
(n1)(t) = −Hd�(t) +KE(!ref − !CoI(t)) , (7)

TgiΔP
(n2)
gi (t) = �(t) − cgiΔPgi(t) − bgi , (8)

TdiΔP
(n3)
di (t) = −�(t) + cdiΔPdi(t) + bdi , (9)

where 0 ≤ ni ≤ 1 are the orders of the fractional derivatives. It’s matrix form is:

E xΞ(t) = Ax(t) + !(t), xΞ =
⎡

⎢

⎢

⎢

⎣

�(n1)(t)
ΔP (n2)gi (t)
ΔP (n3)di (t)

⎤

⎥

⎥

⎥

⎦

. (10)
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Where E, A, x(t), B, u as defined in (1). The pencil of the system is equal to, see26:

⎡

⎢

⎢

⎣

sn1 0 0
0 sn2 0
0 0 sn3

⎤

⎥

⎥

⎦

E −A =
⎡

⎢

⎢

⎣

sn1 0 0
0 sn2 0
0 0 sn3

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

T� 0 0
0 Tgi 0
0 0 Tdi

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

−Hd 0 0
1 −cgi 0
−1 0 cdi

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

sn1T� +Hd 0 0
−1 sn2Tgi + cgi 0
1 0 sn3Tdi − cdi

⎤

⎥

⎥

⎦

.

The determinant of the pencil is equal to (sn1T� +Hd)(sn2Tgi + cgi)(sn3Tdi − cdi) which means that the pencil of this system is
regular, though the system can be singular if at least one of the elements T�, Tgi, Tdi is zero or tends to be close to zero.
Note that the proposedmodel represents real-time electricity markets (e.g., balancingmarkets in Europe) where thememory of

suppliers and consumers is taken into account. The latter is critical as it models the behaviour ofmarket participants. For example,
it is shown that market participants can use available market information to form price expectations and to exploit arbitrage
opportunities32. Therefore, modelling such a behaviour is of utmost importance in current and future electricity markets.

3 SOLUTIONS INVESTIGATION

Since the pencil of system (10) is regular there exist solutions for the system, see21, and in addition sE − A is also a regular
pencil, see26. Because of the structure of E there exist invariants of the following type:

• � finite eigenvalues of algebraic multiplicity pi, i = 1, ..., �, ..., 3;

• an infinite eigenvalue of algebraic multiplicity q,

where
∑�
i=1 pi = p, p + q = 3. There exist non-singular matrices P , Q ∈ ℂ3×3 such that, see33:

PEQ = Ip ⊕Hq , PAQ = J p ⊕ Iq , (11)

where J p ∈ ℂp×p is a Jordan matrix, constructed by using the finite eigenvalues of the pencil and their algebraic multiplicities,
Hq ∈ ℂq×q is a nilpotent matrix with index q∗, constructed by using the infinite eigenvalue of the pencil and its algebraic
multiplicity. We have the following cases:

1. The pencil of (10) to have all its eigenvalues finite. This is the most realistic case since it would mean that T�, Tgi, Tdi are
all non-zero. In this case let

P =
⎡

⎢

⎢

⎣

P 1,n1
P 1,n2
P 1,n3

⎤

⎥

⎥

⎦

, Q =
[

Qp,n1 Qp,n2 Qp,n3

]

,

where P 1,n1 ∈ ℂ1×3, P 1,n2 ∈ ℂ1×3, P 1,n3 ∈ ℂ1×3, and Qp,n1 ∈ ℂ3×1, Qp,n2 ∈ ℂ3×1, Qp,n3 ∈ ℂ3×1. Then (11) will take the
form:

PEQ = Ip , PAQ = J p .
We can write (10) in the form:

⎡

⎢

⎢

⎢

⎣

dn1
dtn1

0 0
0 dn2

dtn2
0

0 0 dn3
dtn3

⎤

⎥

⎥

⎥

⎦

Ex = Ax + ! .

By using the transformation x = Qz, then multiplying by P and using the above notation and (11) we get:

z(n1)p̂ (t) = J p̂zp̂(t) + P 1,n1!(t) ;

z(n2)p̄ (t) = J p̄zp̄(t) + P 1,n2!(t) ;

z(n3)p̃ (t) = J p̃zp̃(t) + P 1,n3!(t) ,

where

z(t) =
⎡

⎢

⎢

⎣

zp̂(t)
zp̄(t)
zp̃(t)

⎤

⎥

⎥

⎦

, J p = J p̂ ⊕ J p̄ ⊕ J p̃ .
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We consider the first equation. By applying the Laplace transform  we get:

{z(n1)p̂ (t)} = J p̂{zp̂(t)} + P 1,n1{!(t)}.

Let {zp̂(t)} = wp̂(s). Then:
(sn1I p̂ − J p̂)wp̂(s) = sn1−1C1 + P 1,n1{!(t)} ,

or, equivalently,
wp̂(s) = s
−1(sn1Ip̂ − J p̂)−1C1 + (sn1I p̂ − J p̂)−1P 1,n1{!(t)} .

By taking into account that (sn1I p̂ − J p̂)−1 =
∑∞
k=0 s

−(k+1)n1J kp̂ we have:

wp̂(s) =
∞
∑

k=0
s−n1k−1J kp̂C1 +

∞
∑

k=0
s−(k+1)n1J kp̂P 1,n1{!(t)}.

Then:

zp̂(t) =
∞
∑

k=0

tn1k

Γ(kn1 + 1)
J kp̂C1 +

t

∫
0

(t − �)(k+1)n1−1

Γ(kn1 + n1)
J kp̂!(�)d� .

To conclude, by similarly solving the other two equations we arrive at the general solution of (10) for this case:

x(t) = Qz(t) =
3
∑

i=1
Qp,ni[

∞
∑

k=0

tnik

Γ(kni + 1)
J ki C i +

t

∫
0

(t − �)(k+1)ni−1

Γ(kni + ni)
J ki !(�)d�] . (12)

Where J 1 = J p̂, J 2 = J p̄, J 3 = J p̃.

2. The second case is the pencil of (10) to have an infinite eigenvalue. This means that at least one of the terms T�, Tgi, Tdi is
zero or tends to zero. The number of terms that are zero is the algebraic multiplicity q of the infinite eigenvalue. Let Tdi be
the term that is zero but let T�, Tgi be strictly non-zero. Then the algebraic multiplicity q of the infinite eigenvalue is 1. Let:

P =
⎡

⎢

⎢

⎣

P 1,n1
P 1,n2
P 2,n3

⎤

⎥

⎥

⎦

, Q =
[

Qp,n1 Qp,n2 Qq,n3

]

,

where P 1,n1 ∈ ℂ1×3, P 1,n2 ∈ ℂ1×3, P 1,n3 ∈ ℂ1×3, and Qp,n1 ∈ ℂ3×1, Qp,n2 ∈ ℂ3×1, Qp,n3 ∈ ℂ3×1. The equations in (11)
will take the form:

PEQ = I p̂ ⊕ I p̄ ⊕ 0 , PAQ = J p̂ ⊕ J p̄ ⊕ 1 .
We can write (10) in the form:

⎡

⎢

⎢

⎢

⎣

dn1
dtn1

0 0
0 dn2

dtn2
0

0 0 dn3
dtn3

⎤

⎥

⎥

⎥

⎦

Ex = Ax + ! .

By using the transformation x = Qz, then multiplying by P and using (11) we get:

z(n1)p̂ (t) = J p̂zp̂(t) + P 1,n1!(t) ;

z(n2)p̄ (t) = J p̄zp̄(t) + P 1,n2!(t) ;

0 = zq̃(t) + P 2,n3!(t) ,
where

z(t) =
⎡

⎢

⎢

⎣

zp̂(t)
zp̄(t)
zq̃(t)

⎤

⎥

⎥

⎦

.

The first two equations have same solutions as in case 1. The third equation has solution:

zq̃(t) = −P 2,n3!(t) .

To conclude, by using x(t) = Qz(t), we arrive at the general solution of (10) for this case:

x(t) =
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2
∑

i=1
Qp,ni[

∞
∑

k=0

tnik

Γ(kni + 1)
J ki C i +

t

∫
0

(t − �)(k+1)ni−1

Γ(kni + ni)
J ki !(�)d�] −Qq,n3P 2,n3!(t) . (13)

Where J 1 = J p̂, J 2 = J p̄.

We proved the following theorem:

Theorem 3.1. Using the spectrum of the pencil sE −A, the general solution of the fractional order system (10) is given by:
x(t) =

∑3
i=1 f (Ti)Qp,ni[

∑∞
k=0

tnik

Γ(kni+1)
J ki C i + ∫ t

0
∑∞
k=0

(t−�)(k+1)ni−1

Γ(kni+ni)
J ki !(�)d�]−

∑3
i=1 g(Ti)Qq,niP 2,ni!(t) .

(14)

Where T1 = T�, T2 = Tgi, T3 = Tdi. The matrices J 1, J 2, J 3 are Jordan matrices defined in (11), (12), (13), and constructed by
the finite eigenvalues of the pencil sE −A, and their algebraic multiplicity, while Qp,ni ∈ ℂ3×p are the matrices constructed by
the linear independent eigenvectors related to the finite eigenvalues of the pencil. C i ∈ ℂp×1 are constant vectors. The matrices
Qq,ni , P 2,ni are matrices with left and right eigenvectors of the infinite eigenvalue. Finally

f (Ti) =
{

1, Ti ≠ 0
0, Ti = 0

}

, g(Ti) = 1 − f (Ti).

4 EXAMPLES

As a first example we assume system (10) with T� = Hq = cgi = 1, Tgi = −cdi =
1
2
, Tdi =

1
6
. The pencil sE −A has three finite

eigenvalues s1 = −1, s2 = −2, s3 = −3 with eigenvectors

Qp,n1 =
⎡

⎢

⎢

⎣

1
1
−3

⎤

⎥

⎥

⎦

, Qp,n2 =
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

, Qp,n3 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

,

respectively. Hence the solution of the system is equal to:
x(t) =

⎡

⎢

⎢

⎣

1
1
−3

⎤

⎥

⎥

⎦

[
∑∞
k=0

tn1k

Γ(kn1+1)
(−1)kC1 + ∫ t

0
∑∞
k=0

(t−�)(k+1)n1−1

Γ(kn1+n1)
(−1)k!(�)d�]+

⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

[
∑∞
k=0

tn2k

Γ(kn2+1)
(−2)kC2 + ∫ t

0
∑∞
k=0

(t−�)(k+1)n2−1

Γ(kn2+n2)
(−2)k!(�)d�]+

⎡

⎢

⎢

⎣

0
0
1

⎤

⎥
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FIGURE 3 Oustaloup’s recursive approximation block diagram.

In order to implement or simulate in practice the proposed fractional market model (7)-(9), one needs to approximate the
fractional dynamics. In our second example we will keep the order of equation (7) fractional n1 = �, 0 < � < 1, but will assume



8 AUTHOR ONE ET AL

that n2 = n3 = 1. We will use the Oustaloup’s Recursive Approximation (ORA) method to approximate the fractional electricity
price dynamics. The generalized ORA of a fractional derivative of order � is defined as34:

s� ≈ !�ℎ
N
∏

k=1

s + !′k
s + !k

, (15)

where !′k = !b!
(2k−1−�)∕N
v , !k = !b!

(2k−1+�)∕N
v , !v =

√

!ℎ∕!b. In the above expressions, [!b, !ℎ] is the frequency range
for which the approximation is designed to be valid; N is the order of the polynomial approximation. The term “generalized”
means that, in (15), N can be either even or odd34, while the term “recursive” implies that the values of !′k, !k result from a
set of recursive equations. The block diagram of ORA is shown in Fig. 3 . Further details on the ORA method and its accuracy
can be found in27 and references therein.
In addition to the simulations of this example we provide a comparison between the conventional integer-order MAGC (I-

MAGC) (2)-(4), n1 = n2 = n3 = 1, and the fractional-order MAGC (F-MAGC) (7)-(9) with n1 = �, n2 = n3 = 1. The objective
is to evaluate the impact of these models on the behavior of market participants, e.g. generator schedules, and on the overall
dynamic response of the power system.
The case study is based on a modified version of the well-knownWSCC 9-bus test system, whose details are provided in35. All

simulations below are performed using the Python-based power system analysis software tool Dome36. Note that Dome allows
simulating larger networks (e.g., thousand of buses). In this case, the main difference will be an increase in the computational
burden of the simulation.
Some long-term power system dynamics, e.g. the dynamics of the AGC, evolve with a timescale similar to today’s short-

term market dynamics2. For this reason, it is important to understand how the frequency with which the market price is updated
impacts on the decision-making process of market participants and on power system dynamics. In the continuous market models
considered in this paper, the information on how often the price is updated is contained in the value of the gain KE in (2).
Figure 4 shows that the value of KE has a negligible impact on the overall dynamic of the sysytem, i.e. the frequency nadir

is the same in all cases. This was expected as the MAGC is slow with respect to the primary frequency control. Figure 5 , on the
other hand, shows that the schedule of generator active power are by the value of KE . Specifically, the faster the price updates,
i.e. the higher KE , the faster the generator response and consequently the higher the generator schedules. These results indicate
that how often the market updates the price (which in this continuous model is modelled by means of KE) impacts the schedule
of the suppliers or generators.

0 50 100 150 200 250 300
Time [s]

0.985

0.9875

0.99

0.9925

0.995

0.9975

1

1.002

ω
C

oI
[p

u(
H

z)
]

KE = 20
KE = 10
KE = 1

FIGURE 4 Trajectories of the frequency of the CoI.

The trajectories of the AGC set-point ΔP1 of generator 1 are shown in Fig. 6 . Higher gain values – and hence faster price
updates – lead to faster AGC response and lower AGC set-points. This has to be expected as the AGC has to compensate the
difference in the market schedules since at the end the total power output of the generator has to be the same. These results
imply that, depending on the market design and rewards of the ancillary services, generators may prefer to compensate power
unbalances through the short-term market or through the secondary frequency control.
Figure 7 shows the trajectories of !CoI for both models. It is interesting to observe that both the I-MAGC and F-MAGC lead

to the same frequency nadir and very similar frequency overshoots. The memory of market participants, thus, does not have a
relevant impact on the overall power system dynamics. These results are consistent with those shown in Fig. 4 .
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FIGURE 5 Trajectories of the MAGC active power schedules of generator 1.
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FIGURE 6 Trajectories of the AGC active power set-point of generator 1.
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FIGURE 7 Comparison of the trajectories of the frequency of the CoI as obtained with the I-MAGC and F-MAGC.

Next we compare the impact that different values of � have on the behavior of the generators. Figure 8 shows that the F-
MAGC leads to different (in this case, lower) market schedules as compared to that of the I-MAGC. This result suggests that
the F-MAGC is less prone to the price changes. In other words, taking into account the memory of market participants makes
them more conservative. This conclusion is supported by Fig. 9 . This figure shows that the AGC set-point for the fractional
market is less prone to changes compared to the conventional market. Furthermore, the higher the fractional order �, the faster
the generator response, and consequently the higher the generator market schedules.
Finally, we compare the impact on the performance of I-MAGC and F-MAGC of a 10% sudden load decrease occurring at

t = 1 s.
Figure 10 shows that the F-MAGC is again less prone to price changes compared to the I-MAGC. For the considered

contingency, such a behaviour leads the market to schedule higher generator powers.
Figure 11 shows the AGC power output and indicates that the I-MAGC case responds faster than the F-MAGC to the contin-

gency. This result is consistent with that obtained in the previous section, i.e. the memory effect makes the market participants
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FIGURE 8 Trajectories of the MAGC active power schedules of generator 1.
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FIGURE 9 Trajectories of the AGC active power set-point of generator 1.
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FIGURE 10 Trajectories of the MAGC active power schedules of generator 1.
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FIGURE 11 Trajectories of the AGC active power set-point of generator 1.
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less sensitive to changes in the operating point of the grid. This conservativeness, however, has to be compensated, at least in
the short term, by the secondary frequency regulation.

5 CONCLUDING REMARKS

In this article we constructed a dynamical model for electricity markets based on differential equations of fractional order. We
studied then its solutions and provided both analytical and numerical examples including a comparison to a model of integer
order differential equations. We can conclude that beside electricity markets, the proposed method can be used in the studies of
other similar models where the memory effect appears. In fact, this type of operators are very useful tools for time scale analysis
with applications in macroeconomic problems37,38,39, electrical power systems40 and energy storage models41.
As a further extension of this article, we aim to study the stability of the equilibriums of this system, perturbation methods and

construct optimization techniques in order to obtain optimal solutions for the case of existence but not uniqueness of solutions
for this system. Finally, we aim to consider and introduce additional fractional operators such as forward fractional operators
which, unlike the backward operator used in this article, emphasize on future predictions. For all this there is already some
research in progress.
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