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Summary

We consider both primal and dual formulations of singular autonomous systems of
three di�erent types of fractional order di�erential equations. We present a compre-
hensive study which proves that by using the spectrum of a linear pencil, a polynomial
matrix of first order, and not the fractional order pencil of the prime system we
will receive information for all properties for both the prime, and its dual system.
In addition, by using this spectrum, the solutions for all systems can be obtained by
using formulas without additional computational cost. Finally, we provide examples
including a computational analysis in Modelica.
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1 INTRODUCTION

Singular linear systems of di�erential & di�erence equations appear in control theory4,19, 25, circuit theory22, 5 and in the
modeling (dynamics) of electrical power systems11,24, 32.

In the last decade, many authors have studied problems of fractional di�erential/di�erence equations and have derived inter-
esting results on di�erent types of problems for given initial or boundary conditions, see2,9, 10, 12, 13, 14, 20, 30, 34. Focus has also
been given on the mathematical modelling of many phenomena by using fractional operators. The theory of fractional di�er-
ential equations (FDEs) is a promising tool for applications in neural networks29, in physics8, 31, biology17, and control theory,
see6,33.

Despite several studies, there are still parts missing for a complete and coherent theory of systems of FDEs in order to use
this type of systems as a tool in mathematical modeling in a similar way to the classical case. In addition, generalized FDEs and
cases such as singularities of certain systems of FDEs have been mostly avoided in the framework of fractional calculus. Hence,
explicit and easily testable methods are required in order to solve generalized systems of FDEs, so that applied researchers can
redesign their models using fractional operators where this is appropriate.

In this article we consider both primal and dual formulations of singular systems of FDEs. We use the Caputo fractional
derivative and two recently defined alternative versions of this derivative, the Caputo–Fabrizio, and the Atangana–Baleanu
fractional operator.

We consider the following system of fractional di�erential equations (FDEs):

E 0D
a

t
x(t) = Ax(t), (1)

and its dual version
A 0D

a

t
Éx(t) = E Éx(t). (2)

Where x : [0,+ÿ] ô Cmù1, E,A À Cmùm, with E singular (detE=0). We use three di�erent definitions for the fractional-a
order operator 0D

a

t
:
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Definition 1.1. Let x : [0,+ÿ) ô Rmù1, t ô x, denote a column of di�erentiable functions. Then:

• The Caputo (C) fractional derivative of order 0 < a < 1, is defined by, see2,18:

0D
a

t
x(t) := C

0D
a

t
x(t) = 1

�(1 * a)

t

 
0

⌅
(t * ⌧)*ax®(⌧)

⇧
d⌧ . (3)

• The Caputo–Fabrizio (CF ) fractional derivative of order 0 f a f 1, is defined by, see3:

0D
a

t
x(t) := CF

0D
a

t
x(t) = 1

1 * a

t

 
0

⌧
e
* a

1*a (t*⌧)x®(⌧)
�
d⌧. (4)

• The Atangana–Baleanu in Caputo sense (ABC) fractional derivative of order 0 f a f 1, is defined by, see1:

0D
a

t
x(t) := ABC

0D
a

t
x(t) = B(a)

1 * a

t

 
0

E
a

4
*a (t * ⌧)a

1 * a

5
x
®(⌧)d⌧. (5)

Where E
a
(!) = ≥ÿ

k=0
!
k

�(1+ak) , see2,18. B(a) is a normalized function with B(0) = B(1) = 1.

In terms of applications, the Caputo fractional derivative (C) is used widely in the literature but as stated in1,3, the changes made
in the kernel of the Caputo fractional derivative, in order to provide these new alternative versions, can capture more e�ciently
several phenomena. A comparison of this three fractional operators can be found when modelling the heat transfer at nanoscale,
i.e. nanometers & picoseconds, see8.

Some very recent results on applications of singular systems of FDEs include the construction of a model of fractional order
controllers for electrical power system applications, see33, while by using the properties of the fractional order derivative, in
terms of memory, a new model of singular FDEs is constructed to represent more e�ciently electricity markets, see21. In both
these models duality analysis can be a fundamental tool for the small-signal stability analysis of the power systems as it can
provide insight and knowledge on the solutions, the invariants and the linear programming used, see7,23.

In these applications the question that arises is which one of the three fractional operators, defined in (3), (4), and (5), is the
most appropriate to use. The answer to this question defers for each application. If we consider the first application mentioned
above, the fractional order depends on the reason of why the fractional controller is used. If for example the problem is a stability
issue then the operator which can be stabilise more quickly or e�ciently and with less computational cost the system is the one
which is more e�cient. In this case and by using the formulas provided in Theorem 3.1 in Section 3, even optimization methods
might be required to obtain the optimal solution. However, it is worth mentioning that to the best of our knowledge, see also32,
the (CF), (AB) have never been used in fractional control theory. In addition, the duality results obtained in this article will help
researchers who are using this type of controllers to determine eigenvalues with very large real parts. All this is a great prospect
for future research.

Using the Laplace transform L into (1), see2,9, 18, we have:

L{E 0D
a

t
x(t)} = L{Ax(t)},

or, equivalently,
zEw(s) *wx(0) = Aw(s),

or, equivalently,
(zE *A)w(s) = wx(0).

Where L{x(t)} = w(s), and if 0D
a

t
is the fractional derivative by definition of

(i) (C) then z := z(s) = s
a, w = s

a*1;

(ii) (CF) then z := z(s) = s

s+a(1*s) , w = 1
s+a(1*s) ;

(iii) (ABC) then z := z(s) = B(a)
1*a

s
a

sa+ a

1*a
, w = B(a)

1*a
s
a*1

sa+ a

1*a
.
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The pencil of (1) will then be zE * A. For each di�erent definition of the fractional operators, (C), (CF), (ABC), z is defined
di�erently. It can be observed that it is complicated to use the non-linear pencil zE * A to study system (1). Instead of using
this pencil we will use the pencil sE *A, i.e. the pencil of system Ex

®(t) = Ax(t), to study (1) for the three di�erent definitions
of fractional derivatives, and its respectively dual systems (2). In addition, we will prove that if the solution of this first order
system is known, then the solutions for both prime and dual systems of FDEs can be obtained without additional computational
cost. To sum up, the results in this article prove that despite having a fractional order system, we can use the spectrum of a pencil
of first order to have information for all these systems, both prime & dual, independently the definition of fractional derivative
used and without any additional computational cost.

2 PRELIMINARIES AND USEFUL TOOLS

The pencil sE * A can have eigenvalues: �0 = 0, �
i
ë 0 with i = 1, 2, ..., ⌫ * 1, �ÿ ô ÿ, with algebraic multiplicities p0, pi,

q respectively, and p0 +
≥⌫

i=1 pi = p, p + q = m. Let B
n1

À Cn1ùn1 ,B
n2

À Cn2ùn2 , … , B
n
r

À Cn
r
ùn

r . Then, the block diagonal
matrix blockdiag

�
B

n1
,B

n2
,… ,B

n
r

�
will be denoted via the direct sum B

n1
‚ B

n2
‚5‚ B

n
r

. There exist invertible matrices
P ,Q À Cmùm such that

PEQ = I
p0
‚ I

p
‚H

q
, PAQ = J

p0
‚ J

p
‚ I

q
. (6)

Where J
p0

À Cp0ùp0 , J
p
À Cpùp, H

q
À Cqùq are Jordan matrices related to the zero eigenvalue, the non-zero finite eigen-

values, infinite eigenvalue respectively, see chapter 12 in16, while P , Q contain the left, right eigenvectors of the eigenvalues
respectively. Let

P =
b
f
fd

P
p0

P
p

P
q

c
g
ge
, Q =

⌅
Q

p0
Q

p
Q

q

⇧
,

where P
p0

À Cp0ùm, P
p
À Cpùm, P

q
À Cqùm, and, Q

p0
À Cmùp0 , Q

p
À Cmùp, Q

q
À Cmùq are matrices with rows the left, and

columns the right respectively eigenvectors of the zero, non-zero, infinite eigenvalues.
The pencil ÉsA * E can then have eigenvalues: É�0 = lim

�ÿôÿ
1
�ÿ

= 0, É�
i
= 1

�
i

ë 0 with i = 1, 2, ..., ⌫, and É�ÿ = 1
�0

ô ÿ.
Then if É⌫ is the number of the finite eigenvalues (zero & non-zero) of ÉsA * E:

• If 0, ÿ are eigenvalues of sE *A then É⌫ = ⌫;

• If 0 is an eigenvalue of sE *A but ÿ is not then É⌫ = ⌫ * 1;

• If 0 is not an eigenvalue of sE *A but ÿ is then É⌫ = ⌫ + 1.

There exist invertible matrices ÉP , ÉQ À Cmùm, see chapter 12 in16, such that:
ÉPA ÉQ := ÉA

w
= I

Ép
‚ ÉH

Éq
, ÉPE ÉQ := ÉE

w
= ÉJ

Ép
‚ I

Éq
. (7)

Let
ÉP =

4
ÉP
Ép

ÉP
Éq

5
ÉQ =

⌅
ÉQ
Ép
ÉQ
Éq

⇧
,

with Ép bethe sum of all algebraic multiplicities of the infinite eigenvalues, and Éq = p0 algebraic multiplicity of the infinite
eigenvalue. Where ÉP

Ép
À C Épùm, ÉP

Éq
À C Éqùm, and ÉQ

Ép
À Cmù Ép, ÉQ

Éq
À Cmù Éq . Where ÉP

Ép
, ÉP

Éq
are matrices with rows, and columns

of the left, and right eigenvectors of the finite eigenvalues, and the infinite eigenvalue respectively.

Theorem 2.1. We consider the pencils sE *A, ÉsA*E with E,A À Cmùm, and E singular. Let P , Q, and ÉP , ÉQ be the matrices
defined in (6), and (7) respectively. Then:

ÉP
Ép
=
4
P

p

P
q

5
, ÉQ

Ép
=
⌅
Q

p
Q

q

⇧
. (8)

Proof. We consider the system Ex
®(t) = Ax(t), and substitute the transformation x(t) = Qz(t). By multiplying by P we obtain

PEQz
®(t) = PAQz(t).
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Let

z(t) =
b
f
fd

z
p0
(t)

z
p
(t)

z
q
(t)

c
g
ge
,

with z
p0
(t) À Cp0ù1, z

p
(t) À Cpù1, z

q
(t) À Cqù1. Then by using the form of Q in (6), we arrive at three subsystems:

z
®
p0
(t) = J

p0
z
p0
(t);

z
®
p
(t) = J

p
z
p
(t);

H
q
z
®
q
(t) = z

q
(t).

The first two subsystems have solutions:

z
p0
(t) = e

J
p0 tz

p0
(0), z

p
(t) = e

J
p
t
z
p
(0).

If with 0
ij

we indicate the zero matrix of i rows, j columns respectively, and with q< the index of the nilpotent matrix H
q

such
that Hq<

q
= 0

q,q
, then if we take the third subsystem and repeatedly multiply by H

q
:

H
q
z

®

q
(t) = z

q
(t)

H
2
q
z

®®

q
(t) = H

q
z

®

q
(t)

H
3
q
z

®®®

q
(t) = H

2
q
z

®®

q
(t)

H
4
q
z
(4)
q
(t) = H

3
q
z

®®®

q
(t)

4
H

q<*1
q

z
(q<*1)
q (t) = H

q<*2
q

z
(q<*2)
q (t)

H
q<
q
z
(q<)
q (t) = H

q<*1
q

z
(q<*1)
q (t)

.

And the sum of it gives:
⇠ q<*1…

i=1
H

i

q
z
(i)
q
(t)
⇡
+H

q<
q
z
(q<)
q

(t) =
⇠ q<*1…

i=1
H

i

q
z
(i)
q
(t)
⇡
+ z

q
(t),

or, equivalently, by taking into account that Hq<
q
= 0

q,q
, at the solution:

z
q
(t) = 0

q,1.

Consequently, we obtain:

x(t) = Qz(t) =
⌅
Q

p0
Q

p
Q

q

⇧ bf
fd

e
J
p0 tz

p0
(0)

e
J
p
t
z
p
(0)

0
q,1

c
g
ge
,

or, equivalently,
x(t) = Q

p0
e
J
p0 tz

p0
(0) +Q

p
e
J
p
t
z
p
(0),

or, equivalently,
x(t) =

⌅
Q

p0
Q

p

⇧
e
J
p0+ptz

p0+p(0),

where eJ p0+pt = e
J
p0 t ‚e

J
p
t, and z

p0+p(0) =
4
z
p0
(0)

z
p
(0)

5
is a constant vector. This means that

⌅
Q

p0
Q

p

⇧
is the matrix that contains

the p0 + p linear independent eigenvectors of the finite eigenvalues of sE *A. Let us now consider the system AÉx
® = E Éx. We

then apply the transformation Éx(t) = QÉz(t), multiply by P , and arrive at:

PAQÉz
®(t) = PEQÉz(t),

or, equivalently, by using (6):

[J
p0
‚ J

p
‚ I

q
] Éz®(t) = [I

p0
‚ I

p
‚H

q
] Éz(t),

whereby setting

Éz(t) =
b
f
fd

Éz
p0
(t)

Éz
p
(t)

Éz
q
(t)

c
g
ge
,
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where Éz
p0
(t) À Cp0ù1, Éz

p
(t) À Cpù1, Éz

q
(t) À Cqù1, we obtain:

J
p0
Éz
®
p0
(t) = I

p0
Éz
p0
(t);

J
p
Éz
®
p
(t) = I

p
Éz
p
(t);

I
q
Éz
®
q
(t) = H

q
Éz
q
(t).

The matrix J
p0

is nilpotent because there are only zeros in its diagonal. Furthermore, the matrices J
p
, I

q
are both invertible

since they are either upper triangular matrices or diagonal with non-zero elements in its main diagonal. Since the first subsystem
is similar to H

q
z
®
q
(t) = z

q
(t) we have:

Éz
p0
(t) = 0

p0,1.

For the other two:
Éz
p
(t) = e

ÉJ
p
t
Éz
p
(0), and Éz

q
(t) = e

ÉJ
q
t
Éz
q
(0),

Where
ÉJ
p
= (J

p
)*1, ÉJ

q
= H

q
.

Consequently by using Q as defined in (8) we obtain:

Éx(t) = Q Éz(t) =
⌅
Q

p0
Q

p
Q

q

⇧
b
f
f
fd

0
p0,1

e
ÉJ
p
t
Éz
p
(0)

e
ÉJ
q
t
Éz
q
(0)

c
g
g
ge
,

or, equivalently,
Éx(t) = Q

p
e
ÉJ
p
t
Éz
p
(0) +Q

q
e
ÉJ
q
t
Éz
q
(0),

or, equivalently,
Éx(t) =

⌅
Q

p
Q

q

⇧
e
J
p+q t Éz

p+q(0),

where eJ p+q t = e
ÉJ
p
t
‚e

ÉJ
q
t, Éz

p+q(0) =
4
Éz
p
(0)

Éz
q
(0)

5
. Hence

⌅
Q

p
Q

q

⇧
has as columns the linear independent eigenvectors of the finite

eigenvalues of ÉsA * E. Thus:
ÉQ
Ép
=
⌅
Q

p
Q

q

⇧
.

Let us now consider the system
A

T
Éx
®T = E

T
Éx
T
,

or, equivalently,
Éx
®
A = ÉxE.

Where Éx À C1ùm. We apply the transformation
Éx(t) = Éz(t)P

into the above system, and multiply by Q:
Éz
®(t)PAQ = Éz(t)PEQ,

or, equivalently,

Éz
®(t)[J

p0
‚ J

p
‚ I

q
] = Éz(t)[I

p0
‚ I

p
‚H

q
],

whereby setting
Éz(t) =

⌅
Éz
p0
(t) Éz

p
(t) Éz

q
(t)

⇧
,

with Éz
p0
(t) À C1ùp0 , Éz

p
(t) À C1ùp, Éz

q
(t) À C1ùq , and using the above written notations we arrive at three subsystems:

Éz
®
p0
(t)J

p0
= Éz

p0
(t)I

p0
;

Éz
®
p
(t)J

p
= Éz

p
(t)I

p
;

Éz
®
q
(t)I

q
= Éz

q
(t)H

q
.
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As already written, the matrix J
p0

has only zeros in its diagonal. Furthermore, the matrices J
p
, I

q
are regular because of the

non-zero elements in its main diagonal. The first subsystem is similar to the system H
q
z
®
q
(t) = z

q
(t) and hence:

Éz
p0
(t) = 01,p0 .

The other subsystems have solutions:

Éz
p
(t) = Éz

p
(0)e ÉJ

p
t
, and Éz

q
(t) = Éz

q
(0)e ÉJ

q
t
.

Where
ÉJ
p
= (J

p
)*1, ÉJ

q
= H

q
.

By using P as defined in (6) we get:

Éx(t) = Éz(t)P =
⌧
0
p0,1 e

ÉJ
p
t
Éz
p
(0) e ÉJ

q
t
Éz
q
(0)

� b
f
fd

P
p0

P
p

P
q

c
g
ge
,

or, equivalently,
Éx(t) = Éz

p
(0)e ÉJ

p
t
P

p
+ Éz

q
(0)e ÉJ

q
t
P

q
,

or, equivalently,

Éx(t) = Éz
p+q(0)eJ p+q t

4
P

p

P
q

5
,

where e
J
p+q t = e

ÉJ
p
t
‚ e

ÉJ
q
t, Éz

p+q(0) =
⌅
Éz
p
(0) Éz

q
(0)

⇧
. This means that

4
P

p

P
q

5
has rows the left linear independent eigenvectors

of the finite eigenvalues of ÉsA * E. Hence:
ÉP
Ép
=
4
P

p

P
q

5
.

The proof is complete.

Remark 2.1. In (7) the matrices ÉP
Ép
, ÉQ

Ép
are defined from eigenvectors related to eigenvalues of the pencil sE * A. Hence, it

is worth mentioning that these matrices are not uniquely defined since only the span of the eigenvectors, i.e. eigenspace, is
unique; any basis of this is a basis of eigenvectors to the given eigenvalue and may form the rows of the matrix.

3 PRIME AND DUAL SYSTEMS

In this section we provide our main results. We will refer to system of FDEs (1) as the prime system and we define the system
(2) as the dual system of (1). We will provide their solutions by using the three di�erent definitions (3), (4), (5) by only using
the spectrum of the pencil sE *A of a first order system of di�erential equations.We prove the following Theorem:

Theorem 3.1. Let Q
p0

, Q
p
, and Q

q
be matrices with columns the right eigenvectors of the zero eigenvalue, the non-zero finite

eigenvalues, and the infinite eigenvalue respectively of the pencil sE *A as defined in (6). Then:

(a) The general solution of the prime system of FDEs (1) is given by

x(t) =
⌅
Q

p0
Q

p

⇧ ⌅
�0(t)‚�(t)

⇧
c. (9)

Where�0(t),�(t) are given as follows:

(i) If we use the (C) fractional derivative:

�0(t) =
ÿ…
k=0

t
ak

�(ka + 1)J
k

p0
, �(t) =

ÿ…
k=0

t
ak

�(ka + 1)J
k

p
. (10)
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(ii) If we use the (CF) fractional derivative:

�0(t) =
≥ÿ

k=0
≥k

n=0

0
k

n

1
(1 * a)nak*n t

k*n

�(k+1*n)J
k

p0
,

�(t) = ≥ÿ
k=0

≥k

n=0

0
k

n

1
(1 * a)nak*n t

k*n

�(k+1*n)J
k

p
.

(11)

(iii) If we use the (AB) fractional derivative:

�0(t) =
≥ÿ

k=0
≥k

n=0

0
k

n

1
(1*a)nak*n

Bk(a)
t
ak+2*an

�(ak+1*an)J
k

p0
,

�(t) = ≥ÿ
k=0

≥k

n=0

0
k

n

1
(1*a)nak*n

Bk(a)
t
ak+2*an

�(ak+1*an)J
k

p
.

(12)

In addition, for given initial conditions x(0) = x0 the solution is unique if and only if:

x0 À colspan
⌅
Q

p0
Q

p

⇧
. (13)

The unique solution is then given by (9) and c is the unique solution of the linear system
⌅
Q

p0
Q

p

⇧
c = x0. (14)

(b) The general solution of the dual system (2) is given by

Éx(t) =
⌅
Q

p
Q

q

⇧ ⌅
 0(t)‚ (t)

⇧
c. (15)

Where  0(t),  (t) are given as follows:

(i) If we use the (C) fractional derivative:

 0(t) =
ÿ…
k=0

t
ak

�(ka + 1)H
k

q
,  (t) =

ÿ…
k=0

t
ak

�(ka + 1) [J
*1
p
]k. (16)

(ii) If we use the (CF) fractional derivative:

 0(t) =
≥ÿ

k=0
≥k

n=0

0
k

n

1
(1 * a)nak*n t

k*n

�(k+1*n)H
k

q
,

 (t) = ≥ÿ
k=0

≥k

n=0

0
k

n

1
(1 * a)nak*n t

k*n

�(k+1*n) [J
*1
p
]k.

(17)

(iii) If we use the (AB) fractional derivative:

 0(t) =
≥ÿ

k=0
≥k

n=0

0
k

n

1
(1*a)nak*n

Bk(a)
t
ak+2*an

�(ak+1*an)H
k

q
,

 (t) = ≥ÿ
k=0

≥k

n=0

0
k

n

1
(1*a)nak*n

Bk(a)
t
ak+2*an

�(ak+1*an) [J
*1
p
]k.

(18)

In addition, for given initial conditions Éx(0) = Éx0 the solution is unique if and only if:

Éx0 À colspan
⌅
Q

p
Q

q

⇧
. (19)

The unique solution is then given by (15) and c is the unique solution of the linear system
⌅
Q

p
Q

q

⇧
c = Éx0. (20)

Where J
p0

, J
p
, and H

q
are Jordan matrices of the zero eigenvalue, the non-zero finite eigenvalues, and the infinite eigenvalue

respectively of the pencil sE *A.
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Proof. As discussed in section 2, there exist invertible matrices P , Q À Cmùm for sE * A as defined in (6). If we substitute
x(t) = Qz(t) into (1) and multiply by P using (6)we have:

EQ 0D
a

t
z(t) = AQz(t),

and

⌅
I
p0
‚ I

p
‚H

q

⇧
b
f
f
fd

z
(a)
p0
(t)

z
(a)
p
(t)

z
(a)
q
(t)

c
g
g
ge
=
⌅
J
p0
‚ J

p
‚ I

q

⇧ bf
fd

z
p0
(t)

z
p
(t)

z
q
(t)

c
g
ge
.

Where

z(t) =
b
f
fd

z
p0
(t)

z
p
(t)

z
q
(t)

c
g
ge
,

with z
p0
(t) À Cp0ù1, z

p
(t) À Cpù1, z

q
(t) À Cqù1. Consequently:

z
(a)
p0
(t) = J

p0
z
p
(t),

z
(a)
p
(t) = J

p
z
p
(t),

H
q
z
(a)
q
(t) = z

q
(t).

For the third subsystem we have:
z
q
(t) = 0

q,1.

This can be proved as follows. If we denote 0D
ka

t
with (

ka), k À N< and q< is index of H
q

such that Hq<
q = 0

q,q
, then if we obtain

the following matrix equations
H

q
z
(a)
q
(t) = z

q
(t)

H
2
q
z
(2a)
q

(t) = H
q
z
(a)
q
(t)

H
3
q
z
(3a)
q

(t) = H
2
q
z
(2a)
q

(t)
H

4
q
z
(4a)
q

(t) = H
3
q
z
(3a)
q

(t)
4

H
q<*1
q

z
([q<*1]a)
q (t) = H

q<*2
q

z
([q<*2]a)
q (t)

H
q<
q
z
(q<a)
q (t) = H

q<*1
q

z
([q<*1]a)
q (t)

,

by taking their sum we arrive easily at the solution. For the second subsystem if we use the Laplace transform L{z
p
(t)} = w(s):

L{0Da

t
z
p
(t)} = J

p
L{z

p
(t)},

or, equivalently,
zw(s) *wz

p
(0) = J

p
w(s).

Where

(i) z = s
a, w = s

a*1, for 0D
a

t
:= C

0D
a

t
;

(ii) z = s

s+a(1*s) , w = 1
s+a(1*s) , for 0D

a

t
:= CF

0D
a

t
;

(iii) z = B(a)
1*a

s
a

sa+ a

1*a
, w = B(a)

1*a
s
a*1

sa+ a

1*a
, for 0D

a

t
:= ABC

0D
a

t
.

By setting z
p0 = c:

(zI
p
* J

p
)w(s) = wc,

or, equivalently,
w(s) = w(zI

p
* J

p
)*1c,

or, equivalently, by taking into account that (zI
p
* J

p
)*1 = ≥ÿ

k=0 z
*k*1

J
k

p
,

w(s) =
ÿ…
k=0

wz
*k*1

J
k

p
c.

We have the following cases:
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(a) For 0D
a

t
:= C

0D
a

t
, by replacing in the above expression z = s

a, w = s
a*1 we have:

w(s) =
ÿ…
k=0

s
*ak*1

J
k

p
c1.

By using (10) we have
z
p
(t) = �(t)c1.

Similarly for the first subsystem if we use (10) the solution for the (C) fractional derivative is

z
p0
(t) = �0(t)c0.

(b) For 0D
a

t
:= CF

0D
a

t
, by replacing z = s

s+a(1*s) , w = 1
s+a(1*s) we have

w(s) =
ÿ…
k=0

1
s + a(1 * s)

4
s

s + a(1 * s)

5*k*1
J
k

p
c1.

Equally:

w(s) =
ÿ…
k=0

[(1 * a)s + a]k
sk+1

J
k

p
c1,

and consequently, since [(1 * a)s + a]k = ≥k

n=0

0
k

n

1
(1 * a)nsnak*n

w(s) =
ÿ…
k=0

k…
n=0

0
k

n

1
(1 * a)nsn*k*1ak*nJ k

p
c1.

Using (11) we have
z
p
(t) = �(t)c1.

Similarly for the first subsystem if we use (11) the solution for the (CF) fractional derivative is

z
p0
(t) = �0(t)c0.

(c) For 0D
a

t
:= ABC

0D
a

t
, by replacing z = B(a)

1*a
s
a

sa+ a

1*a
, w = B(a)

1*a
s
a*1

sa+ a

1*a
we have

w(s) =
ÿ…
k=0

B(a)
1 * a

s
a*1

sa + a

1*a

L
B(a)
1 * a

s
a

sa + a

1*a

M*k*1

J
k

p
c1.

Equally:

w(s) =
ÿ…
k=0

[(1 * a)sa + a]k
Bk(a)sak+1

J
k

p
c1,

and consequently, since [(1 * a)sa + a]k = ≥k

n=0

0
k

n

1
(1 * a)nsanak*n

w(s) =
ÿ…
k=0

k…
n=0

0
k

n

1
(1 * a)nak*n

Bk(a)
s
an*ak*1

J
k

p
c1.

Using (12) we have
z
p
(t) = �(t)c1.

Similarly for the first subsystem if we use (12) the solution for the (AB) fractional derivative is

z
p0
(t) = �0(t)c0.

To conclude, by using the above solutions of the three subsystems we obtain the following general solution for the system of
FDEs (2):

x(t) = Qz(t) =
⌅
Q

p0
Q

p
Q

q

⇧ bf
fd

�0(t)c0
�(t)c1
0
q,1

c
g
ge
,
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or, equivalently,
x(t) = Q

p0
�0(t)c0 +Q

p
�(t)c1,

which leads to (9). For given initial conditions x(0) = x0 if we use (9) for t = 0 we get (14). Hence c in (9) can be uniquely
defined if and only if the algebraic system (14) has a unique solution which happens if and only if condition (13) holds. Then
because

⌅
Q

p0
Q

p

⇧
has linear independent columns, the linear algebraic system (14) has always a unique solution in respect to c.

Next, we consider the dual system (2). Similarly to the prime system by applying Éx = QÉz into (2) we arrive at three subsystems
of the following form:

J
p0 0D

a

t
Éz
p0
(t) = Éz

p
(t),

J
p 0D

a

t
Éz
p
(t) = Éz

p
(t),

0D
a

t
Éz
q
(t) = H

q
Éz
q
(t).

or, equivalently,
H

p0 0D
a

t
Éz
p0
(t) = Éz

p
(t),

0D
a

t
Éz
p
(t) = J

*1
p

Éz
p
(t),

0D
a

t
Éz
q
(t) = H

q
Éz
q
(t).

Note that J
p0

= H
p0

, and J
p

is regular because of non-zero elements in its main diagonal. Similarly to the solutions of the
subsystems obtained in the case of the prime system:

Éz
p0
(t) = 0

p0
,

while the other two subsystems have the following general solutions:

Éz
p
(t) =  0(t)c0, Éz

q
(t) =  (t)c1,

with  0(t),  (t) being defined in (16), (17), (18). Furthermore from Theorem 2.1,
⌅
Q

p
Q

q

⇧
has the eigenvectors of all finite

eigenvalues of ÉsA * E. Hence similarly to the prime system, the general solution of the dual system (2) is given by (15). For
given initial conditions Éx(0) = Éx0 if we use (15) for t = 0 we get (20). Hence c in (15) can be uniquely defined if and only if the
algebraic system (20) has a unique solution which happens if and only if condition (19) holds. The matrix

⌅
Q

p
Q

q

⇧
has linear

independent columns and hence the linear algebraic system (20) has a unique solution in respect to c. The proof is completed.

4 EXAMPLES AND COMPUTATIONAL RESULTS

In this Section we consider the prime system of FDEs (1), its dual system (2) for a = 0.5 and present two examples. We apply
Theorem 3.1 and also include a computational analysis in the software Modelica.

Example 1

Let
E =

4
1 1
0 0

5
,A =

4
1 1
0 *1

5
.

Let x(0) =
4
1
0

5
, Éx0 =

4
2
1

5
be initial conditions. Then

sE *A =
4
s * 1 s * 1
0 1

5
.

The eigenvalues of sE *A are �1 = 1 with eigenspace
(
u1

)
=
(4

1
0

5)
,
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and �ÿ, an infinite eigenvalue of algebraic multiplicity q = 1 with eigenspace:
(
u2

)
=
(4

1
*1

5)
.

The Jordan matrices related to the eigenvalues are:

J
p
= 1 , H

q
= 0.

Furthermore Q
p
=
⌅
u1
⇧
, Q

q
=
⌅
u2
⇧
. Since there is no zero eigenvalue, Q

p0
does not exist. If we use the (C) fractional derivative

the solution is given by (9), (10):

x(t) =
4
1
0

5 ÿ…
k=0

t
0.5k

�(k0.5 + 1)
⌅
1k
⇧
c,

or, equivalently,

x(t) =
L≥ÿ

k=0
t
0.5k

c

�(0.5k+1)
0

M
.

In addition, it is easy to observe that x0 À colspanQ
p
, i.e. (13) does not hold, and hence by using (14) we have c = 1. Thus:

x(t) =
L≥ÿ

k=0
t
0.5k

�(0.5k+1)
0

M
.

Similarly if we use the (CF) fractional derivative given by (11), (12) we have:

x(t) =
b
f
fd

≥ÿ
k=0

≥k

n=0

0
k

n

1
(0.5)k t

k*n

�(k+1*n)

0

c
g
ge
.

Finally, the general solution of the prime system (1) if we use the (AB) fractional derivative is given by (13), (14):

x(t) =
b
f
fd

≥ÿ
k=0

≥k

n=0

0
k

n

1
(0.5)k
Bk(0.5)

t
0.5k+2*0.5n

�(0.5k+1*0.5n)

0

c
g
ge
.

The general solution of the dual system (2) is given by (15), (16): and if we set c =
⌅
c1 c2

⇧
we have:

Éx(t) =
ÿ…
k=0

t
0.5k

�(0.5k + 1)

4
c1
c2

5
.

It is easy to observe that (19) holds, and hence the system has a unique solution. By using (20) we have
4

2
*1

5
=
4
1 1
0 *1

5 4
c1
c2

5
.

Hence c1 = c2 = 1 , and the unique solution of (2) is given by:

Éx(t) =
ÿ…
k=0

t
0.5k

�(0.5k + 1)

4
1

*1

5
.

Similarly if we use the (CF) fractional derivative, the solution of the dual system is given by (15), (17):

Éx(t) =
ÿ…
k=0

k…
n=0

0
k

n

1
0.5k t

k*n

�(k + 1 * n)

4
1

*1

5
.

Finally, the general solution of the dual system (2) if we use the (AB) fractional derivative is given by (15), (18):

Éx(t) =
ÿ…
k=0

k…
n=0

0
k

n

1
0.5k

Bk(0.5)
t
0.5k+2*0.5n

�(0.5k + 1 * 0.5n)

4
1

*1

5
.

Example 2
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For our second example, let a = 0.5 in (1), (2), and:

E =

b
f
f
f
f
f
fd

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0

c
g
g
g
g
g
ge

, A =

b
f
f
f
f
f
fd

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

*4 2 2 *3 *2 *1
1 1 *1 *1 0 0

c
g
g
g
g
g
ge

.

Also let x0 =
⌅
*4 6 *5 7 *7 9

⇧T , Éx0 =
⌅
1 0 0 1 1 1

⇧T
, be initial conditions. The pencil sE * A has the eigenvalues:

�1 = 3, �2 = 2, �3 = 1, of algebraic multiplicity p1 = p2 = p3 = 1, and eigenspaces

(
u1

)
=
(
b
f
f
f
f
f
fd

*1
1

*3
3

*9
9

c
g
g
g
g
g
ge

)
,

(
u2

)
=
(
b
f
f
f
f
f
fd

*1
1

*2
2

*4
4

c
g
g
g
g
g
ge

)
,

(
u3

)
=
(
b
f
f
f
f
f
fd

*3
5

*3
5

*3
5

c
g
g
g
g
g
ge

)
,

and �ÿ (infinite eigenvalue) of algebraic multiplicity q = 3 and eigenspace:

(
u4, u5, u6

)
=
(
b
f
f
f
f
f
fd

0
0
0
0

*1
1

c
g
g
g
g
g
ge

,

b
f
f
f
f
f
fd

0
0

*1
1
0
1

c
g
g
g
g
g
ge

,

b
f
f
f
f
f
fd

*1
1
0
1
42

*48

c
g
g
g
g
g
ge

)
.

The Jordan matrices are:

J
p
=
b
f
fd

3 0 0
0 2 0
0 0 1

c
g
ge
, H

q
=
b
f
fd

0 1 0
0 0 1
0 0 0

c
g
ge
.

Since there is no zero eigenvalue, Q
p0

does not exist. The matrices Q
p
, Q

q
are defined as Q

p
=
⌅
u1 u2 u3

⇧
, Q

q
=
⌅
u4 u5 u6

⇧
respectively. The general solution of the prime system (1) is given by (9), (10):

x(t) =

b
f
f
f
f
f
fd

*1 *1 *3
1 1 5

*3 *2 *3
3 2 5

*9 *4 *3
9 4 5

c
g
g
g
g
g
ge

ÿ…
k=0

t
0.5k

�(0.5k + 1)

b
f
fd

3k 0 0
0 2k 0
0 0 1

c
g
ge
c.

or, equivalently, if we set c =
⌅
c1 c2 c3

⇧
,

x(t) =
ÿ…
k=0

t
0.5k

�(0.5k + 1)

b
f
f
f
f
f
fd

*3kc1 * 2kc2 * 3c3
3kc1 + 2kc2 + 5c3

*3k+1c1 * 2k+1c2 * 3c3
3k+1c1 + 2k+1c2 + 5c3

*3k+2c1 * 2k+2c2 * 3c3
3k+2c1 + 2k+2c2 + 5c3

c
g
g
g
g
g
ge

.
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In addition, it is easy to observe that x0 À colspanQ
p
, and hence using (14) we have c1 = 0, c2 = c3 = 1, and the unique solution

of the prime system is given by:

x(t) =
ÿ…
k=0

t
0.5k

�(0.5k + 1)

b
f
f
f
f
f
fd

*2k * 3
2k + 5

*2k+1 * 3
2k+1c + 5
*2k+2 * 3
2k+2 + 5

c
g
g
g
g
g
ge

.

Similarly if we use the (CF) fractional derivative given by (11), (12) we have:

x(t) =
ÿ…
k=0

k…
n=0

0
k

n

1
0.5k t

k*n

�(k + 1 * n)

b
f
f
f
f
f
fd

*2k * 3
2k + 5

*2k+1 * 3
2k+1c + 5
*2k+2 * 3
2k+2 + 5

c
g
g
g
g
g
ge

.

Finally, the general solution of the prime system (1) if we use the (AB) fractional derivative is given by (13), (14):

x(t) =
ÿ…
k=0

k…
n=0

0
k

n

1
0.5k

Bk(0.5)
t
0.5k+2*0.5n

�(0.5k + 1 * 0.5n)

b
f
f
f
f
f
fd

*2k * 3
2k + 5

*2k+1 * 3
2k+1c + 5
*2k+2 * 3
2k+2 + 5

c
g
g
g
g
g
ge

.

The general solution of the dual system (2) is given by (15), (16):

Éx =
ÿ…
k=2

t
0.5k

�(0.5k + 1)

b
f
f
f
f
f
f
fd

0 0 0 0 0 *1
0 0 0 0 0 1
0 0 0 0 * 1

2k 0
0 0 0 0 1

2k 1
0 0 0 * 1

3k 0 42
0 0 0 1

3k
1
2k *48

c
g
g
g
g
g
g
ge

c

It is easy to observe that Éx0 Ã colspan
⌅
Q

p
Q

q

⇧
, i.e. (19) does not hold, and hence the system does not have a unique solution.

Similarly if we use the (CF) fractional derivative, the solution of the dual system is given by (15), (17):

Éx =
ÿ…
k=0

k…
n=0

0
k

n

1
0.5k t

k*n

�(k + 1 * n)

b
f
f
f
f
f
f
fd

0 0 0 0 0 *1
0 0 0 0 0 1
0 0 0 0 * 1

2k 0
0 0 0 0 1

2k 1
0 0 0 * 1

3k 0 42
0 0 0 1

3k
1
2k *48

c
g
g
g
g
g
g
ge

c.

Finally, the general solution of the dual system (2) if we use the (AB) fractional derivative is given by (15), (18):

Éx =
ÿ…
k=0

k…
n=0

0
k

n

1
0.5k

Bk(0.5)
t
0.5k+2*0.5n

�(0.5k + 1 * 0.5n)

b
f
f
f
f
f
f
fd

0 0 0 0 0 *1
0 0 0 0 0 1
0 0 0 0 * 1

2k 0
0 0 0 0 1

2k 1
0 0 0 * 1

3k 0 42
0 0 0 1

3k
1
2k *48

c
g
g
g
g
g
g
ge

c.
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Examples in Modelica

In this subsection, based on the proposed matrix polynomial of first order and an integer-order approximation method, we will
provide examples on the solutions of the system of FDEs (1) implemented in the open-source Modelica (OPENMODELICA),
see26. We will use the fractional derivative (C). The integer–order approximation for the fractional derivative by Oustaloup’s
method in the Laplace domain, see27, is given by:

s
a ˘ !

a

h

N«
k=*N

s + !
®
k

s + !
k

. (21)

Where (!
b
,!

h
) is the fitting range, a is the order of the fractional derivative, N is order of the approximation, and

!
k
= !

b
(
!
h

!
b

)
k+N+0.5(1+a)

2N+1 , !
®
k
= !

b
(
!
h

!
b

)
k+N+0.5(1*a)

2N+1 .

Figure 1 shows the Bode plot with approximation order N = 4 and frequency range !
b
= 0.001 Hz,!

h
= 1000 Hz for a first

order system of di�erential equations (left) and a system of FDEs of order a = 0.5 (right). The integrators have a frequency
response with a slope of -20dB and -10 dB_Decade; -90 and -45 degree phase angle respectively. Observe that within the chosen
fitting range the slope of the amplitude shows an acceptable fit. In the following examples we use this approximation order and
fitting range.

1E-2 1E0 1E2 1E4
-100

-50

0

50

100

m
ag

ni
tu

de
 [d

B]

1E-2 1E0 1E2 1E4

-80

-40

0

ph
as

e 
[d

eg
]

Angular frequency [rad/s]

1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 1E4
-40

-20

0

20

40

m
ag

ni
tu

de
 [d

B]

1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 1E4

-40

-20

0

ph
as

e 
[d

eg
]

Angular frequency [rad/s]

FIGURE 1 On the left Bode plot of integrator for a first order system of di�erential equations & on the right Bode plot of integrator for a system of FDEs of order a = 0.5. We use a 4th order approximation and fitting range (0.001 Hz, 1000 Hz).

The following examples are simulated using two Modelica based simulation tools: Dymola, see15, and OpenModelica, see26.
We firstly consider the system Ex

®(t) = Ax(t) with initial conditions x0 = [*1 * 1]T and

E =
4
1 0
0 0

5
, A =

4
1 1
1 *1

5
. (22)

Since this system is linear and of first order, plotting the numerical solution in Modelica, with and without Ostaloup approxi-
mation should be identical. Note that x1 = x2. The simulation results are shown in Fig. 2 on the left. It can be observed that
indeed the results are identical. Next we assume the system of FDEs (1) with E, A given in (22) and simulate this example con-
sidering three di�erent fractional orders a = 0.5, 0.6 and 0.8. Note as previously x1 = x2. The simulation results are shown in
Fig. 2 on the right.
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FIGURE 2 On the left trajectories of solutions for the first order system by using its general solution and the Ostaloup approximation. On the right trajectories of the system of FDEs using the Ostaloup approximation for a = 0.5, 0.6 and 0.8.
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FIGURE 3 Trajectories of the second example using the Ostaloup approximation for three di�erent fractional orders a = 0.5, 0.6 and 0.8.

We consider now system (1) with initial conditions x0 = [*4 6 * 5 7 * 7 9]T and

E =

b
f
f
f
f
f
fd

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0

c
g
g
g
g
g
ge

, A =

b
f
f
f
f
f
fd

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
*4 2 2 *3 *2 *1
1 1 *1 *1 0 0

c
g
g
g
g
g
ge

. (23)

For three di�erent cases a = 0.5, 0.6 and 0.8 the simulation results are shown in Figs. 3 while a comparison of the trajectories
of the second example are shown in Figs. 4 .
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FIGURE 4 A comparison of the trajectories of the second example using the Ostaloup approximation for three di�erent fractional orders a = 0.5, 0.6 and 0.8.

CONCLUSIONS

In this article we used three di�erent fractional operators, the (C), (CF), (ABC), and considered a class of systems of FDEs and
its dual systems. We proved that by only using the spectrum of a linear pencil, a matrix polynomial of first order, and not the
fractional pencil of the prime fractional system, we can study the solutions for the prime, and its dual system without additional
computational cost. Numerical examples and computational results on the software modelica concluded the article.
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