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Abstract— The paper proposes an approximated yet reliable
formula to estimate the frequency at the buses of a transmission
system. Such a formula is based on the solution of a steady-
state boundary value problem where boundary conditions are
given by synchronous machine rotor speeds and is intended for
applications in transient stability analysis. The hypotheses and
assumptions to define bus frequencies are duly discussed. The
rationale behind the proposed frequency divider is first illustrated
through a simple 3-bus system. Then the general formulation is
duly presented and tested on two real-world networks, namely a
1,479-bus model of the all-island Irish system and a 21,177-bus
model of the European transmission system.

Index Terms— Frequency estimation, quasi-static phasor
model, dq-frame model, transient stability analysis, center of
inertia.

I. INTRODUCTION

A. Motivations

The conventional power system model for transient stability
analysis is based on the assumption of quasi-steady-state
phasors for voltages and currents. The crucial hypothesis on
which such a model is defined is that the frequency required to
define all phasors and system parameters is constant and equal
to its nominal value. This model is appropriate as long as only
the rotor speed variations of synchronous machines is needed
to regulate the system frequency through standard primary and
secondary frequency regulators. In recent years, however, an
increasing number of devices other than synchronous machines
are expected to provide frequency regulation. These include,
among others, distributed energy resources such as wind and
solar generation [1]–[5]; flexible loads providing load demand
response [6], [7]; HVDC transmission systems [8]–[10]; and
energy storage devices [11]–[13]. However, these devices do
not generally impose the frequency at their connection point
with the grid. There is thus, from a modeling point of view, the
need to define with accuracy the local frequency at every bus
of the network. This paper provides an accurate yet simple
and computationally inexpensive formula to estimate such
frequencies and, thus, improve the fidelity of the conventional
power system model for transient stability analysis.

B. Literature Review

The most common way to estimate the system frequency
in transient stability analysis is the evaluation of the center
of inertia (COI) which is an arithmetic mean of rotor speeds
of synchronous machines weighted through their inertia cons-
tants. The frequency of the COI is well-accepted and widely
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used in the literature on transient and frequency stability
analysis. We cite, for example, [14] and [15]. While the COI
is particularly useful to define the frequency of clusters of
coherent machines, it cannot capture local oscillations and is
thus not adequate to implement and simulate the frequency
controllers discussed in the motivations above.

Another common approach consists in defining the numeri-
cal derivative of the phase angle of bus voltage phasors through
some sort of filtering, e.g., a washout filter. This approach
was first discussed in [16] along with the COI model, and is
commonly used in proprietary software tools for power system
simulation, e.g., [17].

The issues of the numerical differentiation of voltage angles
are well known. The literature on this subject has mainly
focused on the definition of analytical expressions, e.g., [18],
or more accurate numerical methods, e.g., [19], to define the
derivative of the bus voltage angles. The common starting
point of the two references above, as well as of this paper,
is the expression that links bus voltage phasors and current
injections at buses through the network admittance matrix.
We propose an analytical expression which is not model-
dependent as that given in [18] and is considerably simpler, but
consistent with standard approximations used in power system
models for transient stability analysis.

C. Contributions

The novel contributions of the paper are twofold.

• An approximated yet reliable and simple formula to
estimate the frequency at all buses of the system. The
proposed formula is aimed to improve transient stability
analysis models.

• A detailed comparison of the accuracy and the computa-
tional burden of the proposed frequency divider formula,
the commonly-used washout filters utilized to estimate
the numerical derivative of bus voltage phase angles as
well as the COI frequency. Such a comparison is based
on both quasi-static phasor and dq-frame power system
models.

D. Paper Organization

The remainder of the paper is organized as follows. Section
II duly discusses the rationale, the hypotheses and assumptions
required to obtain the proposed frequency divider formula.
Section III illustrates, through a simple example, the validity
of the frequency divider and tests it considering different
scenarios and load models. Section IV presents simulation
results based on two real-world systems, namely a 1,479-bus
model of the all-island Irish system and a 21,177-bus model
of the European ENTSO-E transmission system. Conclusions
are drawn in Section V.



II. FREQUENCY DIVIDER FORMULA

In this section, we develop a simple, yet effective general
analytical expression to estimate the frequency deviations at
every location of the network. Subection II-A discusses the
theoretical background and the rationale behind the proposed
formula. The analytical derivation is then discussed in details
in Subsection II-B

A. Rationale

During a transient triggered by a large disturbance, e.g., the
occurrence of a fault followed by its clearance, synchronous
machine rotor speeds oscillate. It is well known that, during
a transient, each machine shows interarea oscillation modes
common to its coherent group as well as local non-dominant
modes [14]. The key point is that, during the transient, machine
frequencies are not equal and, hence, the frequency cannot
be the same everywhere in the system. However, due to the
common approximations of the conventional transient stability
model, only the frequencies – effectively, the rotor speeds
– of the internal electromotive forces (emfs) of synchronous
machines can be determined by means of the time integration
of the power system model.

In [20] and, later, in [21], the author posed the basis for the
modeling of the transmission system as a continuum where the
speeds of synchronous machines are the boundary conditions

that the frequency has to satisfy. We base the definition of
the frequency divider formula on such a continuum. However,
since we are interested in electromecanical transients and
in the time scale associated to such dynamics, we assume
that the wave propagation is faster than the electromechan-
ical modes of synchronous machines and, thus, we neglect
transient effects of wave propagation, e.g., reflection.1 As a
consequence, we assume that, to compute the spatial variations
of the frequency, the problem that can be solved is a steady-
state boundary value problem, where boundary conditions
are given by synchronous machine rotor speeds. This
assumption is consistent with quasi-steady-state phasors and
lumped transmission line models assumed to solve power
system transient stability analysis.

B. Analytical Derivation

The very starting point is the augmented admittance matrix,
with inclusion of synchronous machine internal impedances as
it is commonly defined for fault analysis [22]. System currents
and voltages are linked as follows:

[

īG

īB

]

=

[

ȲGG ȲGB

ȲBG ȲBB + ȲB0

][

ēG

v̄B

]

(1)

where v̄B and īB are bus voltages and current injections,
respectively, at network buses; īG are generator current in-
jections; eG are generator emfs behind the internal generator
impedance; ȲBB is the standard network admittance matrix;

1In [20], the speed of traveling waves is estimated to be roughly 1, 000 m/s.
Thus wave propagation transients can actually overlap fast interarea oscillation
modes on long transmission lines. However, accounting for the effect of wave
propagation is beyond the scope of this paper.

ȲGG, ȲGB and ȲBG are admittance matrices obtained using
the internal impedances of the synchronous machines; and
ȲB0 is a diagonal matrix that accounts for the internal
impedances of the synchronous machines at generator buses.2

All quantities in (1) depend on the frequency. However, the
dependency of the admittance matrices above on the frequency
is neglected. This approximation has a very small impact on
the accuracy of the frequency estimation and allows determin-
ing a compact expression of bus frequencies, as discussed in
the remainder of this section.

To further elaborate on (1), let us assume that load current
injections īB can be neglected in (1). This is justified by
the fact that the equivalent load admittance, in trasmission
systems, is typically one order of magnitude smaller than that
of the diagonal elements of ȲBB + ȲB0. This appears as a
critical assumption, and for this reason we test its adequateness
in the examples of Section III, where we consider a variety
of load models, including nonlinear dynamic ones. Hence, we
rewrite (1) as follows:

[

īG

0

]

=

[

ȲGG ȲGB

ȲBG ȲBB + ȲB0

][

ēG

v̄B

]

(2)

Bus voltages v̄B are thus a function of generator emfs and
can be computed explicitly:

v̄B = −[ȲBB + ȲB0]
−1

ȲBGēG (3)

= D̄ ēG

In [18], the relation between generator voltages and currents
is exploited to determine the time derivative of load voltages.
We proceed in a different way.

Let us consider the time derivative – indicated with the
functional p(·) – of the bus voltage phasors in a dq-frame
rotating with frequency ω0 [24]:

pv̄dq,h =
d

dt
v̄dq,h + jω0v̄dq,h (4)

where v̄dq,h = vd,h + jvq,h. A similar expression can be also
obtained using a first order dynamic phasor approximation
(see, for example, [25] and [26]).

The first element on the right-hand side of (4) is the time
derivative of v̄dq,h, which is rotating with the dq-frame, while
the second element is the derivative of the dq-frame itself. We
now assume the following:

• The quasi-steady-state phasor can be approximated, dur-
ing an electromechanical transient, to the dq-frame quan-
tity, hence:

v̄h ≈ v̄dq,h (5)

Note that in stationary conditions the equality v̄h = v̄dq,h
holds.

2The non-zero elements of matrices ȲGG, ȲGB , ȲBG and ȲB0 are
defined through the internal reactances of the synchronous machines in the
same way as in the standard fault analysis (see, for example, [22] and [23]).
If the machine is not symmetrical, an average of the d- and q-axis internal
reactances are used. For example, for a 6th order model, one has xG =
0.5(x′′

d + x′′

q ).
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• The voltage is a sinusoid with time-varying pulsation and
its time derivative in (4) is approximated with:

d

dt
v̄dq,h ≈ j∆ωhv̄dq,h (6)

where ∆ωh is the frequency deviation with respect to the
reference frequency ω0 at bus h.

Equation (6) descends from the hypothesis of assuming “slow”
variations of the frequency in the system and is consistent with
the standard electromechanical power system model utilized
for transient stability analysis.

Merging together (4), (5) and (6) leads to:

p v̄h ≈ j ωh v̄h (7)

where ωh = ω0+∆ωh is the frequency at bus h. Expressions
similar to (7) hold for all other ac quantities in the systems,
i.e., generator emfs ē and currents. For example:

p ēi ≈ j ωi ēi (8)

where ωi is the rotor speed of generator i.
We now use the approximated time derivatives (7) and (8)

along with network constraints (3) to determine the frequency
divider. In particular, differentiating (3) with respect to time
leads to:

pv̄B = p[D̄ · ēG] = pD̄ · ēG + D̄ · pēG (9)

⇒ pv̄B ≈ D̄ · pēG (10)

⇒
d

dt
v̄B + jω0v̄B ≈ D̄ ·

d

dt
ēG + jω0D̄ · ēG (11)

⇒ j diag(∆ωB) v̄B ≈ j D̄ · diag(∆ωG) ēG (12)

where:

• in (9), it is assumed that pD̄ ≈ 0, i.e., constant transmis-
sion line, transformer, load and generator parameters;

• in (10), the time derivative p(·) is expanded using (4);
• in (11), (3) is utilized to eliminate the terms jω0v̄B and

jω0D̄ · ēG; and
• diag(·) indicates a matrix where diagonal elements are

the elements of its argument vector.

Finally, based on (6), (7) and (8), ∆ωB and ∆ωG are:

∆ωB = ωB − ω0 · 1 (13)

∆ωG = ωG − ω0 · 1

The set of equations (12) and (13) allows determining the bus
voltage frequencies ωB . In fact, D̄ are parameters and ωG,
v̄B and ēG are variables determined by integrating the set of
DAEs describing the power system. While solvable, (12) can
be significantly simplified without a relevant loss of accuracy.
The following approximations and assumptions are applied:

• v̄B ≈ 1 pu and ēG ≈ 1 pu;3

• The conductances of the elements of all admittance ma-
trices utilized to compute D̄ are negligible, e.g., ȲBB ≈
jBBB ;

3Note that this assumption is acceptable for detailed machine models,
e.g., 4th and 6th order. For the classical electromechanical model of the
synchronous machine, the emf behind the reactance is generally > 1. To
account for that, a correction factor can be used in (14).

Moreover, the condition ω0 = 1 pu usually holds. All simplifi-
cations above are motivated by usual assumptions and typical
parameters of transmission systems. Finally, substituting fre-
quency deviations with the expressions in (13), (12) leads to
the proposed frequency divider formula:

ωB = 1+D(ωG − 1) (14)

where
D = −(BBB +BB0)

−1
BBG (15)

The example and case studies discussed in the following
sections show that (14) is actually accurate in the context of
transient stability analysis.

C. Inclusion of Frequency Measurements

For completeness, we discuss here how the frequency
divider formula (14) can be modified to include frequency
measurements as provided, for example, by PMU devices, as
follows. Let us assume that, apart from synchronous machine
rotor speeds, also the bus voltage phasors v̄M and hence
bus frequencies ωM are known at a given set of network
buses. Such frequencies can be used to compute the remaining
unknown bus frequencies. Say that ωB = [ωM ,ωU ], where
ωU are the remaining unknown bus frequencies. Then, using
same notation as for (1), one has:
⎡

⎢

⎣

īG

īM

īB

⎤

⎥

⎦
=

⎡

⎢

⎣

ȲGG ȲGM ȲGU

ȲMG ȲMM + ȲM0 ȲMU

ȲUG ȲUM ȲUU + ȲU0

⎤

⎥

⎦

⎡

⎢

⎣

ēG

v̄M

v̄B

⎤

⎥

⎦
(16)

and, following the same derivations discussed in the previous
sectione, the frequency divider formula (14) becomes:

ωU = −(BUU +BU0)
−1

[

BUG BUM

]

[

ωG

ωM

]

(17)

The expression above can be used in two ways. In simulations,
one can model PMU devices and use their measures to obtain
a better estimation of the frequencies at remaining buses. This
is particularly relevant, in our opinion, to define the impact of
noise and measurement corruptions of the PMU measure, as
noise can be easily included in (17). In state-estimation, using
real-world frequency measures obtained from the system to
estimate frequency variations at remaning system buses. Since
the focus of this paper is on the definition of the frequency
divider, in the following we focus exclusively on simulations
and on (14). We will further discuss the applications and
practical aspects of (17).

III. EXAMPLE

In this section, we illustrate the frequency divider formula
(14) derived in the previous section through a simple example.
Such an example will serve to illustrate why we call (14)
frequency divider and to compare the dynamic behavior of
(14) with respect to conventional washout filters as well as
discuss its conceptual difference with respect to the frequency
of the COI.

Let us consider the simple radial system shown in Figure 1.
The lossless connection, with total reactance xhk = xhi+xik,
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represents the series of the internal reactances of the machines,
and series reactances of the step-up transformers and the
transmission line. Hence, the frequencies at buses h and k,
say ωh and ωk, respectively, are the rotor speeds of the
synchronous generators.

x

xhk

ih kxhi xik

ωh(t)

ωk(t)ωi(t)

Fig. 1: Two-machine radial system.

Applying the frequency divider formula (14), we obtain:

ωi(t) = D ·

[

ωh(t)

ωk(t)

]

= −(BBB +BB0)
−1

BBG ·

[

ωh(t)

ωk(t)

]

=
[

1
xhi

+ 1
xik

]−1
[

1

xhi

1

xki

]

·

[

ωh(t)

ωk(t)

]

(18)

=
xik

xhk
· ωh(t) +

xhi

xhk
· ωk(t)

It is worth noticing that, as a direct consequence of (14), the
instantaneous frequency ωi(t) at a generic point i between
the boundaries h and k is a linear interpolation between
ωh(t) and ωk(t) (see lower part of Fig. 1). Such a linear
relation is consistent with the assumption to assume steady-
state conditions in the distribution of the frequency along the
transmission line. Note also that (18) has the same formal
structure of the well-known voltage divider of a resistive
circuit where the frequencies function as the voltage potential.
Hence the name the we have chosen to define (14).

The remainder of this section discusses the accuracy of
(18) through numerical simulations based on the 3-bus system
shown in Fig. 2, which includes two synchronous machines
and a load. The impedances of the transmission lines include
the step up transformers and transmission lines (z̄ = 0.025 +
j0.075 pu). We first consider a standard model for transient
stability analysis where transmission lines are lumped and
modeled as constant impedances and generator flux dynamics
are neglected. Generators are equal and are modeled as a
6th order synchronous machine, a IEEE Type DC1 automatic
voltage controller and a turbine governor with inclusion of
servo and reheater models [27]. The load is modeled as a
constant admittance. The disturbance is a three-phase fault
that occurs at bus 3 at t = 1 s and is cleared after 150 ms by
opening one of the two lines connecting buses 1 and 3.

Figure 3 shows the transient behavior of synchronous ma-
chine rotor speeds, the frequency of the COI (ωCOI), and
the estimated frequency at the load bus using the proposed
frequency divider approach. Since the inertias of the machines
are equal, oscillations are averaged out from the value of ωCOI

1 3 2
2z̄

z̄

z̄

Fig. 2: 3-bus system.

as it can be readily deduced by the COI frequency expression
given in Appendix I. On the other hand, the estimated bus
frequency ωBus 3 provided by (18) shows oscillations in phase
with ωSyn 1, as expected, since the load bus is electrically
closer to generator 1 (x13 < x32). Clearly, the frequency of the
COI is also unable to capture the proximity to any machine of
the system. ωCOI can thus be used only as an indication of the
overall trend of the system frequency but could be inadequate
if utilized as a control signal for devices that regulates the
frequency as those discussed in the introduction of this paper.

0.0 2.0 4.0 6.0 8.0 10.0
Time [s]

1.0

1.001

1.002

1.003

1.004

F
re
qu

en
cy

[p
u
]

ωBus 3 (FD)

ωSyn 1

ωSyn 2

ωCOI

Fig. 3: 3-bus system – Synchronous machine rotor speeds, COI
frequency, and frequency at bus 3 estimated based on the proposed
frequency divider (FD) approach.

The model and the dynamics of the load connected to bus 3
are not included in (18) and need not to be known to define ω3.
This is one of the major differences of the proposed approach
with respect to [18]. Clearly, load models and dynamics do
impact on the transient behavior of the system, which includes
the machines at buses 1 and 2 whose rotor speeds are required
to compute ω3. Load models are thus implicitly taken into
account in the frequency divider formula.

We now compare the trajectories of the frequency estimation
at the load bus for the 3-bus system using the proposed fre-
quency divider and the conventional washout filter described in
Appendix II. Figure 4 shows the results obtained with a more
detailed model of the system considering 8th order models
of synchronous machines and dq-frame dynamic models of
the transmission lines and the load at bus 3. All parameters
are the same as in Fig. 3, which is obtained using standard
transient stability models. This more accurate model shows
that, during the fault, the frequency drops due to the effect of
machine fluxes. After the fault occurrence and clearance, the
frequency also shows small high-frequency oscillations which
are properly captured by (18). These oscillations cause severe
numerical issues along the entire simulation in the behavior
of the washout filter – see also [19] for an in-depth discussion

4



0.0 1.0 2.0 3.0 4.0 5.0
Time [s]

0.99

0.995

1.0

1.005

1.01

ω
B
u
s
3
[p
u
]

ωBus 3 (WF)

ωBus 3 (FD)

Fig. 4: 3-bus system – Frequency at bus 3 estimated with the
frequency divider (FD) and the conventional washout filter (WF).
The system is simulated using the fully-fledged dq-axis model.

on this matter – as well as a significant delay of the filter to
show the over-frequency after the line disconnection.

As indicated in Section II, one of the main assumptions
on which the frequency divider formula is based, is that load
currents can be neglected in (1). This is a common assumption
in most analyses based on the admittance matrix, e.g., short-
circuit calculations [22]. Moreover, in standard transient stabil-
ity analysis, loads are approximated using constant impedances
(see, for example, [28]), which, by the way, could be easily
included in (14).

In the remainder of this section, we show that the effect
of loads, including non-linear and dynamic ones is actually
negligible for the calculation of the bus frequencies. With this
aim, we consider again the dynamic response of the 3-bus
system of Fig. 1 following a short-circuit at bus 3, and we
substitute the constant admittance load with a static voltage-
and frequency-dependent load (see Fig. 5) and a 5th-order dq-
axis model of an asynchronous motor (see Fig. 6).

0.0 2.0 4.0 6.0 8.0 10.0
Time [s]
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1.001

1.002

1.003
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ω
B
u
s
3
[p
u
]

ωBus 3 (FD)

ωBus 3 (WF)

Fig. 5: 3-bus system – Frequency at bus 3 estimated with the
frequency divider (FD) and the conventional washout filter (WF).
The load is modeled as a frequency-dependent load representing an
aluminum plant (αp = 1.8, αq = 2.2, βp = −0.3, βq = 0.6).

The exponential voltage- and frequency-dependent load is

0.0 2.0 4.0 6.0 8.0 10.0
Time [s]

0.997
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1.004
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B
u
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3
[p
u
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ωBus 3 (FD)

ωBus 3 (WF)

Fig. 6: 3-bus system – Frequency at bus 3 estimated with the
frequency divider (FD) and the conventional washout filter (WF).
The load is a squirrel cage induction motor with a 5th-order dq-axis
model.

modeled as follows [27], [29]:

pi = p0
( vi
v0

)αp

ω
βp

i (19)

qi = q0
( vi
v0

)αq

ω
βq

i

In the simulations carried out to obtain Fig. 5, the frequency ωi

is estimated using the washout filter or the proposed frequency
divider formula, depending on the model considered. The
parameters p0, q0 and v0 are the initial load active and
reactive powers and voltage magnitude at bus i, respectively,
determined with the power flow analysis. The parameters αp,
βp, αq and βq resemble those of an aluminum plant and are
based on [30]. Finally, the dynamic model of the asynchronous
motor is based on [31].

Simulation results confirm that the frequency divider for-
mula (14) is accurate as it is able to estimate the frequency
at the load bus similarly to the washout filter but avoiding
the numerical issues of the latter. It is interesting to note
that the time evaluation of the frequency in the case of the
asynchronous motor is consistently different from the static
load model. The load model, in fact, does impact on the
overall dynamic behavior of the system and, hence, also on
the variations of rotor speeds of synchronous machines. Since
the frequency divider is based on such variations, load models
are indirectly taken into account in (14).

Apart from the simulations included in this section, we have
considered other nonlinear load models and several different
scenarios. In every test we have carried out, results, which are
not shown here for space limitations, were always consistent
and similar to those shown in this section. We thus conclude
that the proposed frequency divider is accurate and that the
approximations discussed in Section II, including that related
on load models, are reasonable.

IV. CASE STUDIES

In this section, two real-world systems are considered,
namely, a 1,479-bus model of the all-island Irish transmission
system; and a 21,177-bus model of the ENTSO-E transmission
system. These systems are utilized to compare the performance
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and accuracy of the proposed frequency divider against the
results obtained using the conventional washout filter. The
topology and the steady-state data of both systems are based on
the actual real-world systems provided by and the Irish TSO,
EirGrid, and ENTSO-E,4 respectively. However, all dynamic
data are guessed based on the knowledge of the technology of
power plants.

The dynamic model of the Irish system includes both
conventional and wind power generation. This system allows
understanding the accuracy of the frequency divider conside-
ring a large penetration of induction machines and power
electronic devices that are included in the models of wind
turbines. The considered dynamic model of the ENTSO-E
system includes only conventional power plants. Its large size
allows comparing the computational burden of the conven-
tional washout filter with the proposed frequency divider, i.e.,
number of state and algebraic variables, size and sparsity of
matrices and computing times.

All simulations are obtained using Dome, a Python-based
power system software tool [32]. The Dome version utilized
in this case study is based on Python 3.4.1; ATLAS 3.10.1
for dense vector and matrix operations; CVXOPT 1.1.8 for
sparse matrix operations; and KLU 1.3.2 for sparse matrix
factorization. All simulations were executed on a 64-bit Linux
Ubuntu 14.04 operating system running on a 8 core 3.60 GHz
Intel Xeon with 12 GB of RAM.

A. Irish Transmission System

This subsection considers a dynamic model of the all-
island Irish transmission system. This includes 1,479 buses,
1,851 transmission lines and transformers, 245 loads, 22
conventional synchronous power plants modeled with 6th

order synchronous machine models with AVRs and turbine
governors, 6 PSSs and 176 wind power plants, of which
34 are equipped with constant-speed (CSWT) and 142 with
doubly-fed induction generators (DFIG). The large number of
non-conventional generators based on induction machines and
power electronics converters makes this system an excellent
test-bed to check the accuracy of the proposed frequency
divider.

Two scenarios are considered: Subsection IV-A.1 shows the
response of the Irish system facing a three-phase fault close to
both a synchronous machine and a load, whereas Subsection
IV-A.2 simulates a fault close to a wind power plant.

1) Fault close to a synchronous machine and a load: A
three-phase fault occurs at t = 1 s, and is cleared by means
of the disconnection of one transmission line after 180 ms.
The location of the fault is close to a synchronous machine
(Sn = 181.7 MVA), and a load (9.72 MW and 1.16 MVAr),
and their frequency is shown in Fig. 7.

Figure 7(a) depicts the rotor speed of the synchronous
machine (Syn), as well as the estimated frequency of the
bus where the machine is connected using both the proposed
frequency divider (FD) and the washout filter (WF). The time

4The data of the ENTSO-E system have been licensed to the first author
by ENTSO-E. Data can be requested through an on-line application at
www.entsoe.eu.
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Fig. 7: Frequency response of the Irish transmission system facing a
three-phase fault close to a synchronous machine: (a) Synchronous
machine bus; (b) Load bus.

constant of the filter is Tf = 0.01 ≃ 3/Ωn s, which is
the default value in [17]. It can be seen how the frequency
divider tracks with high level of accuracy the rotor speed of
the machine during and after the transient. On the other hand,
the washout filter has a significant difference with respect to
the rotor speed during the transient, and becomes accurate 4
s after the fault occurrence.

The frequency of a load bus close to the fault is estimated
using both the frequency divider and the washout filter, and the
comparison is shown in Fig. 7(b). To study how this frequency
estimation is affected by the value of the filter time constant,
three values are compared: the base value of Tf = 0.01 ≃
3/Ωn s used in the previous examples and simulations, as
well as five times bigger and smaller time constants, i.e., Tf =
0.05 and Tf = 0.002 s, respectively. It can be observed that
both estimators show a similar behavior about 2 s after the
fault occurrence. However, the trajectories during the transient
are significantly different. While the frequency divider shows
a behavior similar to that of the synchronous machine rotor
speed shown in Fig. 7(a), the washout filter shows a peak
before the disconnection of the line that does not correspond
to any physical behavior in the system.

2) Fault close to a wind power plant: In this subsection, a
three-phase fault occurs close to a wind power plant, and is
cleared after 240 ms (see Fig. 8). The wind plant is composed
of 17 CSWTs (bus A), and 20 DFIGs split into 2 groups (buses
B and C).

The frequency of bus A is estimated using both the proposed
frequency divider and the filter, and the trajectories are shown
in Fig. 9. The time constant of the filter is the default value
of Tf = 0.01 s. As in the previous case, FD and WF
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Fig. 8: Scheme of a section of the Irish transmission system that
includes a wind power plant.
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Fig. 9: Frequency response of the Irish transmission system facing a
three-phase fault close to a wind power plant.

trajectories are considerably different. While the frequency
divider shows a frequency response similar to the one obtained
in Subsection IV-A.1, the filter adds a relatively high level
of noise to the frequency measure. This is due to the fact
that the washout filter estimates frequency variations based
on a numerical derivative of the phase angle of the voltage
at the point of connection of the wind turbine. Bus voltage
angle varies in order to account for the small variations of
the active power injected at the bus by the wind power plant.
Such variations are a consequence of the stochastic behavior
of the wind speed. However, the wind turbine does not impose
the frequency at its node and, thus, the bus frequency is not
related to wind turbine active power variations, as it happens
for synchronous generators. Of course, the variations of the
active power generation of the wind turbine do affect the
dynamic behavior of synchronous machines which need to
compensate the power unbalance. This is implicitly captured
by the proposed frequency divider formula.

B. ENTSO-E Transmission System

This subsection considers a dynamic model of the ENTSO-
E transmission system. The model includes 21,177 buses
(1,212 off-line); 30,968 transmission lines and transformers
(2,352 off-line); 1,144 coupling devices, i.e., zero-impedance
connections (420 off-line); 15,756 loads (364 off-line); and
4,828 power plants. Of these power plants, 1,160 power plants
are off-line. The system also includes 364 PSSs.

This subsection provides a comparison of the computational
burden of the frequency divider and washout filters, when these
are connected to all buses. The case without any frequency
estimator is also considered. Results are shown in Table I.

The number of state and algebraic variables, and the size
and sparsity of the state matrix in the three cases is first

compared. Both the frequency divider and the washout filters
add to the system a number of algebraic variables equal to
the number of buses of the system. Then, each filter define
two state variables per bus, whereas the proposed frequency
divider does not include differential equations. This leads to
an increase in the number of elements of the state matrix of
31.07 % and 105.82 % for the frequency divider and the filter,
respectively. The percentage of the non-zero elements with
respect to the total number of elements, is reduced by 13.28
% by using the frequency divider, while the filter decreases
this number by 40.23 %.

A power flow analysis followed by the initialization of
dynamic devices is then carried out. The computational time
of the initialization is also reported in Table I. This consists
mainly in the set-up of synchronous machines and primary
regulators state and algebraic variables, and the computation
of the matrix D or of the initial values of the variables of
the washout filters, depending on the frequency estimator that
is included in the model. It can be observed that both the
frequency divider and the filters increase this value by 15.76%
and 14.18 %, respectively.

Finally, a time domain simulation (TDS) is performed for
each scenario. The simulation lasts 5 s, and the contingency
considered is a three-phase fault, cleared after 200 ms. The
time step of the TDS is 0.02 s. The implicit trapezoidal method
is used for the time integration, and each integration step is
solved by using the dishonest Newton-Raphson method [27].
Observing Table I, it can be observed that installing washout
filters at every bus increases the computational time of the
TDS by 18.65 %, while this time is only 10.21 % higher in
the case of the proposed frequency divider.

A final important remark is the following. From the com-
putational point of view, (14) might not be the most adequate
expression to implement in practice. In fact, while BBB , BG0

and BBG tend to be extremely sparse matrices, D is not.
For example, Table II shows the size and number of non-zero
elements of the aforementioned matrices for the ENTSO-E
system. Matrix D is almost dense and thus its computational
burden is unacceptable for large systems. Note also that the
computation of D alone requires about 3 s.

TABLE II: Size and number of non-zeros (NNZ) elements of matrices
BBB , BG0, BBG and D for the ENTSO-E system.

Matrix Size NNZ NNZ %

BBB 21, 177× 21, 177 72, 313 0.0161

BBG 21, 177× 4, 832 4, 832 0.0047

BG0 21, 177× 21, 177 3, 245 0.0007

BBB +BG0 21, 177× 21, 177 72, 313 0.0161

D 21, 177× 4, 832 86, 169, 456 84.2096

For the reason above, the use of (14) is impractical for a
computer-based implementation of the frequency divider and
may cause memory errors on common workstations. Hence,
in Dome, we have implemented an acausal expression, as
follows:

0 = (BBB +BG0) · (ωB − 1) +BBG · (ωG − 1) (20)

Equation (20), not (14), has been used to obtain the results
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TABLE I: Computational burden of different bus frequency estimators.

Base Case Frequency Divider Washout Filter

Number of state variables 49, 396 49, 396 (0.00%) 91, 750 (+85.74%)

Number of algebraic variables 96, 768 117, 945 (+21.88%) 117, 945 (+21.88%)

Size of DAE system 146, 164 167, 341 (+31.07%) 209, 695 (+105.82%)

NNZ % of Jacobian Matrix 0.00256 0.00222 (−13.28%) 0.00153 (−40.23%)

Initialization of full DAE [s] 0.35087 0.40617 (+15.76%) 0.40063 (+14.18%)

Time Domain Analysis [s] 37.4006 41.2198 (+10.21%) 44.3770 (+18.65%)

reported in the third column of Table I. The interested reader
can find in [33] an extensive discussion on causality and its
implications on the modeling of physical systems.

V. CONCLUSIONS

This paper proposes a general expression to estimate fre-
quency variations during the transient of electric power sys-
tems. The proposed expression is derived based on standard
assumptions of power system models for transient stability
analysis and can be readily implemented in power system
software tools for transient stability analysis. The formula is
aimed at improving the accuracy of bus frequency estimation
in traditional electromechanical power system models. Sim-
ulation results show that the proposed formula is accurate,
numerically robust and computationally efficient.

We see several possible ways to both improve the for-
mulation and utilize in practical applications the proposed
frequency divider. The inclusion of the effect on frequency
variations of electromagnetic effects as well as the transient
behavior of electromechanical wave propagation appears an
interesting and challenging task for future work. The coupling
of the frequency divider with digital measures provided by
PMU devices appears as another interesting topic. We are
also keen to observe the impact of utilizing the proposed
frequency estimation as input signal for frequency controllers
of non-synchronous devices, such as distributed generation
and flexible loads. The authors are currently working on all
directions above.

APPENDIX I
CENTER OF INERTIA

The center of inertia (COI) is a weighted arithmetic average
of the rotor speeds of synchronous machines that are connected
to a transmission system:

ωCOI =

∑

j∈G Hjωj
∑

j∈G Hj
(21)

where ωj and Hj are the rotor speed and the inertia constant,
respectively, of the synchronous machine j and G is the set of
synchronous machines belonging to a given cluster.

APPENDIX II
DERIVATIVE OF THE BUS VOLTAGE PHASE ANGLE

The estimation of the bus frequency deviation described
in this appendix is based on the numerical derivative of the
angle of bus voltage phasors [34]. The frequency estimation
is obtained by means of a washout and a low-pass filter,

as depicted in Fig. 10. The washout filter approximates the
derivative of the input signal. Differential equations are as
follows:

pxθ =
1

Tf

(

1

Ωn
(θ − θ0)− xθ

)

(22)

pω =
1

Tω
(ω0 +∆ω − ω)

where θ0 is the initial bus voltage phase angle (e.g., the phase
angle as obtained with the power flow analysis); Ωn is the
system nominal frequency in rad/s; ωs is the synchronous
frequency in pu (typically, ωs = 1 pu); Tf and Tω are the
time constants of the washout and of the low-pass filters,
respectively; xθ is the state variable of the washout filter; and
∆ω = pxθ. Tf = 3/Ωn s and Tω = 0.05 s are used as default
values for all simulations.

washout lag

∆ω ω

ω0

θ

θ0

11 p +

+

+

−
Ωn 1 + pTf 1 + pTω

Fig. 10: Washout filter to estimate the frequency through a numerical
derivative of bus voltage phase angle.

In case of polar coordinates, to compute the frequency
variation ∆ω, the bus voltage phase angle θ has to be defined
first. Instead of computing directly θ, which might lead to
numerical issues, one can define two fictitious state variables,
namely sin θ and cos θ, whose dynamics are defined as follows
[17]:

p(cos θ) =
1

Tf
(vd/v − cos θ) (23)

p(sin θ) =
1

Tf
(vq/v − sin θ)

where v =
√

v2d + v2q. Then, ∆ω is obtained as:

∆ω =

{

p(sin θ)
Ωn cos θ , if | cos θ| > | sin θ| ,

− p(cos θ)
Ωn sin θ

, otherwise.
(24)
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funding Federico Milano and Álvaro Ortega, under Grant No.

8



SFI/09/SRC/E1780. The opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
Science Foundation Ireland. Federico Milano is also funded
by EC Marie Skłodowska-Curie Career Integration Grant No.
PCIG14-GA-2013-630811.

REFERENCES

[1] O. Anaya-Lara, F. Hughes, N. Jenkins, and G. Strbac, “Contribution of
DFIG-based Wind Farms to Power System Short-term Frequency Regu-
lation,” IEE Proceedings on Generation, Transmission and Distribution,
vol. 153, no. 2, pp. 164–170, March 2006.

[2] G. Ramtharan, J. Ekanayake, and N. Jenkins, “Frequency Support from
Doubly Fed Induction Generator Wind Turbines,” IET Renewable Power
Generation, vol. 1, no. 1, pp. 3–9, March 2007.

[3] J. M. Mauricio, A. Marano, A. Gómez-Expósito, and J. L. M. Ramos,
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