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A Geometrical Interpretation of Frequency
Federico Milano, Fellow, IEEE

Abstract—The letter provides a geometrical interpretation of frequency
in electric circuits. According to this interpretation, the frequency is
defined as a multivector with symmetric and antisymmetric components.
The conventional definition of frequency is shown to be a special case of
the proposed theoretical framework. Several examples serve to show the
features, generality as well as practical aspects of the proposed approach.

Index Terms—Frequency, differential geometry, curvature, inner prod-
uct, wedge product, geometrical product.

I. INTRODUCTION

In power system applications, the frequency of an ac signal is
conventionally defined as the time derivative of the argument of the
cosine function of the signal itself [1]. This definition appears to have
some issues. First, it depends on the representation of the signal itself.
This has led to a tremendous number of publications, each of which
using as starting point a different representation [2]. Second, the
value of the frequency often depends on the transformation utilized to
represent the ac signal. A good criterion to decide if a transformation
is robust is to check whether a signal can be fully reconstructed
to its original state if the inverse transformation is applied to the
transformed signal [3]. This is a sensible criterion but does not
guarantee the correctness and consistency of the estimation of the
frequency itself. The value of the estimated frequency should be
always the same (invariant) independently from the transformation.
A third issue with the common definition of frequency and a large
number of existing techniques to estimate the frequency is that they
do not account for variations of the magnitude of the signal. This
assumption poses serious issues for the estimation of the frequency
from measurements. The conventional definition, in fact, implicitly
assumes that one is able to measure the phase angle independently
from the magnitude and that the measured signal is a sine wave.
But this is not always the case, in particular, in transient conditions.
The theoretical framework and definition of generalized frequency
proposed in this letter address the issues above.

II. OUTLINES OF VECTOR OPERATIONS AND SPACE CURVES

In the letter, vectors are indicated in bold face (e.g., v),
whereas scalar quantities are in normal face (e.g., v). Let x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two n-dimensional
vectors in Rn.

The inner product is defined as:

x · y =
∑n

i=1 xiyi . (1)

For example, in R3, x ·y = x1y1 +x2y2 +x3y3. The inner product
is symmetric, associative, and commutative. In particular, the inner
product of a vector by itself gives:

x = |x| =
√
x · x , (2)

where x is the magnitude of x.
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The outer product is defined as:

x⊗ y =

x1y1 . . . x1yn
...

. . .
...

xny1 . . . xnyn

 . (3)

The wedge product is defined as:

x ∧ y = x⊗ y − y ⊗ x . (4)

For example, in R3, the wedge product gives:

x ∧ y =

 0 b12 −b31
−b12 0 b23
b31 −b23 0

 , (5)

where bij = xiyj − yixj . Strictly speaking, the result of the wedge
product is a bivector but, for simplicity, in this letter, the wedge
product is assumed to return a tensor as in (4). In the remainder of
this letter it will be indicated with an uppercase bold symbol, e.g.,
B = x∧y, where B is a skew-symmetric matrix. The wedge product
is antisymmetric, associative, and anti-commutative. The latter means
that x∧y = −y∧x and, consequently x∧x = 0. In R3, the wedge
product is similar to the cross product x× y, although the result of
the cross product is a vector not a tensor. For the developments of this
letter, it is relevant to note that in Euclidean metric, the magnitude
of a bivector is given by:

|x ∧ y| = |B| =
√∑n

i=1

∑n
j>i b

2
ij . (6)

For example, in R3:

|x ∧ y| =
√

b212 + b223 + b231 . (7)

The geometric product is defined as:

xy = x · y + x ∧ y . (8)

The result of the geometric product, which is called multivector,
consists of two components. The first component, x · y, is a scalar
that represents the projection of y onto the vector x. The second
component, x ∧ y, represents a bivector orthogonal to the space
defined by the vectors x and y. It may seem strange at first to sum a
scalar with a bivector but this is exactly the same kind of operation
that is intended when one writes a complex number as a+ȷb. Section
IV shows that, in fact, the algebra of complex numbers is a special
case of the algebra of multivectors.

In this work, we are interested in time-dependent n-dimensional
curves (or trajectories), i.e., x(t) = (x1(t), x2(t), . . . , xn(t)), where
t is time. The time derivative of x is defined as:

x′ =
dx

dt
= (x′

1, x
′
2, . . . , x

′
n) . (9)

From the geometrical point of view, x′ is the tangent vector of the
curve x. Let us define s as the arc length of the curve x, then the
following property holds:

s′ =
ds

dt
=

√
x′ · x′ = x′ . (10)

It is important to note that the arc length s and thus also its derivatives
are invariant with respect to the system of coordinates.
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It is relevant to define the derivative of the curve x with respect
to s, as follows:

ẋ =
dx

ds
=

dx

dt

dt

ds
=

x′

x′ , (11)

where we have used (10) and the identity dt/ds = 1/s′. From (11),
it follows that ẋ · ẋ = 1. Note also that the vector ẋ is tangent to x.

Finally, it is relevant to recall the definition of another invariant
quantity, namely the curvature, that plays an important role in
differential geometry. The curvature is defined as:

κ = |ẋ ∧ ẍ| = |x′ ∧ x′′|
(x′)3

, (12)

where
ẍ =

dẋ

ds
=

x′′

(x′)2
− x′′ x′

(x′)3
(13)

is the tangent vector to ẋ and satisfies the condition ẋ · ẍ = 0.
We are now ready to present the main contribution of this work.

III. FREQUENCY AS A MULTIVECTOR

Let us start with the vector of the magnetic flux, φ. According to
the Faraday’s law of induction, one has:

−φ′ = v , (14)

where v is the vector of the voltage and the minus accounts for the
Lenz’s law but is not crucial for the discussion below. On the other
hand, it is important to note that φ does not need to be known or to
be measurable. In the context of this work, φ serves only to define
the macroscopic effect of the magnetic field. In this context, the most
important property of φ is that its time derivative is the vector of the
voltage. If one interprets the components of the vector of the flux as
the coordinates of a curve, say x = −φ, then the voltage v = x′ is
the tangent vector to this curve.

According to the definitions given in Section II, one has:

s′ =
√

φ′ ·φ′ = φ′ = v , (15)

and
ẋ = −φ̇ =

φ′

s′
=

v

v
, (16)

and
ẍ = −φ̈ =

v′

v2
− v′ v

v3
. (17)

Since ẋ · ẍ = 0, one obtains:

0 = φ̇ · φ̈ =
v · v′

v3
− v′ v · v

v4
(18)

which leads to:
ρv =

v′

v
=

v

v
· v

′

v
. (19)

Similarly, from the definition of curvature in (12), one obtains:

κv = |φ̇ ∧ φ̈| =
∣∣∣∣vv ∧

(
v′

v2
− v′ v

v3

)∣∣∣∣ , (20)

and remembering that v ∧ v = 0, one obtains:

κv =

∣∣∣∣vv ∧ v′

v2

∣∣∣∣ , (21)

We define the magnitude of the frequency of v, say ωv , as:

ωv = v κv . (22)

This definition, while admittedly a little obscure at this point, will
be apparent in the examples presented in Section IV. From (21) and
(22), one obtains:

ωv =

∣∣∣∣vv ∧ v′

v

∣∣∣∣ , (23)

and, hence, we can define the bivector Ωv as:

Ωv =
v

v
∧ v′

v
. (24)

Based on (19) and (22) and on the definition of geometric product
given in (8), we can finally provide the following novel and most
important expression of this work:

ρv +Ωv =
vv′

v2
, (25)

where we define the term ρv + Ωv as the generalized frequency
of the voltage v. The left-hand side of (25) depends only on
geometric invariants, namely v = s′, v′ = s′′ and the components
of the bivector that define the magnitude of the curvature κv . The
generalized frequency, thus, does not depend on the coordinates with
which v is represented, nor the number of “dimensions” where v is
defined. It is also interesting to observe that frequency is defined in
(25) as the sum of a symmetric (ρv) and an antisymmetric term (Ωv).
Finally, we note that (25) has been obtained without any assumption
on the dynamic behavior of the components of v. Unbalanced and/or
non-sinusoidal conditions, multi-phase systems and even dc systems
are consistent with this definition.

IV. EXAMPLES

The examples presented below are aimed at illustrating the features
of the generalized frequency. The first two examples show that,
in stationary conditions, (25) leads to the well-known and widely
accepted definition of frequency in ac systems. Examples 3 and 4
illustrate the special cases of transient balanced three-phase systems
and dc systems, respectively. Example 5 extends the definition of
generalized frequency to the current. Example 6 illustrates the link
between the generalized frequency and the generalized instantaneous
reactive power proposed in [4]–[6] and shows a simple way to
estimate the generalized frequency in practice. Finally, Example
7 compares the estimation of the frequency as obtained with a
synchronous reference frame phase-locked loop (SRF-PLL) and the
one obtained with (25) based on a simulation of a detailed EMT
model of the well-known New England 39-bus system.

Example 1: Let us consider a stationary single-phase voltage with
constant angular frequency ωo and magnitude V , as follows:

v = V cos(θ)e1 + V sin(θ)e2 = v1e1 + v2e2 ,

where θ = ωot+ϕ and (e1, e2) is the canonical basis of the system,
with e1 and e2 orthonormal vectors. Then, v = |v| = V and:

v′ = v′1e1 + v′2e2 = −ωov2e1 + ωov1e2 ,

from which one can deduce that, as expected:

ρv =
1

V 2
(v1v

′
1 + v2v

′
2) =

ωo

V 2
(−v1v2 + v2v1) = 0 ,

ωv =
1

V 2
|v1v′2 − v2v

′
1| =

ωo

V 2
|v21 + v22 | = ωo .

It is relevant to note that, in R2, multivectors are isomorphic to
complex numbers. In fact, the bivector Ωv is:

Ωv = ωo(e1 ∧ e2) = ȷωo .

where the imaginary unit ȷ is defined as ȷ ≡ e1 ∧ e2.
Not also that, in two dimensions, the curvature is defined as [7]:

κv =
dθ

ds
=

dθ

dt

dt

ds
=

θ′

s′
=

θ′

v
, (26)

which is valid in any transient and non-sinusoidal conditions. Using
the chain rule and recalling (22), one has that θ′ = ω, which is the
commonly accepted definition of frequency [1]. Figure 1a illustrates
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the voltage “curve” for a single-phase stationary voltage with V = 12
kV and ωo = 120π rad/s. As expected, the curve is a circle, which,
as it is well-known, has constant curvature.
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Fig. 1: Voltage “curves.”

Example 2: We consider a stationary balanced three-phase system:

v = V sin(θa)ea + V sin(θb)eb + V sin(θc)ec

= vaea + vceb + vcec ,

where V is constant; θa = ωot, θb = θa − α and θc = θa + α with
ωo constant and α = 2π

3
; and (ea, eb, ec) is the canonical basis of

the system, with ea, eb and ec orthonormal vectors. Then:

v2 = |v|2 = V 2(sin2 θa + sin2 θb + sin2 θc) =
3

2
V 2 ,

v′ = ωoV cos(θa)ea + ωoV cos(θb)eb + ωoV cos(θc)ec

= v′aea + v′ceb + v′cec .

Then, one has:

ρv =
vav

′
a + vbv

′
b + vcv

′
c

v2

=
ωoV

2 1
2
(sin 2θa + sin 2θb + sin 2θc)

v2
= 0 ,

Ωv =
1

v2

 0 vav
′
b − vbv

′
a vav

′
c − vcv

′
a

vbv
′
a − vav

′
b 0 vbv

′
c − vcv

′
b

vcv
′
a − vav

′
c vcv

′
b − vbv

′
c 0

 ,

ωv =
1

v2

√
(vav′b − vbv′a)2 + (vbv′c − vcv′b)

2 + (vcv′a − vav′c)2

=

√
ω2
oV 4(2 sin2(α) + sin2(2α))

3
2
V 2

= ωo .

Figure 1b illustrates the voltage “curve” for three-phase balanced and
stationary voltages with V = 12 kV and ωo = 120π rad/s. The curve
is a circle in the 3D space and has constant curvature.

Example 3: We consider a balanced three-phase system in transient
conditions. For illustration, we use the dqo reference frame. The
voltage vector is v = vded + vqeq + voeo, where (ed, eq, eo) is
the canonical basis of the system, with ed, eq and eo orthonormal
vectors, and the vectors ed and eq are rotating at angular speed ωo.
Since the system is balanced, vo = 0. Then, v2 = v2d + v2q , and:

v′ = (v′d − ωovq)ed + (v′q + ωovd)eq = ṽ′ded + ṽ′qeq ,

where, assuming that the q-axis leads the d-axis, one has:

e′
d = ωoeq , e′

q = −ωoed .

The components of the generalized frequency are:

ρv =
vdv

′
d + ωovdvq + vqv

′
q − ωovdvq

v2
=

vdv
′
d + vqv

′
q

v2
,

Ωv =

[
0 vdṽ

′
q − vq ṽ

′
d

vq ṽ
′
d − vdṽ

′
q 0

]
,

ωv =
v′qvd + ωov

2
d − v′dvq + ωov

2
q

v2
= ωo +

v′qvd − v′dvq

v2
,

The equations above show that the definition of the Park vector
as v = vd + ȷvq and the time derivative in the Park reference
frame, namely d

dt
+ ȷωo, are an equivalent formulation for bal-

anced three-phase systems in transient conditions [8]. Figure 2
illustrates the expressions above for ρv and ωv assuming vd =
10 + exp(−t) cos(2πt)) kV, vq = exp(−t) sin(2πt)) kV, vo = 0,
and ωo = 120π rad/s. The figure also shows the components of the
voltage and their time derivatives, which confirm that the curvature
and thus the frequency are not constant in this case.
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Fig. 2: Illustration of Example 3.

Example 4: We show that (25) is valid also for dc voltages. In dc
circuits, the voltage has only one component along the unique basis
of the system, say edc, hence, v = vdc edc and v′ = v′dc edc. From
the definitions of inner and wedge product one has:

v · v′ = vdc v
′
dc , v ∧ v′ = 0 .

In dc, then, the generalized frequency is equal to ρv = v′dc/vdc and,
as expected, ωv = |Ωv| = 0.

Example 5: Similarly to the voltage, one can define the generalized
frequency of the current. Consider the vector of the electric charge q
as an abstract curve in Rn. This vector does not have to be intended
as a charge moving in space, but rather as the macroscopic effect of
the electric field in a given part of a circuit. Then:

q′ = ı , (27)

and, analogously to the discussion on the voltage, the generalized
frequency associated with the current is given by:

ρı +Ωı =
ıı′

ı2
. (28)

In general, for any given element of a circuit, the generalized
frequency of the voltage is not equal to that of the current. Rel-
evant exceptions are resistances. For a balanced resistive branch,
vv′ = R2ıı′, which indicates that, from a geometrical point of view,
resistances are scaling factors.

Example 6: We further elaborate on the link between voltage and
current vectors. For balanced capacitive elements, one has:

ı = Cv′ , (29)

Merging (25) and (29), one obtains:

ρv +Ωv =
vı

Cv2
=

p−Q

Cv2
, (30)
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where p = v · ı is the instantaneous active power, which is not
null only in transient conditions, and Q = ı ∧ v is the generalized
instantaneous reactive power as defined in [6]. Equation (30) provides
an expression to calculate the frequency of an electric circuit in
any transient condition through instantaneous voltage and current
measurements.

Example 7: This last example presents a comparison of the
estimation of the frequency as obtained with a standard SRF-PLL
and with (25). Figure 3 shows the results obtained with PowerFactory
and the New England 39-bus system following a phase-to-phase fault
at bus 3 applied at t = 0.2 s and cleared at t = 0.3 s. The simulation
utilizes the fully-fledged EMT model provided by PowerFactory.

PLLs can only estimate ωv = |Ωv|, i.e., the magnitude of the
bivector defined in (25). Despite this limitation of the PLL, the
comparison shows that the frequency obtained with the proposed
approach is consistent with the conventional SRF-PLL. To obtain the
estimation of ωv shown in Fig. 3 a simple discrete first-order filter
is used to smooth the numerical noise of the time derivative of the
voltages and calculate ωv . This is enough in this case to obtain good
results, which are affected by less delay than those obtained with
the PLL. Finally, the right panel of Fig. 3 shows that the trajectory
described by the voltage changes plane during the fault and is not
perfectly circular, thus leading to a time-varying curvature/frequency.
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Fig. 3: Examples 7: Voltage and frequency at bus 26.

V. REMARKS ON THE ESTIMATION OF THE FREQUENCY

There exist two main broad approaches for the estimation of the
frequency: transformation-based methods (e.g., Fourier-transform-
based approaches and more recently, Hilbert-transform-based ap-
proaches) and time-domain methods (e.g., PLLs). The approach
proposed in this letter falls in the second category. In general, all
conventional approaches define a priori a model of the measured
signal. For example, a sine wave with constant magnitude in [1], a
set of sine waves with constant magnitude and frequency in a given
window in the case of the Fourier transform, or a sine wave with
pulsating amplitude in the case of the Hilbert transform [3]. If the
actual signal does not fit the given model, the estimation obtained
with these methods might not be accurate.

The definition of frequency that is proposed in this letter has two
relevant advantages, as follows.

• It is intrinsically model agnostic, i.e., no assumption is made
on the time dependency of the elements of the voltage vector.
This allows providing a definition independent from the tran-
sient/stationary conditions of the circuit where the frequency is
to be estimated.

• Equation (25) suggests a way to calculate the frequency based
directly on the measured signal. Other approaches require to
process the measurements before being able to do the estimation.

Of course, also (25) presents some challenges. It requires in fact
to calculate the time derivative of the voltage, which can lead to

numerical issues. But this is done directly on the measured quantities
not on transformed ones. Moreover, Example 7 shows that the issues
due to numerical differentiation can be resolved with proper filtering.

In summary, the proposed approach appears useful in two ways:
(i) to build a “theory” based on the geometrical interpretation of
frequency and electric quantities in general; and (ii) in estimation
and control, to define the frequency in a unambiguous way. This also
suggests that (25), if standardized, can be utilized to compare the
results obtained with other techniques, e.g., to evaluate the accuracy
of PLLs and other devices that estimate the frequency, e.g., phasor
measurements units.

VI. CONCLUSIONS

The proposed formal framework generalizes and solves known
issues of the conventional definition of frequency. A strength of the
proposed approach is that it is based on invariant quantities, hence it
is compatible with any reference frame, e.g., abc, dqo and even dc
circuits. It is interesting to note that the proposed approach defines the
frequency as a geometrical object with symmetric and antisymmetric
parts. In an example, the letter also shows the link between the
generalized frequency and the power of a circuit. This link between
geometry and energy appears worth further research.
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