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Abstract— This letter proposes a precise frequency-dependent model for

power systems that takes into account spatial variations of the frequency

in the network during a transient. In the proposed approach, boundary

conditions are synchronous machine rotor speeds and the variation of the

frequency is based on the concept of frequency divider recently proposed

by the authors. The proposed model leads to a more accurate simulation of

transient conditions than conventional models for angle and voltage stability

analysis. The letter discusses the theoretical background of the proposed

model and compares it with the standard transient stability model, as well

as with a fully-fledged dynamic phasor model through a 1,479-bus dynamic

model of the all-island Irish transmission system.

Index Terms— Frequency dependent models, transient stability analysis,

center of inertia, frequency divider.

I. INTRODUCTION

The conventional Transient Stability Model (TSM) assumes that the

frequency is constant and equal to the nominal one for the definition

of network parameters such as transmission line series reactances and

shunt susceptances [1], [2]. This approximation is widely adopted

in simulation software tools for transient stability analysis. However,

during a transient triggered by a large disturbance, e.g., the outage

of a large infeed, synchronous machine rotor speeds can deviate

significantly from their nominal value. This variations can be properly

captured by Electromagnetic Transients (EMT) models, which include

detailed three-phase AC dynamic models of all elements of the grid.

But EMT models are computationally too heavy to be used for the

stability analysis of large power systems.

Some proprietary software tools, such as Eurostag and PSS
®

E,

allow utilizing a modified version of the TSM with inclusion of a

variable frequency for the reactances of transmission lines and loads.

Eurostag utilizes a reference frequency, common to all devices [3].

Such a frequency is the center of inertia (COI), i.e., the weighted

average of synchronous machine rotor speeds connected to the network.

PSS
®

E implements another approach, i.e., calculates the numerical time

derivative of bus voltage phase angles using a filter time constant

of 0.04 s [4]. As we have throughly discussed in [5]–[7], however,

neither of these two techniques is accurate. On one hand, the frequency

of the COI is unique for the whole system and cannot account for

local variations of the frequency. The Eurostag model is thus not fully

accurate in the first seconds after a large contingency. On the other

hand, the numerical derivatives of bus voltage phase angles (as those

calculated by PSS
®

E) are always affected by numerical issues and/or

delays which can even lead to extraneous instabilities [6].

In this letter, we propose a Frequency Dependent Model (FDM)

for transient stability analysis based on the frequency divider formula

(FDF) presented in [5] that overcomes both issues above. The FDF

shows that the value of the frequency varies as a continuum along the

branches of the grid and synchronous machine rotor speeds constitute

the boundary conditions. Hence, during a transient, the frequency

not only varies from bus to bus, but also along the length of series

reactances of transmission lines and transformers. This observation

leads to the following question: what frequency should be used to
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compute correctly the parameters of network branches? The remainder

of this letter provides an answer to this question.

II. MODELLING

The FDF proposed in [5] allows estimating the frequencies at every

bus of the grid, as follows:

ωB(t)− 1n,1 = D(ωG(t)− 1m,1) , (1)

where

D = −(BBB +BBS)
−1

BBG , (2)

where ωB is a n× 1 vector of the frequencies at system buses; BBB

is the n×n network susceptance matrix, i.e., the imaginary part of the

standard network admittance matrix; BBG, is the susceptance n ×m

matrix obtained using the stator and step-up transformer impedances of

the synchronous machines; BBS is a n× n diagonal matrix that takes

into account the internal susceptances of the synchronous machines

at generator buses; and 1n,1 and 1m,1 are unitary vectors of order n

and m, respectively. The interested reader can find in [5] a thorough

discussion on the accuracy of the FDF, which is fully independent from

the model of generators and their controllers, loads, compensation of

lines and cables, as well as from the size and topology of the network.

The vector of bus frequencies ωB allows directly defining frequency

dependent models of shunt devices, such as loads and capacitor banks.

A well-accepted load frequency-dependent model is:

p = p0 v
αp

h ω
βp

q = q0 v
αq

h ω
βq ,

(3)

where p0 and q0 are the nominal active and reactive power consump-

tions, respectively; v is the voltage magnitude at the load bus; and ωh

is the bus frequency as determined with (1), and the exponents are

determined either empirically or based on the nature of the device [8].

Less straightforward is to determine the frequency of series connec-

tions. Equation (1) is derived assuming that, for a series connection,

the frequency variation between one point to another is linear, as

illustrated in Fig. 1. The frequencies at buses h and k are imposed by

the generators, namely ωh and ωk. The frequency ωi at the intermediate

point i can be obtained from (1) as:

ωi =
xik

xtot
ωh +

xhi

xtot
ωk , (4)

where xtot = xhi + xik.

ξ

ℓ

ih kxhi xik

ωh

ωkωi

Fig. 1. Radial system connecting two generators. This system serves to discuss
the frequency variation along a branch.
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Let us consider first a uniform transmission line and let ℓ be the

total length of the branch connecting nodes h and k, and ξ the distance

of point i from bus h. Consequently, ℓ − ξ is the distance of point i

from bus k. Then, according to (4), the frequency along the connection

between buses h and k can be rewritten as function of the position ξ:

ω(ξ) =
(ℓ− ξ)ωh + ξωk

ℓ
, ξ ∈ [ 0, ℓ ] , (5)

which states that the frequency varies linearly in a series connection

(see the plot depicted in Fig. 1).

v(t, ξ)

i(t, ξ)

ξ ξ + dξ

gℓdξ

lℓdξ rℓdξ

cℓdξ

Fig. 2. Transmission line section of length dξ.

To determine the value of the frequency to compute frequency-

dependent transmission line parameters, let us consider the infinitesimal

length dξ of the line, as shown in Fig. 2 where rℓ, lℓ, gℓ and cℓ are

the resistance, inductance, susceptance and capacitance, respectively,

in per unit length of the line. For uniform transmission lines, the series

impedance of the line is given by:

∫ ℓ

0

(rℓ + jω(ξ)lℓ)dξ = rℓℓ+ j
ωh + ωk

2
lℓℓ = r + jω̂hkl (6)

where ω̂hk = 1

2
(ωh + ωk) is the average frequency between nodes

h and k; and r and l are the total resistance and inductance of the

line, respectively. Equation (6) can be easily extended to the case of a

non-uniform transmission line, e.g., a connection obtained as a series

of sections with different materials or topologies. Similarly, the shunt

susceptance of the line is obtained as:

∫ ℓ

0

(gℓ + jω(ξ)cℓ)dξ = gℓℓ+ j
ωh + ωk

2
cℓℓ = g + jω̂hkc (7)

where g and c are the total susceptance and capacitance, respectively,

of the line. Note that (6) applies also to transformers. In fact, the

FDF expresses the variation of the frequency as a continuum of

series reactance but does not impose any assumption on the physical

dimension of the branch. For transformers, assuming dρ = rℓdξ and

dλ = lℓdξ, one has:

∫ r

0

dρ+ j

∫ l

0

ω(λ)dλ = r + jω̂hkl (8)

where λ = lℓξ and the dependence of ω on the inductance λ is formally

analogous to (5):

ω(λ) =
(l − λ)ωh + λωk

l
, λ ∈ [ 0, l ] . (9)

Finally, let us consider the case of synchronous machines. Each

machine imposes the frequency, i.e., the rotor speed, at its emf behind

the internal reactances, not at the bus where the machine is connected.

The internal reactances of the machine thus constitute an antenna,

i.e., a series connection between the internal emf and the terminal

bus of the machine. The frequency at the emf is, by definition, the

rotor speed of the machine ωr , while the frequency at the bus ωh is

that determined through (1). Assuming a continuous linear variation of

the frequency from ωr to ωh and proceeding in a similar manner as

discussed for the transmission line and transformer, we obtain that the

average frequency along the internal stator reactances of the machine

is ω̂rh = 1

2
(ωr + ωh). Thus, the dependency of the machine stator

voltage equations on the frequency can be written as follow:

0 = raid + ω̂rhψq + vd

0 = raiq − ω̂rhψd + vq ,
(10)

where, using a conventional notation, ra is the armature resistance; and

vd and vq are the Park components of the voltage; id and iq are the Park

components of the current; and ψd and ψq are the Park components

of the magnetic fluxes.

III. CASE STUDY

The model of the Irish Transmission system grid, which is provided

by EirGrid, the Irish TSO, consists of 1,479 buses, 1,851 transmission

lines and transformers, and 245 loads. Based on this topology, a

synthetic dynamic model including 21 conventional synchronous power

plants modeled with 6th order synchronous machine models with AVRs

and turbine governors, 6 PSSs, and 176 wind power plants, of which

142 are DFIGs and 34 CSWTs has been elaborated by researchers with

the authors’ department. This model provides a dynamic representation

of the Irish electrical grid which is topologically accurate and approx-

imates the dynamics of the actual Irish grid. However, dynamic data

are guessed and the results obtained in this section, while realistic, do

not represent any actual operating condition. All results shown in this

section are obtained using Dome [9].

Figure 3 shows the transient response of the all-island Irish system

discussed above following the outage of the largest infeed, namely, the

HVDC interconnection with UK. This is the most severe contingency

that can happen in the Irish system which is considered here to

dramatize frequency variations.
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Fig. 3. Rotor angular speed of a synchronous machine (top panel) and voltage
magnitude at a load bus (lower panel) of the all-island Irish system following
the outage of the largest infeed.

In Fig. 3, we compare the following three models:
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• The TSM that considers constant reactances and susceptances

everywhere in the grid;

• The proposed FDM of loads, branches and synchronous machines.

Loads are assumed to be full-load induction motors with αp =
0.1, αq = 0.6, βp = 2.8 and βq = 1.8 [10]; and

• A Dynamic Phasor Model (DPM) that includes machine flux and

line dynamics.

Note that the DPM is the dqo transformation of the fully-fledged EMT

model with the following approximations: (i) load is assumed perfectly

balanced; (ii) no harmonics are considered; and (iii) the fundamental

frequency is shifted by means of the dqo transformation.

Simulation results show that the TSM is conservative, as the fre-

quency nadir is about 100 mHz lower than that obtained with the more

precise FDM. Voltage variations are also, in general, bigger for the

standard model than for the FDM. Finally, the computational burden of

the FDM model is only about the double than the conventional one (14 s

vs. 7.5 s, using an integration time step of 0.01 s), despite the significant

nonlinearity introduced by the dependency of network parameters on

the frequency. On the other hand, the FDM and DPM give basically same

results, except for some spikes in the voltages right after the occurrence

of the contingency. However, the DPM requires a much smaller time

step to properly integrate flux and line dynamics. To complete the DPM

simulation shown in Figure 3, in fact, required about 165 s with a time

step of 0.002 s.

Figure 4 shows a further comparison of the trajectories of stator

fluxes of a synchronous generator of the Irish system following the

same contingency discussed above and considering the FDM with two

scenarios, namely, with and without stator flux dynamics. The results

indicate that the effect of the dynamics of the fluxes is visible only

in the very first instants after the contingency and do not modify the

overall behavior of the machine.
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Fig. 4. Stator dq-frame fluxes of a synchronous machine of the all-island Irish
system following the outage of the largest infeed.

IV. CONCLUSIONS

In this letter, we propose an intermediate model between the transient

stability and EMT approaches. With respect to the existing transient

stability models, the FDM takes into account the actual local variations

of the frequency at every bus of the system. This allows properly

taking into account, during the first seconds after a contingency,

the electromechanical oscillations of the synchronous machines. With

respect to an EMT approach, the FDM neglects fast electromagnetic

dynamics, which anyway damp in the first tens of milliseconds after

a contingency and, thus, have little impact on the electromechanical

dynamics on which we focus in this letter. As a result, the proposed

FDM enhances the accuracy of the standard transient stability model

while avoiding the computational burden of the fully-fledged EMT

simulations.

Based on simulation results, we conclude that the proposed FDM

can be an useful improvement with respect to conventional models as

it is less conservative and can thus lead to better estimations of the

transient behavior of power systems, especially those with low inertia,

which are thus prone to high frequency variations.
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