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Abstract— The first part of this two-part paper proposes a
technique that consists in the measurement, through phasor
measurement units, of bus frequency variations to estimate the
rate of change of regulated power, and in the definition of a local
index that is able to discriminate between devices that modify
the frequency at the connection bus and devices that do not.
A taxonomy of devices based on their ability to modify locally
the frequency is proposed. A byproduct of such an index is to
estimate the inertia or equivalent inertia of the monitored device.
The proposed index is shown to be a relevant consequence of
the concept of frequency divider formula recently published by
the authors on the IEEE Transactions on Power Systems. The
properties of the proposed index is illustrated through examples
based on the synchronous machine and its controllers.

Index Terms— Primary frequency control, inertial response,
phasor measurement unit (PMU), converter-interfaced genera-
tion.

I. INTRODUCTION

A current challenge for the secure operation of the grid is
the ability of TSOs to determine through simple measurements
whether a device connected to the grid provide frequency
control at a given time [1]–[3]. Some TSOs have resolved the
problem by measuring the active power output to estimate their
mileage. Other TSOs “trust” the operators of power plants,
which might expose the system to security issues if the control
is not provided or available when needed. A third approach
consists in allocating conventional frequency reserve, which
guarantees a secure operation but leads to higher energy costs.
This paper addresses this problem and provides a theoretical
framework for its solution.

The need for metrics to define the frequency response
and control in a transmission system has been recognized
since a decade ago. The report [4], for example, defines
three obvious metrics, namely frequency nadir, nadir-based
frequency response, and primary frequency response. These
are, however, “global” metrics and are adequate only for
off-line adequacy and reliability studies. Existing techniques
to evaluate the primary frequency and inertial responses are
qualitative and based on statistical analysis of time series [5],
[6] or on Kalman filtering [7].
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The technique proposed in this paper is based exclusively
on bus frequency measurements, and is conceptually different
from existing approaches as it is local, quantitative and aimed
at on-line applications. The proposed approach is a further
elaboration on the concept of Frequency Divider Formula
(FDF) [8], which has already been utilized to estimate bus
frequencies [9], machine rotor speeds [10] and the frequency
of the Center of Inertia (CoI) [11].

The first part of this two-part paper provides the following
contributions.

• An alternative derivation of the FDF presented in [8]. The
new formulation is obtained starting from the expression
of the power flow equations and is shown to have formally
the same structure than the dc power flow equation.

• A practical criterion to determine whether, in transient
conditions, a device provides inertial response and/or
frequency control.

• A taxonomy of devices that modify the frequency at
their point of connection with the grid for a variety
of technologies, including synchronous machines, loads,
renewable generation and energy storage systems.

• The dc power-flow based derivation of the FDF leads
to relevant byproducts on the impact of a device on
frequency variations and on the ability to estimate fre-
quency variations through active power measurements
rather than using voltage phasors as commonly imple-
mented in Phase-Locked Loops (PLLs).

• An approximated expression to determine, in transient
conditions, the equivalent inertia of a device based on
active power and frequency measurements.

Part I also illustrates the main features of the proposed
technique through a set of examples that focus on synchronous
machines and conventional primary and secondary frequency
regulation. In the second part, we extend the analysis to
non-synchronous devices and present a statistical approach to
evaluate the frequency regulation support provided by non-
dispatchable distributed energy resources.

The remainder of Part I of this paper is organized as follows.
Section II recalls the formulation of the FDF proposed in [8]
and provides an alternative formulation as a derivation of the
well-known power flow equations. Section III describes the
rationale and the formulation of the proposed index to dis-
criminate between devices that provide inertial response/fast
frequency regulation or not. Dynamic state estimation of bus
frequencies as well as the approximated expression to estimate,
during a transient, the equivalent inertia of a device are
discussed in Section IV. A set of illustrative examples based



on the well-known WSCC 9-bus, 3-machine test system is
provided in Section V. Finally, a summary of the theoretical
results is presented in Section VI.

II. FREQUENCY DIVIDER FORMULA

In [8], the starting point of the definition of the FDF is the
augmented admittance matrix and the relation between current
injections and voltages at network buses.

In this section, we first recall the definition of the FDF
in Subsection II-A. An alternative derivation of the same
formula based on the power flow formulation is then provided
in Subsection II-B. An interesting feature of the proposed
formulation is its formal similarity with the well known dc
power flow formulation [12], [13]. It is important to note,
however that this similarity is only formal, as the proposed
formulation is actually not an approximation of the power
flow equations but, rather, represent a part of it, which, in
this paper, we call regulating power. The two formulations
of the FDF are complementary and will be used later in the
paper to show the properties of devices that modify, locally,
the frequency by providing either inertial or fast frequency
response, and to derive an expression to estimate inertia.

A. Derivation based on current injections

For the determination of the FDF in [8] we utilized the
augmented admittance matrix, which includes the network
connections and electromotive forces (emfs) behind the inter-
nal reactances of the synchronous machines (SMs), as follows:[

īG(t)

īB(t)

]
=

[
ȲGG ȲGB

ȲBG ȲBB

] [
ēG(t)

v̄B(t)

]
, (1)

where the subscripts G and B stand for synchronous gener-
ation buses, and for load and transition buses, respectively;
v̄B(t) and īB(t) are bus voltages and current injections, re-
spectively, at network buses; īG(t) are generator current injec-
tions; ēG(t) are generator emfs behind the internal generator
impedance; ȲGG ∈ Cm×m; ȲBB ∈ Cn×n; ȲGB ∈ Cm×n;
and ȲBG ∈ Cn×m. The sub-matrix ȲBB is:

ȲBB = Ȳbus + ȲG , (2)

where Ȳbus is the well-known network admittance matrix, and
ȲG is a diagonal matrix whose h-th diagonal element is 0 if
no machine is connected to bus h, and the inverse of jxG,h

if such a machine is connected to bus h, where xG,h is the
machine internal transient reactance. xG,h also includes the
reactance of the step-up transformer of the machine if this is
not part of the network topology.

Assuming negligible the contribution of load currents (as
commonly done in fault analysis), the relationship between
bus voltages v̄B(t) and emfs ēG(t) can be written as:

ȲBGēG(t) = −ȲBBv̄B(t) . (3)

Differentiating (3) with respect to time and applying the
simplifications discussed in [8], the FDF is obtained as:

BBG∆ωG(t) = −BBB∆ωB(t) , (4)

where ∆ωG(t) ∈ Rm is the vector of machine rotor speed
variations; ∆ωB(t) ∈ Rn are the frequency variations at the
system buses; and BBG = Im{ȲBG} and BBB = Im{ȲBB},
where BBB has same rank and symmetry properties as ȲBB.
In (4), frequency variations are in per unit with respect to the
system reference frequency.

B. Derivation based on power flow formulation

The complex power injection at the network buses of the
system, say s̄B, can be expressed in terms of the well-known
power flow equations, as follows:

s̄B(t) = pB(t) + jqB(t) = v̄B(t) ◦
[
Ȳ
∗
bus v̄

∗
B(t)

]
, (5)

where ◦ is the Hadamard product, i.e., the element-by-element
product by two vectors. For the sake of the derivation, it
is convenient to rewrite (5) in an element-wise notation and
extract the active power:

pB,h(t) = vB,h(t)
∑
k∈B

vB,k(t)Ghk
bus cos θB,hk(t)

+ vB,h(t)
∑
k∈B

vB,k(t)Bhk
bus sin θB,hk(t) ,

(6)

where B is the set of network buses; Ghk
bus and Bhk

bus are the
real and imaginary parts of the element (h, k) of the network
admittance matrix, i.e. Ȳ hk

bus = Ghk
bus + jBhk

bus; vB,h and vB,k

denote the voltage magnitudes at buses h and k, respectively;
and θB,hk(t) = θB,h(t) − θB,k(t), where θB,h(t) and θB,k(t)
are the voltage phase angles at buses h and k, respectively.

Let us differentiate (7) and write the active power injections
as the sum of two components:

dpB,h =
∑
k∈B

∂pB,h

∂θB,k
dθB,k +

∑
k∈B

∂pB,h

∂vB,k
dvB,k

= dp′B,h + dp′′B,h ,

(7)

In (7), dpB,h is the total variation of power at bus h, while
dp′

B,h is what, in the paper, we call “regulating power”. In gen-
eral, dpB,h 6= dp′

B,h, so p′
B,h(t) cannot be measured directly,

except for some special cases that are discussed in Section
III. This is why an approach to determine p′

B,h(t) indirectly
based on frequency measurements is proposed in this paper.
The second term in (7), namely p′′

B,h(t), by definition, does
not depend on phase angle variations and thus plays no role
in altering the frequency of the buses and thus is not further
considered in the remainder of this paper. As a matter of
fact, it appears that p′′

B,h(t) is the quota of the active power
that behaves as a passive admittance. The rationale of this
statement is provided in the Appendix and further illustrated
through the numerical examples discussed in Subsection IV-A
of Part II.

While one can use the expression of dp′
B,h as is, i.e., as

a nonlinear function of voltage magnitudes and phase angles,
we have observed that the dependency on such quantities can
be simplified without compromising its accuracy as follows.
• The first term in (7), namely dp′

B,h, is the one that varies
the most when the active power at bus h is regulated,
whereas the contribution to the active power regulation

2



of the second term, namely dp′′
B,h, is negligible, if any at

all.
• The differentiation of dp′

B,h with respect to time can be
conveniently approximated with:

ṗ′B,h(t) ≈ Ωb

∑
k∈B

Bhk
bus ωB,k(t) , (8)

where ωB,k(t) = Ω−1b θ̇B,k(t) is the frequency in pu(rad/s)
at bus k; Ωb is the reference synchronous speed in rad/s;1

and where it is assumed:

∂p′
B,h

∂θB,k
≈ Bhk

bus . (9)

The two assumptions above have been thoroughly tested
considering:
• Several networks of different size (from three to thou-

sands of buses) and topology (both transmission and
distribution systems);

• A large variety of devices ranging from conventional
synchronous machines and loads to non-synchronous
generators based on wind and solar as well as converter-
based energy storage systems with and without frequency
control.

• A variety of faults and large disturbances, including three-
phase faults, and device outages (please see also Part II
of this paper).

In all cases, the approximation assumed in (9) has proven
to be extremely good, which leads to conclude that the effect
of voltage magnitudes is effectively negligible, if any at all.
Therefore, the accuracy and effectiveness of the approach
proposed in the paper have been confidently proven.

Note that from (9), the time integral of (8) can be approxi-
mated (without loss of accuracy) as:

p′B,h(t) ≈
∑
k∈B

Bhk
busθB,k(t) , (10)

or, recovering the vector-based notation:

p′B(t) = −BbusθB(t) , (11)

which appears to have the same formal expression as the well-
known dc power flow formulation [12]. It is important to note,
however, that in the dc power flow the term on the left-hand
side of the equation is the total power. Instead and crucial
for the development of this paper and its companion Part II,
in (11), the term on the left-hand side is only a quota of the
active power, i.e., the regulating power p′B(t).

Differentiating (11) with respect to time gives the most
important equation this paper, which in turn is the vector-based
notation of (8), namely:

ṗ′B(t) = −ΩbBbus∆ωB(t) = −B̂bus∆ωB(t) , (12)

The vector ṗ′B(t) represents the Rate of Change of Power
(RoCoP) injections into the generator nodes. It is important to

1Multiplying the right-hand side of (8) by Ωb is necessary to take into
account the fact that the phase angles θB,k are in radians, while ωB,k are
expressed in per unit.

reiterate that this quantity is not trivially the numerical deriva-
tive of the active power injection/consumption at network
buses as pB(t) = p′B(t)+p′′B(t) and, in general, p′′B(t) 6= 0 ∀t.

To complete this section, it remains to show that the
frequency divider formula (4) can be derived from (12), and
that (12) is actually a generalization of (4). With this aim,
we need an additional step. Matrix BBB can be obtained from
Bbus as follows:

BBB = Bbus + BG , (13)

where BG is a diagonal matrix where the h-th element is either
−1/xG,h , or 0 if no generator is connected to bus h. Merging
together (4), (12) and (13), we obtain:2

ṗ′B(t) = Ωb[BBG∆ωG(t) + BG∆ωB(t)] , (14)

or, equivalently

ṗ′B(t) = B̂BG [∆ωG(t)−∆ωBG(t)] , (15)

or, equivalently:

BBG [∆ωG(t)−∆ωBG(t)] = −Bbus∆ωB(t) , (16)

where ∆ωBG(t) ⊂ ∆ωB(t) is the subset of frequency devia-
tions at the terminal buses of the SMs.

Expressions (12) and (15) indicate that a time-varying active
power injection into the network bus modifies the frequency
at that bus. Noteworthy, such active power variation can be
originated by device other than just SMs. This concept is
further elaborated in the remainder of the paper.

III. TAXONOMY OF DEVICES BASED ON THE ROCOP

The observation that motivates this paper originates from
the structure of the revisited FDF given in (16). First, let
us consider the simple example of Fig. 1, where an SM is
connected in antenna with the grid through a transmission
line.3 In this example the step-up transformer is included in
the machine model, hence xG = x′d + xT.

+

+

−

− ē′dq(t)exp
(

jδ
G
(t)

)

jx′d r
T
+ jx

T

r12 + jx12

ra

ī1,dq(t)

v̄1,dq(t)

Grid

∆ω
G
(t)

1 2

∆ω
B,1(t) ∆ω

B,2(t)

Fig. 1: Synchronous machine connected in antenna to the grid.

In Fig. 1, bus 1 is the terminal bus of the generator that
is accessible and “measurable” by the TSO, whereas bus 2
is the high-voltage neighboring bus at the receiving end of
the transmission line that connects the generator to the rest of
the grid. Note that the step-up transformer could be also used

2The values of the non-zero elements of each row of BBG and BG have
same magnitude but opposite signs.

3The antenna configuration is used for simplicity but, in fact, any topology
can be used. The general case is considered in (20).

3



as the “antenna” connection, provided that both windings are
measurable by the TSO. The developments discussed in this
section are valid independently on how the step-up transformer
is modeled, either internally to the machine or externally as
part of the grid.

Applying (16) to bus 1 of the scheme of Fig. 1 leads to:

bG[∆ωG(t)−∆ωB,1(t)] = (b12 + b10)∆ωB,1(t)

− b12∆ωB,2(t) ,
(17)

where bG = 1/xG is the internal susceptance of the SM and
step-up transformer; b10 is the shunt susceptance at bus 1 and
b12 = 1/x12 is the susceptance of the branch that connects
buses 1 and 2. In (17), the signs are a consequence of (16)
and of assuming bG and b12 to be positive if inductive.

Equation (17) is written with the knowledge that the device
connected to bus 1 is an SM, which imposes the frequency at
the emf behind the susceptance bG. Moreover, for simplicity,
we only consider the topology illustrated in Fig. 1. The
properties of devices that do and do not modify locally the
frequency discussed below, in fact, do not depend on the
number of connections of such devices to the grid. The case
of multiple connections can be readily taken into account and,
as a matter of fact, a general topology is considered for the
RoCoP definition given in (20).

Let us now assume that we do not know anything of the
device connected to bus 1 (black box) but some measurements
at its terminal bus. This case is shown in Fig. 2.

Black

Box
Grid

∆ωB,1(t) ∆ωB,2(t)

z̄12
1 2

Fig. 2: Black-box device connected in antenna to the grid.

Regardless of the actual behavior of the black box, we can
rewrite (17) by assuming that the black box has an internal
frequency, ∆ω�(t), and an equivalent, possibly time-variant
susceptance, b�(t), both unknown:

b�(t)[∆ω�(t)−∆ωB,1(t)] = b12[∆ωB,1(t)−∆ωB,2(t)] , (18)

where, consistently with the assumptions that lead to the FDF
and without loss of generality, b12 � b10 is assumed. The term
b�(t)[∆ω�(t)−∆ωB,1(t)] in (18) is not known. According to
(15), (18) can be also written as:

ṗ′B,1(t) = b̂12 [∆ωB,1(t)−∆ωB,2(t)] , (19)

where b̂12 = Ωbb12 and ṗ′B,1(t) is the RoCoP at the bus of
connection of the black-box device with the grid.

Expression (19) can be conveniently generalized by as-
suming that there is more than one branch connected to the
monitored bus. Hence, assuming to monitor the h-th bus, the
proposed general formula to discriminate between devices that
modify the frequency at their point of connection and devices

that do not is:

ṗ′B,h(t) =
∑
k∈B

b̂hk

[
∆ωB,h(t)−∆ωB,k(t)

]
, (20)

where B is the set of buses connected to bus h and bhk is the
susceptance of the branch connecting bus h to bus k. Equation
(20) only requires the knowledge of the system admittance
matrix and the measurement/estimation of the frequencies at
the neighboring buses of the device to be monitored. This
information is easily available to the TSOs. No confidential
information about the device itself has to be provided.

In (20), the term
∑

k∈B b̂hk∆ωB,h(t) represents the com-
bined effect on the frequency of both the device connected
to bus h and the rest of the network; whereas the term∑

k∈B b̂hk∆ωB,k(t) represents the effect of the whole network
on the frequency at bus h. Subtracting the latter to the former,
what remains is the effect of the black-box device on the
frequency variation at bus h.

Next, we discuss some special cases of (20), and provide
a taxonomy of devices based on their ability to modify the
frequency at their connection point.

A. Devices that Do Not Modify the Frequency

According to our definition, the devices that are unable
to modify the frequency at their point of connection satisfy
the condition ṗ′

B,h(t) = 0,∀t, because, by construction of
the FDF, there cannot be any variation of frequency within
a passive circuit (boundary conditions on the frequency are
imposed externally from the device). For such devices, thus,
the following relationship holds:

∆ω�,h(t) ≡ ∆ωB,h(t) , ∀t . (21)

Constant admittance loads fall in this category. However, for
most devices, the condition ṗ′

B,h(t) = 0 is too strict. We thus
relax it and assume that a device is unable to modify the
frequency at its point of connection if it satisfies the condition:

|ṗ′B,h(t)| ≈
∣∣∣∣∆pB,h(t)

∆t

∣∣∣∣ < ε , (22)

where ε > 0 is a given empirical threshold that, once agreed
upon by all parties, can be used by the TSO to define network
codes and ancillary services. A discussion on how to evaluate
this threshold in practice is given in Part II.

Condition (22) can be satisfied in two relevant cases:
1) Slow power variations: The device does vary its power

consumption/production, but the RoCoP is small in the con-
sidered time frame of primary frequency control. According
to the notation of (22), this situation is characterized by a
non-negligible ∆pB,h(t) and a large ∆t. For instance, the
secondary frequency control or the daily ramp-up of loads
do not significantly vary the frequency at the buses.

2) Small power variations: No load consumption or gen-
eration is ever perfectly constant. Stochastic white noise, at
least, creates local tiny fluctuations. If the noise is small
enough, however, such variations are unable to impact on the
frequency. According to the notation of (22), this situation is
characterized by small ∆pB,h(t) per unit of time.
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In the Appendix, we show that constant admittance loads
have ṗ′

B,h(t) = 0 ∀t. For nonlinear loads, this condition
does not hold in general. However, independently from the
load voltage dependency, we can assume that a load can
be modelled as two components, one slowly time-varying
ramp, pramp(t), and a stochastic component, pstoch(t) (see,
for example, the model described in [14]), one has:

pL(t) = pramp(t) + pstoch(t) , (23)

then ṗL(t) will be negligible, even though the load consump-
tion is not perfectly constant. The simulation results and
discussions presented in Part II of this paper support this
conclusion.

B. Devices that Modify the Frequency
According to our definition, a device is able to vary the

local frequency whenever the condition ṗ′
B,h(t) 6= 0 holds.

Following the discussion above, the only variations of power
of interest are those that are sufficiently big to be able to vary
the local frequency above a certain threshold and sufficiently
fast to be comparable to the time scale of the inertial response
and primary frequency control of SMs.

Using the same notation as in (22), a device is able to
modify the frequency at its bus of connection if the following
condition is satisfied:

|ṗ′B,h(t)| ≈
∣∣∣∣∆pB,h(t)

∆t

∣∣∣∣ ≥ ε . (24)

In the following, we consider various technologies.
1) Synchronous machines: The dynamics of the rotor speed

of a machine connected to bus h can be approximated by:

MGω̇G(t) = pm(t)− pB,h(t) , (25)

where MG is the inertia constant and pm(t) is the mechanical
power provided by the turbine. The mechanical power can be
decomposed into three terms:

pm(t) = pUC(t) + pPFC(t) + pAGC(t) , (26)

where pUC(t) is the power set point as defined by the solution
of the unit commitment problem; pPFC(t) is the regulating
power due to primary frequency control (turbine governor)
of the machine; and pAGC(t) is the regulating power due to
the secondary frequency control if any, and if the machine
participates to it. Hence, the active power injected by an SM
into its terminal bus can be written as:

pB,h(t) = pUC(t) + pPFC(t) + pAGC(t)−MGω̇G(t) , (27)

where pUC(t) is piece-wise constant and pAGC(t) varies slowly.
Hence, of the four components above, the ones that actually
contribute to modify the frequency at the machine bus are
pPFC(t) and the machine inertial response. Therefore:

ṗ′B,h(t) ≈ ṗPFC(t)−MGω̈G(t) . (28)

In the very first instants after a contingency the dominant effect
is due to the inertial response but, in general, the two terms
are intertwined. Note, however, that if a machine does not
provide primary frequency control, then the lack of regulation
can be inferred by observing the transient behavior of ṗ′

B,h(t),
as illustrated in the examples of Section V.

2) Non-synchronous devices regulating the frequency: This
category includes, but not limited to, grid-forming power elec-
tronics converters of non-synchronous generation and energy
storage systems, and thermostatically controlled loads. Such
devices consist of a frequency control loop, with a given
reference frequency, ωref , as illustrated in Fig. 3.

Grid

∆ω
ref(t) ∆ωB,1(t) ∆ωB,2(t)

b
�
(t)

1 z̄12
2

Fig. 3: Example of a device that controls the frequency at bus 1.

The actual implementation of the controller, which is
accounted for with a time-dependent susceptance, b�(t),
is unknown. However, regardless of its transfer function,
the controller tracks a reference frequency, so, in turn,
∆ω�,h(t) = ∆ωref(t). In practice, ωref is constant and, hence,
∆ωref = 0. While not known in detail, we can assume that
b�(t) 6= 0 and ṗ′

B,h(t) 6= 0 for any transient condition for
which ∆ωB,h(t) 6= ∆ωref .

Note that synchronous machines also fall in the category
of the frequency controlled device shown in Fig. 3 as con-
ventional generators generally include a turbine governor and
provide primary frequency regulation. However, we have dis-
cussed synchronous machines separately as they are a relevant
special case that will be further discussed in Subsection IV-C.

Next, we present two relevant cases: (i) wind turbines with
frequency control, and (ii) energy storage systems.

For a wind turbine, one has:

pB,h(t) = pstoch(t) + pPFC(t) , (29)

where the stochastic term pstoch(t) depends on the uncertainty
and volatility of the wind speed and the second term pPFC(t) is
given by the primary frequency controller of the wind turbine,
if any. Large and fast stochastic variations, such as wind
gusts, are indistinguishable, in principle, from power variations
aimed at regulating the frequency. The only difference is
statistical. Wind gusts, in fact, will show for about 50% of the
times a variation that further increases the actual frequency
deviation. Instead, a power variation imposed by a frequency
controller always aims at tracking the synchronous frequency.
Wind gusts, however, are relatively uncommon and, very
often, wind power plants are not operated at their maximum
capacity.4 Moreover, typical values of the autocorrelation
coefficients of wind speeds (see, for example, [16]) lead to
conclude that wind turbulences have a small local effect on
active power fluctuations, whereas the average value of the
wind varies quite slowly with time. Thus, except for rare strong
wind gusts, the RoCoP of a wind turbine can be assumed to
be:

ṗ′B,h(t) ≈ ṗstoch(t) + ṗPFC(t) ≈ ṗPFC(t) , (30)

4See, for example, the so-called “wind dispatch down” periods defined by
EirGrid and SONI, that effectively make constant the power production of a
wind power plant [15].
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at least for all variations such that |ṗ′
B,h(t)| > εWT, where the

threshold εWT can be chosen based on statistical properties
(shape factor and autocorrelation) of the wind at the location
of the wind power plant. This important point is thoroughly
discussed in Part II.

The case of energy storage systems is probably the easiest
one to analyze. These devices are based on deterministic
controllers and, when used to provide primary frequency
support, they generate/absorb power only if the frequency is
outside a band around the synchronous reference speed:

pB,h(t) = pPFC(t) ⇒ ṗ′B,h(t) = ṗPFC(t) . (31)

IV. DYNAMIC STATE ESTIMATION

This section discusses the consequences of (12) and (20) for
the dynamic state estimation of bus frequencies (Subsection
IV-A) and machine rotor speeds (Subsection IV-B), as well as
an approximated expression to estimate the equivalent inertia
of a device, valid in transient conditions (Subsection IV-C).

A. Bus Frequencies
The estimation of bus frequencies is conventionally based

on the measurements of bus voltage phasors and the proper
design of PLLs, which are part of Phasor Measurement Units
(PMUs) or equivalent devices. To achieve a satisfactory level
of accuracy with this type of estimation is possible but
challenging [17].

Expression (12) suggests that active power measurements
can be utilized to estimate frequency variations at network
buses. From (12), one has:

∆ωB(t) = B̂
−1
bus ṗ

′
B(t) , (32)

where ṗ′B(t) can also be approximated with ∆pB/∆t in a
given finite time ∆t. Vice versa, based on (20), if frequency
estimations at network buses are known, the regulating power
provided by a device can be estimated as:

∆p′B,h(t) =

∫
t

∑
k∈B

b̂hk
[
∆ωB,h(τ)−∆ωB,k(τ)

]
dτ . (33)

B. Machine Rotor Speed
In [10], we have described how to estimate the rotor speeds

of SMs based on (4). The noteworthy result of [10] is that
such an estimation can be achieved with a reduced set of
bus frequency estimations and a linear optimization problem.
Considering the example of Fig. 1, the rotor speed of the
machine can be obtained as:

∆ωG(t) =
b12 + bG
bG

∆ωB,1(t)− b12
bG

∆ωB,2(t) . (34)

Equation (15) leads to an alternative expression to estimate
the rotor speed of the machine based only on measurements
at the terminal bus of the machine itself (thus also eliminating
the issue of measurement delays discussed in [10]):

∆ωG(t) = ∆ωB,1(t)− x̂Gṗ
′
B,1(t) , (35)

where x̂G = 1/b̂G. The former expression can be also used
for any radial connection, such as a long transmission line, to
estimate the frequency at one end by measuring the frequency
and the active power injection into the other end.

C. Inertia

Elaborating on (28), we can derive an expression to esti-
mate the inertia of an SM or, more interestingly, to estimate
the equivalent inertia of any non-synchronous device in the
transient following a contingency.

The time scale of the inertial response of the machine is
faster than that of its primary frequency control. Thus, in the
first seconds after an event that causes a power unbalance in
the system, we can assume that:

ṗPFC(t)�MGω̈G(t) . (36)

Using (36), (28) can be rewritten as:

MGω̈G(t) ≈ −ṗ′B,h(t), for 0 < t < t∗ , (37)

with t∗ ≈ 1 s. Referring again to Fig. 1 and substituting ω̈G(t)
with the second time derivative of the expression obtained
from (35), (37) becomes:

MG(t) ≈
−ṗ′B,1(t)

d2/dt2
[
∆ωB,1(t)− x̂Gṗ′B,1(t)

] , for t < t∗ . (38)

Equation (38) determines the physical inertia of SMs if
applied in the proper time scale.5 Interestingly, the device to
be monitored does not have to be an SM. Equation (38) can be
rewritten as an estimation of the equivalent inertia that a device
connected at bus i shows after a contingency, as follows:

M�,h(t) ≈
−ṗ′

B,h(t)

d2/dt2
[
∆ωB,h(t)− x̂�,hṗ′B,h(t)

] , for t < t∗ ,

(39)
where the parameter x̂�,h can be defined for non-synchronous
devices based on the nominal power capacity of the device
and using typical values for SMs of the same size. Clearly,
the device does not need to have a physical inertia. To show
M�,h(t) 6= 0, in fact, the device can provide an inertia-like
response through proper fast frequency control. For example,
power electronic converters can provide primary frequency
control much faster than SMs, thus overlapping the time scale
of the inertial response. Equation (39) can thus be utilized by
system operators to evaluate and reward as an ancillary service
the equivalent “inertial response” of non-synchronous devices.

In steady state, the denominator of equation (39) is null as
∆ωB,h(t) = ṗ′

B,h(t) = 0. This is consistent as (39) applies
only in transient conditions. However, it is also possible that,
during a transient, ∆ωB,h(t) = x̂�,h ṗ

′
B,h(t) 6= 0, thus leading

to a singularity. This point is further discussed in Section IV-B
of Part II.

V. ILLUSTRATIVE EXAMPLES

This section presents some illustrative examples based on
the well-known WSCC 9-bus system shown in Fig. 4. This net-
work includes 3 SMs (modeled with a fourth order, one direct-
and one quadrature-axis machine model), loads (modeled as
constant admittances during transients, and as constant power
injections in quasi-steady-state conditions) and transformers,

5MG is the machine ‘starting time,’ which is twice the inertia, i.e.,
MG = 2HG. With a little abuse of notation, we use ‘inertia’ to refer to MG.
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and 6 transmission lines, as well as Primary Frequency Control
(PFC) and Automatic Voltage Regulation (AVR). Base-case
data are given in [18].

All simulations were carried out using Dome [19] and were
executed on a 64-bit Linux Ubuntu 18.04 operating system
running on an 8 core 3.40 GHz Intel© Core i7TM with 16 GB
of RAM.

1

2 3

4

5 6

7 8 9

G

G G

Fig. 4: WSCC 9-bus system utilized in the illustrative examples.

A. System Admittance Matrix

Due to its relevance for the remainder of this section, the
matrix Bbus = Im{Ȳbus} of the WSCC grid is shown in
Table I. Shunt capacitive charging of transmission lines is not
needed for the calculation of the RoCoP ṗ′

B,h(t), as justified
in Section III, and are not included in Bbus.

TABLE I: WSCC system – Matrix Bbus.

Bus Bus #
# 1 2 3 4 5 6 7 8 9

1 -17.36 0 0 17.36 0 0 0 0 0

2 0 -16.00 0 0 0 0 16.00 0 0

3 0 0 -17.06 0 0 0 0 0 17.06

4 17.36 0 0 -39.47 11.60 10.51 0 0 0

5 0 0 0 11.60 -17.58 0 5.975 0 0

6 0 0 0 10.51 0 -16.98 0 0 5.588

7 0 16.00 0 0 5.975 0 -35.68 13.70 0

8 0 0 0 0 0 0 13.70 -23.48 9.784

9 0 0 17.06 0 0 5.588 0 9.784 -32.43

B. Local Bus Frequency Estimation

Bus frequencies are estimated with Synchronous Reference
Frame PLLs (SRF-PLLs) whose model is described in several
references, e.g. [20]. The fundamental-frequency model of an
SRF-PLL is depicted in Fig. 5, which consists of a phase
detector that is modeled as a lag transfer function; a loop filter
that is a PI controller; and a voltage-controlled oscillator that
is implemented as an integrator. In this scheme, θB,h(t) is the
phase angle of the bus voltage phasor at bus h, and θ̃B,h(t) is
the corresponding estimated quantity. The output of the loop
filter is an estimation of the frequency deviation ∆ω̃B,h(t) at
the bus and is used in the simulations discussed below.

−

+

θB,h
θ̃B,h1 + sT1,LF

sT2,LF

KVCO

PD LF VCO

s

∆θB,h
∆ω̃B,h

exp(−τs)

Fig. 5: Scheme of the SRF-PLL.

The need for precise frequency measurements may appear
as a limitation of the proposed technique. However, in recent
years, the accuracy and precision of frequency measurements
has been improved significantly. In this paper we only consider
frequency estimation based on PLLs, as these are ubiquitous
in power converters [21], [22]. While it is known that, in some
cases, PLLs can create dynamic issues, e.g. [23], [24], other
promising methods, in particular those based on some variant
of interpolated Discrete Fourier Transform (DFT) have been
recently shown to be very precise. The interested reader can
find a discussion on this approach in [17], [25] and in the
references therein. Also the calculation of the rate of change
of frequency has been largely investigated in recent years.
Reference [26] provides, along with its own contributions, an
introduction to the topic.

C. Synchronous Machine

The features of the proposed RoCoP index ṗ′
B,h(t) are first

tested considering the base-case scenario with inclusion of
an Automatic Generation Control (AGC) implemented as a
perfect tracking integral controller.

1) Comparison with Loads: Figure 6 shows the RoCoP for
the generator connected to bus 3 and the load connected to
bus 8 following the outage of 20% of the load connected to
bus 5. Dropping for simplicity the dependency on time, the
RoCoP of buses 3 and 8 are given by the following expressions
based on (20):

ṗ′B,3 = 17.06 ∆ω̃B,3 − 17.06 ∆ω̃B,9

ṗ′B,8 = 23.48 ∆ω̃B,8 − 13.7 ∆ω̃B,7 − 9.784 ∆ω̃B,9 ,
(40)

where the coefficients are obtained from Table I, and the
symbol ‘∼’ on top of a bus frequency represents estimated
values from the SRF-PLL. As thoroughly discussed in [10],
for practical applications, if a measurement is not available,
this can be calculated using measurements from other buses.
For example, if there is no PMU at bus 3, ∆ω̃B,3 can be
replaced in (40) with:

∆ω̃B,3 =
32.43

17.06
∆ω̃B,9−

5.588

17.06
∆ω̃B,6−

9.784

17.06
∆ω̃B,8, (41)

which can be readily deduced from the last row of Table I.
Simulation results show that, as expected, at the generator

bus, ṗ′B,3(t) 6= 0 after the load outage, whereas, at the load bus,
ṗ′B,8(t) ≈ 0, ∀t. The spike at beginning of the simulation of the
load bus is due to the numerical integration of the SRF-PLL,
and does not represent any physical behavior of the system.

In steady state, the index ṗ′
B,h(t) is null, which indicates

that, in stationary conditions, all machines rotate at the same
speed and that all frequency controllers are inactive.

2) Layers of Frequency Control: Figure 7 shows the effect
of removing the AGC from the system as well as the PFC
from the generator at bus 3. The effect of the AGC on the
RoCoP and the estimated power injection is negligible. This
result is consistent with the transient nature of the RoCoP.
On the other hand, if the PFC is disabled, the effect on the
RoCoP is evident a few seconds after the contingency. In the
first instants, the response of the RoCoP is driven exclusively
by the inertia of the machine, as the three trajectories are
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Fig. 6: WSCC system – Proposed RoCoP ṗ′B,h(t) and estimated
variations of power injection at buses 3 (generator) and 8 (passive
load).
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Fig. 7: WSCC system – Proposed RoCoP ṗ′B,3(t) and estimated
variations of power injection at generation bus 3 for various frequency
controls.

fairly similar up to about 2 seconds after the loss of the
load. This property can be exploited to estimate accurately
the inertia of the machines regardless of the type of frequency
control to which the machines are coupled, as discussed in
Subsection V-C.6.

3) Actual vs Regulating Active Power Injection: The esti-
mated power injection at bus 3 shown in the bottom panels of
Figs. 6 and 7 indicates that there is a jump in the trajectory
of the active power generated by the SM. However, the
turbine governors of SMs require several seconds to vary their
mechanical power generation to match the power unbalance
that, in this case, is due to the loss of part of the load at bus 5.
This is graphically represented in Fig. 8, where the estimated
∆p′B,3(t) is compared with the variations of the actual active
power generated by the SM at bus 3 for the cases without any
frequency control, and with both PFC and AGC.

Results shown in Fig. 8 indicate that the estimated ∆p′B,3(t)
includes the effect of the (fast) inertial response of the ma-
chine, MGω̇G(t), and the PFC, pPFC(t). In Fig. 8, ∆p′B,3(t) is
calculated using (33), whereas the variation of the total power
injection at the generator bus is ∆pB,3(t) = pB,3(t) − pB,3o.
The actual variations of the mechanical power of the SM are
smooth even in the first instants after the contingency, and
following later a similar behavior than that estimated by the
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Fig. 8: WSCC system – Variations of the active power injected to
bus 3 and regulating power for various frequency controls.
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Fig. 9: WSCC system – Proposed RoCoP ṗ′B,3(t); and variations of
the active power injected to bus 3 and regulating power with and
without deadband in the turbine governor input signal.

regulating power ∆p′B,3(t), i.e. after the inertial response of
the SM gives way to the PFC.

4) Impact of Deadbands in the Turbine Governor: Turbine
governors of SMs usually include deadbands on their fre-
quency error input signal to minimize generator movement due
to frequency regulation [27]. Therefore, the inclusion of this
deadband results in a reduction of the sensitivity of the PFC
on unbalances in the system, thus impacting on the variations
of the power injected by the generators after a disturbance.
Usually, the value of the deadband is designed to neglect small
frequency variations due to, e.g., small load fluctuations or
generation variability of renewable sources, and is of the order
of a few tens tens of millihertzs.

For the sake of illustration, a deadband of 75 mHz (0.00125
pu) is considered in the example shown in Fig. 9, where the
case from the previous section with PFC and AGC is simu-
lated. The inclusion of the deadband reduces the variations of
active power injected by the SM. This reduction is properly
captured by the estimated regulating power, indicating that the
accuracy of the estimation is not affected by the inclusion of
the deadband.

5) Short-circuit Analysis: As discussed previously in Sec-
tion V-B, accurate measurement of the frequency are required
for the practical application of the technique proposed in
this paper, which can pose some limitations, specially if fast
events are registered such as short-circuits and line outages.
This paper considers the well-known and ubiquitous SRF-PLL
for estimating the frequency at a specific bus based on the
processing of the bus voltage phase angle. It is also well-
known that SRF-PLLs are prone to numerical issues and thus
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Fig. 10: WSCC system – Proposed RoCoP at buses 3 (generator)
and 8 (load); and variations of the active power injected to bus 3 and
regulating power following a three-phase fault cleared by the opening
of the faulted line.

to measurement inaccuracies if such a phase angle experiences
sudden jumps due to, e.g., the fast events discussed above,
as well as other phenomena such as signal noise. In this
illustrative example, the accuracy of the proposed RoCoP
is studied when the system faces a short-circuit, cleared by
the opening of the faulted line. An in-depth and thorough
discussion on the effect of noise in the measured signal on
the accuracy of the RoCoP is provided in the case study of
Part II of this paper.

In this example, a three-phase fault is simulated at bus 7,
which is cleared after 70 ms by opening the line connecting
buses 7 and 5. The RoCoP at buses 3 and 8 is shown at the top
panel of Fig. 10. The SRF-PLL causes spikes in the RoCoP
which leads to peaks of |ṗ′B,3|max ≈ 25 and |ṗ′B,8|max ≈ 100.
However, such spikes last for about the duration of the fault,
i.e., around 100 ms. After such time, the RoCoP is able
to accurately track the electromechanical oscillations of the
machine, whereas it is virtually constant and equal to zero for
the case of the load.

The small-amplitude oscillations of ṗ′B,8(t) in the first sec-
ond after the fault clearance require a brief explanation. When
the fault occurs and then when it is cleared, the bus voltage
phase angles jump with different amplitudes at different buses.
This means that the PLLs will recover an accurate estimation
of the frequency with a lag that is different from bus to bus.
The oscillations of ṗ′B,8(t) are thus due to the offset between
the PLL frequency estimations at buses 7, 8 and 9 following
the fault.

The bottom panel of Fig. 10 shows the variations of the
injected and regulating active power at bus 3. During the first
seconds after the contingency, the dominant component of
the regulating power is not the active power injected by the
machine, but the machine inertia, as discussed in equation (37).
This causes a drift between both trajectories in the plot. After
approximately t = 2 s, the effect of the inertia diminishes,
being replaced by the active power variations due to the PFC.
Note that the effect of the inertia does not vanish completely
after such 2 seconds. The amplitude of ∆p′B,3(t) is appreciably
larger than that of ∆pB,3(t) during the whole simulation. This
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Fig. 11: WSCC system – Estimated inertia of the three synchronous
machines. Dashed lines represent their actual inertia constants.
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indicates that the inertia is naturally contributing during the
oscillatory process.

6) Inertia Estimation: This example illustrates the expres-
sion (32) derived in Subsection IV-C to estimate the equivalent
inertia of a device/subsystem. The estimated inertia of the
three SMs of the system for the case with only PFC is
shown in Fig. 11. The estimations are compared with their
actual inertia constant, represented by the dashed horizontal
lines, and whose values are MG,1 = 47.28, MG,2 = 12.8
and MG,3 = 6.02 MW s/MVA. Low-Pass Filters (LPFs) with
time constant of 1 s have been added to the PLLs utilized
to estimate bus frequencies for the three machines to clean
the signals from numerical issues due to the sudden jumps of
ṗ′

B,h(t).
Results show that, in the first seconds after the contingency,

the estimation of the machine inertias is highly accurate. Then,
the trajectories drift away from their respective actual values
due to the effect of the PFC of the generators.

As discussed in the previous example, the inertial response
of synchronous machines is dominant during the first instants
after a contingency (generally ≤ 1 sec). It is in this time
window where the proposed technique can be used to estimate
the device inertia based exclusively on local power and fre-
quency measurements. This is shown in Fig. 12 below, where
the absolute and percentage errors of the inertia estimation
depicted in Fig. 11 are represented.

The estimation errors for the three machines have similar
absolute values. This leads to smaller percentage errors for
larger machines, which is to be expected as small machines are
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more affected by the behavior of rest of the system, making
more difficult the isolation of the individual impact of such
a machine/device. Nevertheless, in the first 600 ms after the
estimation fall time (in between 200 and 400 ms depending on
the machine), the percentage inertia estimation error is, from
larger to smaller machine, of <3%, <8% and <11%.

Note also that inertia is a fixed parameter of the ma-
chine/device, thus being able to estimate its value in the
time frame of one second after a contingency will suffice,
even though the accuracy of such an estimation is gradually
declining with time while the primary frequency control takes
part.

VI. SUMMARY OF THEORETICAL RESULTS

The main theoretical results discussed in the first part of
this paper are as follows.
• Starting from the well-known dc power flow formulation,

we have deduced an alternative formulation of the FDF
and formulated the link between the RoCoP injected into
buses and bus frequency deviations. This results in the
expressions (12) and (20).

• An empirical criterion to distinguish between devices that
modify the frequency from those who do not is based on
the RoCoP. This requires the definition of a threshold
ε, determined based on the statistical properties of the
device to be monitored. The device is able to modify
the frequency at its point of connection with the grid
only if |ṗ′

B,h(t)| > ε. This criterion can be utilized to
properly reward the ancillary services of synchronous and
non-synchronous devices that provide primary frequency
control.

• An approximated expression to evaluate, during a tran-
sient, the equivalent inertia of a device is given in (38).
This expression can be utilized to quantify the inertial
response provided by non-synchronous devices.

A relevant application of the theory discussed above to
determine the frequency regulation support provided by non-
synchronous devices is discussed in Part II of this paper.

APPENDIX

This appendix shows that the quota of active power that is
defined as p′′

B,h(t) in (7), namely:

dp′′B,h =
∑
k∈B

∂pB,h

∂vB,k
dvB,k , (42)

is the quota of the power associated with passive devices, such
as constant admittances. We prove this statement using the
limit case, i.e., we assume that the power consumed at bus h
is that of a constant admittance and we deduce that, for this
kind of device, p′

B,h(t) = 0.
Let us start from the expressions of the active and reactive

power injections at bus h. For the sake of simplicity but
without loss of generality, we assume that bus h is connected
to the rest of the grid through only one bus, say bus k, and that
the branch connecting the two buses is lossless, i.e., Ghk

bus = 0.

With these assumptions and according to the notation of (7),
we have:

pB,h(t) = −Ghv
2
B,h(t) (43)

= vB,h(t)vB,k(t)Bhk sin θB,hk(t) ,

qB,h(t) = −Bhv
2
B,h(t) (44)

= Bhkv
2
B,h(t)− vB,h(t)vB,k(t)Bhk cos θB,hk(t) ,

where Gh and Bh are the conductance and the susceptance of
the load and Bhk = 1/Xhk, where Xhk is the reactance of
the branch connecting buses h and k.

Equation (44) can be rewritten as:

(Bh +Bhk)v2B,h(t) = vB,h(t)vB,k(t)Bhk cos θB,hk(t) . (45)

Then squaring and adding (43) and (45), one obtains:

B̃2
hv

4
B,h(t) = B2

hkv
2
B,h(t)v2B,k(t) , (46)

where B̃2
h = G2

h + (Bh +Bhk)2, or, equivalently:

B̃hvB,h(t) = BhkvB,k(t) , (47)

or, equivalently:

vB,k(t) =
B̃h

Bhk
vB,h(t) . (48)

Substituting (48) in (43), we obtain:

−Ghv
2
B,h(t) = B̃hv

2
B,h(t) sin θB,hk(t) , (49)

or, equivalently:

sin θB,hk(t) = −Gh

B̃h

= constant , (50)

which implies that, for a constant admittance load, θB,hk(t)
is constant, but then dθB,hk = 0 and, hence, by definition,
dp′

B,h = 0 or, equivalently, dpB,h ≡ dp′′B,h. �
It is relevant to observe that (50) also implies that dθB,h =

dθB,k or, equivalently, ωB,h(t) = ωB,k(t). This confirms the
assumption made in [8] in the definition of the frequency
divider formula (4), where passive loads were assumed not
to modify the frequency at their point of connection with the
grid. The interested reader can find a discussion on the relation
among pB,h(t), p′

B,h(t) and p′′
B,h(t) for voltage-dependent

loads and their ability to modify the frequency at their point
of connection in [28].
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