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1. INTRODUCTION

The cost of operations involving fuzzy arithmetic is an order of magnitude higher than
classic interval arithmetic which is itself an order of magnitude higher than oper-
ations on floating-point numbers. Therefore it is highly desirable to design efficient
implementations of fuzzy interval arithmetic. However, interval arithmetic libraries
are designed and optimized for interval operations and do not exploit specificities of
fuzzy intervals. Similarly fuzzy arithmetic libraries that internally rely on existing in-
terval arithmetic implementations do not exploit hardware specificities. This leads to
sub-optimal implementations. In this paper, we consider every layer involved in the
design of an efficient fuzzy interval arithmetic implementation.

Fuzzy interval arithmetic is a relevant tool for dealing with uncertainty in numer-
ical data [Hanss 2010]. Recent examples of fuzzy arithmetic applications are found
in group decision making [Xia et al. 2013; Balezentis and Zeng 2013], medical diag-
nosis [Celik and Yamak 2013], reliability analysis [Sriramdas et al. 2014; Shaw and
Roy 2013], geology [Park et al. 2012], model validation [Haag et al. 2012], and power
systems [Marin et al. 2014]. In the classic approach to interval arithmetic, a region is
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defined to which the value of a variable is expected to belong. This allows modelling
uncertainty if the information about the bounds is available, e.g., “the speed is between
20 and 50 km/h”. However, if the information is more ambiguous and imprecise, e.g.,
“the speed is about 30 km/h”, then the classic approach fails and the fuzzy interval
approach can be more appropriate [Siler and Buckley 2005].

Fuzzy intervals are characterized by a membership function, which assigns to each
number in the real domain a degree of membership within the fuzzy interval. In re-
turn, the membership function is characterized by its shape, with some standards such
as the trapezoidal form and the Gaussian bell [Cortés-Carmona et al. 2010; Shaw and
Roy 2013]. Fuzzy interval operations are defined in compliance with Zadeh’s exten-
sion principle [Zadeh 1975]. This paper considers the a-cut approach, which splits the
fuzzy interval by degree of membership into a finite set of ‘crisp’ intervals [Dubois and
Prade 1978]. Then, fuzzy arithmetic operations can be carried out by using crisp inter-
val arithmetic in any of its representation formats, e.g., lower-upper, midpoint-radius
or even lower-diameter [Moore 1966; Neumaier 1990]. Efficient implementations of
crisp interval arithmetic are nowadays provided by several software packages [Revol
and Rouillier 2001; Bronnimann et al. 2006; Goualard 2006]. In addition, one can find
dedicated implementations of fuzzy arithmetic in the related literature [Anile et al.
1995; Kolarovic 2013; Gagolewski 2015]. However, one of the main issues with these
implementations is that they rely on the lower-upper representation format. As re-
sult, applications cannot take advantage of specific information about the membership
function, such as symmetry, which can be exploited by other formats, such as midpoint-
radius.

This paper presents a novel implementation of fuzzy interval arithmetic that specif-
ically considers the case of symmetric membership function. The implementation is
tuned to exploit hardware capabilities of Graphics Processing Units (GPUs), while
keeping compatibility with traditional CPU architectures. The main contributions of
the paper are detailed below:

—Dedicated representation format for symmetric fuzzy intervals. We explore
the case of symmetric membership function and propose a novel representation for-
mat based on the midpoint-radius approach. Whereas this format restricts the spec-
trum of fuzzy intervals that can be processed to the symmetric case, we demonstrate
that it considerably boosts performance of basic fuzzy applications. This is due to the
impact on the the amount of operations and memory required that is divived by min-
imum two compared to the lower-upper approach. In addition, we propose a second
format based on the midpont-increment approach, which improves the accuracy of
the previous while maintaining or even reducing the number of operations involved.

—Fuzzy arithmetic library implementation. We describe the implementation of
the above formats and the traditional lower-upper format into a library of fuzzy arith-
metic operations, available online at https:/github.com/mmarin-upvd/fuzzy-gpu/.
Implementation aspects such as static rounding, memory requirements, instruction-
level parallelism (ILP) and thread-level parallelism (TLP) are thorougly considered.
We also evaluate the performance of our library on two classes of applications:
compute-bound and memory-bound applications.

The remainder of the paper is organized as follows: in Section 2, the mathematical
framework of fuzzy interval arithmetic is presented. Section 3 describes the proposed
representation formats for symmetric fuzzy intervals. The implementation of these
formats into a fuzzy arithmetic library is detailed in Section 4. Section 5 evaluates
performance of the library on GPU. Finally, Section 6 draws conclusions and outlines
future work.
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Table I. Notation for fuzzy interval arithmetic and rounding

Symbol | Definition

x Scalar.

[z] Interval.

(7] Fuzzy interval.

T Lower bound of [z].

T Upper bound of [z].

z Midpoint of [z]; kernel of [Z].

Pa Radius of [z].

Q) Membership function.

[x4] a-cut of level i of [Z].

Paxi Radius of [z;].

Oz Radius increment associated to [z;].
A() Rounding upwards.®

v () Rounding downwards.

a(-) Rounding to nearest.

€ Relative rounding error.

n Smallest representable (unnormalized) floating-point positive number.

TThe rounding attribute applies on all the operations included within the parenthe-
ses.

2. MATHEMATICAL BACKGROUND

In order to support the discussion of following sections, the basic concepts of inter-
val arithmetic and a-cut fuzzy arithmetic are outlined next. Table I summarizes the
notation used throughout the remainder of the paper.

2.1. Interval arithmetic

Intervals are defined as convex sets of real numbers. We assume that, given a real
number and an interval, the real number either belongs to the interval or not. In this
way, each element in the interval is considered equally possible (and each element
outside the interval, equally impossible).

2.1.1. Interval representation. Intervals can be represented in several formats, e.g.,
through lower and upper bounds, midpoint and radius, or lower bound and diameter.
This paper considers the first two alternatives, as follows.

Definition 2.1 (Lower-upper representation). Let [z] be an interval defined by
] ={zeR:z <z <T},
where 2,7 € R,z < T. We write [z] = [z,7].
Definition 2.2 (Midpoint-radius representation). Let [z] be an interval defined by
[z] ={z eR: |z — Z| < p.},
where 7, p, € R, p, > 0. We write [z] = (&, p,)-

2.1.2. Interval operations and rounding. Interval arithmetic operations are defined by
extending operations on real numbers to intervals. The basic property of inclusion
isotonocity is assumed, as follows.

Definition 2.3 (Inclusion isotonicity). Let o be a basic arithmetic operation, i.e., o €
{+,—,-,/}, [z] and [y] intervals. If

zoy Clz]oly], Vx € [z], Vy € [y],

then o is said to be inclusion isotone.
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Inclusion isotonicity ensures that no possible values are “left behind” when perform-
ing interval operations. To respect this property, interval arithmetic implementations
have to cope with floating-point rounding errors.

The IEEE-754 Standard for floating-point computation establishes that the follow-
ing three rounding attributes must be available: rounding upwards (towards infinity),
rounding downwards (towards minus infinity), and rounding to nearest [Zuras et al.
2008]. The IEEE-754 Standard also defines the relative rounding error and the small-
est representable (unnormalized) floating-point number, the latter being associated
with the underflow error [Rump 1999; Higham 2002] (see Table I for notation details).

In the lower-upper representation, isotonicity implies rounding downwards when
computing the lower bounds, and upwards when computing the upper bounds [Dubois
and Prade 1978]. The interval operations for the lower-upper representation are de-
fined below.

Definition 2.4 (Lower-upper interval operations). Let [z] = [z,7] and [y] = [y,7],
where z,7,y,7 are floating-point numbers.. Let v/(-) and A(-) be the rounding at-
tributes towards minus infinity and plus infinity, respectively. Then

[z] + [y = [V(z+y), AT +7)],
]_

[2] — [y] = [V(z —9), A@ — )],
[2] - [y] = [V(zy, 27, Ty, Ty), A(max(zy, 27, Ty, TY)],

4 () <) veo

In the case of the midpoint-radius representation, in addition to adequate rounding,
isotonocity requires adding to the radius the error due to midpoint rounding [Rump
1999]. The interval operations for the midpoint-radius representation are defined be-
low.

A
A

Definition 2.5 (Midpoint-radius interval operations). Let [z] = (&, pa) and
ly] = (9, py), Where Z,p,,7,p, are floating-point numbers. Let OJ(-) and A(:) be
the rounding attributes to nearest and towards plus infinity, respectively. Let ¢ be the
relative rounding error, ¢/ = %e and 7 be the smallest representable (unnormalized)
floating-point positive number. Then

[2] & [y] = (2, A€ 2] + pa + py)), 2 =0(& +9), (2a)
(2] - [y] = (= A+ €[2] + (2] + pa)py + 5102}, = = O(@p), (2b)
L _ z e — z= B
o= (o0 (e o)) =0 (5) 0w @

It is worth noting that both equations (2b) and (2¢) introduce a bounded overesti-
mation over the lower-upper format definition. In the case of the multiplication, the
overestimation is bounded by a factor of 1.5 [Rump 1999].

The impact of rounding on performance depends on the computing architecture. For
example, for most CPU architectures, the rounding attribute is a processor ‘mode’, and
thus changes in rounding mode cause the entire instruction pipeline to be flushed.

2.1.3. The dependency problem. The so-called dependency problem causes overestima-
tion in interval computations where the same variable occurs more than once. Since
all the instances of the same variable are taken independently by the rules of inter-
val arithmetic, the radius of the result might be expanded to unrealistic values. For
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example, consider the function, f(x) = 22 — 1, where = € [-1,1]. Then, f(z) € [-1,0].
However, using interval arithmetic, f([-1,1]) = [-1,1] - [-1,1] — 1 = [-2,0].

This can become a major issue to the application of interval arithmetic to real-world
problems, especially to non-linear ones. Accordingly, specific measures have to be taken
to preserve the relevance of the results.

2.2. Fuzzy interval arithmetic

Fuzzy intervals are defined as fuzzy sets of real numbers. Given a number and a fuzzy
interval, the number belongs to the fuzzy interval with a certain degree of member-
ship. Elements with a higher degree are considered more possible than elements with
lower degrees. This is the main feature that distinguishes fuzzy intervals from regular
intervals.

2.2.1. Fuzzy interval representation. Fuzzy intervals are characterized by a membership
function. This paper considers continuous membership functions with a single maxi-
mum point. The definition of membership function is as follows.

Definition 2.6 (Membership function). Let u(-) : R — [0, 1] be a continuous function.
Let 2,2,7 € R, such that < # <7, and:

n(E) =1,
plxy) < plas), Vay,xs € (2, %], 21 < 29,
w(xy) > plas), Vay,xe € [2,T], 21 < 29,
wz) =0, Vo ¢ [z,7].
Then, u(-) is called a membership function. In addition, the element & is called kernel
and the interval [z, 7] is called support.

In other words, the membership function is strictly increasing until reaching its
maximum, and then strictly decreasing. The formal definition of fuzzy interval is given
below.

Definition 2.7 (Fuzzy interval). Let pu(-) be a membership function. Then, the set

(] = {(z, u(z)): © € R},
is called a fuzzy interval.

According to Definition 2.7, a fuzzy interval is a set of ordered pairs, each composed
of a real number and a degree of membership, the latter given by a membership func-
tion. Figure 1 shows an example of fuzzy interval.

2.2.2. Fuzzy interval operations: the a-cut approach. Fuzzy interval operations are defined
by extending operations on real numbers to fuzzy intervals. In [Zadeh 1975], the au-
thor presents a principle to extend computations to fuzzy sets that has become widely
accepted. The definition regarding arithmetic operations is given below.

Definition 2.8 (Zadeh’s extension principle). Let o € {+,—,-,/}, and [7],[7],[Z],
fuzzy intervals, such that [Z] = [Z] o [g]. Let p, iy, 1., be the membership functions
of each. Then

pz(2) = sup min{pq (), py(y)}.
z=x0Y
In this article we rely on the a-cut approach to implement Zadeh’s principle. This
approach consists in splitting the fuzzy intervals into finite sets of crisp intervals char-
acterized by given membership degree [Dubois and Prade 1978]. These intervals are
called a-cuts. Each uncertainty level, or a-level, is assigned a membership degree,
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Fig. 1. Fuzzy interval, membership function and a-cuts.

a; € [0,1], such that a; > ... > ay, where N is the number of levels. For each level i,
the corresponding a-cut contains all the real numbers having membership degree at
least a;. The formal definition of a-cut is the following:

Definition 2.9 (a-cut). Let [Z] be a fuzzy interval with membership function u(-).
Let NeN,i e {1,...,N}, and o; € [0, 1]. Then
[v:] = {z € R: p(x) > o},
is called an a-cut (of level i) of the fuzzy interval [z].
The assumptions made on the membership function (see Definition 2.6) allow the

a-cuts to become well-defined intervals, as seen in Fig. 1. Once the a-cuts are obtained
for each operand, the a-cut concept defined below may be applied.

Definition 2.10 (a-cut concept). Let o € {+,—,-,/}, and [Z], [¢], [Z], fuzzy intervals,
such that [Z] = [Z] o [g]. Let [x;], [y:] , [2i], be the a-cuts of level i of each. Then

The above defines a way to perform fuzzy operations, where a-cuts of the result are
computed via the corresponding interval operation between a-cuts of the operands.

3. PROPOSED FUZZY ARITHMETIC IMPLEMENTATION

This section presents two novel approaches to implement fuzzy interval arithmetic
based on the midpoint-radius format.

3.1. Midpoint-radius format

The shape of the membership function is a crucial aspect in fuzzy modelling [Boukez-
zoula et al. 2014]. This section considers a membership function symmetric with re-
spect to a vertical axis, which is of particular relevance in several fuzzy arithmetic
applications [Chang and Wu 1995; Mendel and Wu 2006]. For symmetric membership
functions, all a-cuts are centered on the kernel, which leads to relevant properties that
are exploited by the proposed implementation. The definition of a symmetric fuzzy in-
terval is given below.

Definition 3.1 (Symmetric fuzzy interval). Let [Z] be a fuzzy interval with member-
ship function u(-) and kernel i. If 4(-) is symmetric around z, i.e.,

Wz —x)=p(E+z), Vo eR,
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ALGORITHM 1: Symmetric fuzzy multiplication in the midpoint-radius format (see Table I for
notation details)

Input: Symmetric fuzzy operands [z] and [§].
Output: Symmetric fuzzy result [Z] = [7] - [7].
kernel: z = O(2y);
foriin1,...,N do
radius: p-.; = A+ gelz| + (12| + pa.i)py.i + [9lpz.);
end

then [7] is called a symmetric fuzzy interval.

Although symmetry is immaterial for the lower-upper interval representation, it is
relevant for the midpoint-radius representation, as it is stated by the following propo-
sition.

PROPOSITION 3.2. Let [Z] be a symmetric fuzzy interval with kernel i. Let N € N,
ie{l,...,N}, and [z;] = (Zs, ps,i), an a-cut. Then,

[Z] is symmetric <— &; =&, Vie {l,...,N}.
PROOF. See Appendix 6. O

The above result can be graphically seen in Fig. 1, where the fuzzy interval is sym-
metric. Note how all the a-cuts are centered on the kernel. The property of symmetry
is also preserved by basic fuzzy arithmetic operations, as stated by the following theo-
rem.

THEOREM 3.3. Let [7] and [g] be fuzzy intervals, o € {+,—,-,/}. If [z] and [j] are
symmetric, then [zZ] = [Z] o [§] is also symmetric.

PROOF. See Appendix 6. O

Proposition 3.2 and Theorem 3.3 are applied next to propose an efficient representa-
tion format for symmetric fuzzy intervals. Fuzzy intervals are stored in two elements:
(i) the kernel (or midpoint, common to all a-cuts) and (ii) a set of radii (one per a-cut).
Fuzzy operations are also solved in two steps: (i) the computation of the kernel, and
(i1) the computation of the individual radius of each a-cut. For the sake of example,
Algorithm 1 illustrates the fuzzy multiplication. As shown in Section 5, this format
allows saving both bandwidth and execution time when performing fuzzy operations
on symmetric fuzzy intervals.

3.2. Midpoint-increment format

Another relevant property of fuzzy intervals is that every a-cut is fully contained
within any lower level a-cut [Fortin et al. 2008]. This is an immediate consequence
of the membership function being strictly increasing until reaching its maximum, and
then strictly decreasing.

PROPOSITION 3.4. Let [Z] be a fuzzy interval, N € N, i,j € {1,..., N}, and [z;], [z;],
a-cuts. Then

;> af = [1171] C [217]] .
PROOF. See Appendix 6. O

The result above is applied next to propose a representation format for symmet-
ric fuzzy intervals. The fuzzy intervals are stored in two elements: (i) the kernel (or
midpoint, common to all a-cuts), and (ii) a set of radius increments (one per a-cut).
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ALGORITHM 2: Symmetric fuzzy addition and subtraction in the midpoint-increment format
(see Table I for notation details)

Input: Symmetric fuzzy operands [Z] and [g].
Output: Symmetric fuzzy result [Z] = [Z] £ [7].
kernel: z = 0(z £+ 9);
first increment: 6.1 = A(%€[2| + 62,1 + 6y,1);
foriin2,...,N do

increment: &, ; = A(6z,; + 0y.i);
end

The latter correspond to the difference between the radii of two consecutive a-cuts, as
defined below.

Definition 3.5 (Radius increments). Let [Z] be a fuzzy interval, N € N and
ie{l,...,N}. Let {a1,...,an} €[0,1], such that a; > ... > an. Let [z1],...,[zn], be
a-cuts and py 1, . .., Pz, N, their respective radii. The numbers, 0, 1, ...,0; v, defined as:

{paf,i — pa;,i—l 1f2 S Z S N,
Pa,1 if =1,

are called radius increments. The set of radius increments can be computed with the
iterated difference function (diff) available in numerical packages such as Matlab or
Numpy.

From the above definition, it is transparent that any radius of level ¢ can be com-
puted as a sum of increments:

7
Px,i = Z 5;c,k~
k=1

The purpose of this format is to increase the accuracy of fuzzy computations. As the
increments are, by definition, smaller than the radii, the rounding errors associated
with increments computation are also smaller. This concept is further developed in
Section 3.3.

Algorithms 2, 3 and 4 show how to compute the addition, subtraction, multiplication
and inversion. Note that the number of floating-point operations needed by this format
is not increased compared to midpoint-radius. In fact, addition and subtraction require
one fewer operation per a-cut than the midpoint-radius. Multiplication and inversion
require the same amount of operations per a-cut, provided that the a-cuts are treated
sequentially (such that certain computations associated to a given «-level can be re-
used in the following level).

In Algorithms 2, 3 and 4, the kernel’s rounding error is added only to the first in-
crement, so one operation per a-cut is saved. In the case of the multiplication and
inversion, 7 has to be increased sequentially. Variables ¢.) are introduced to serve as
accumulators. In the multiplication, these accumulators store the maximum (absolute)
value of two a-cuts, one in each operand, one level apart from each other. Only one op-
eration is needed to update the accumulator at each a-level. Interestingly, these accu-
mulators allow for a quite transparent calculation of the increment. The same amount
of operations are needed as in computing the full radius using the midpoint-radius
format.
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ALGORITHM 3: Symmetric fuzzy multiplication in the midpoint-increment format (see Table I
for notation details)

Input: Symmetric fuzzy operands [z] and [§].
Output: Symmetric fuzzy result [Z] = [7] - [7].
kernel: z = O(2y);
accumulator in [Z]: ty1 = A(|Z| + 02,);
accumulator in [7]: ty,1 = A(|9]);
firstinc.: 6.1 = A(n + 2€l2] + to,10y,1 + ty,1001);
foriin2,...,N do
accumulator in [Z]: ty; = A(tz,i—1 + 02,);
accumulator in [§]: ty,; = A(ty,i—1 + 0y,:);
increment: 6..; = A(n + €|2| + to,i0y.6 + ty,i0e.);
end

ALGORITHM 4: Symmetric fuzzy inversion in the midpoint-increment format (see Table I for
notation details)
Input: Symmetric fuzzy operand [7].
Output: Symmetric fuzzy result [2] = 1/ [7].
kernel: 2 =0(1/7);
accumulator: t,1 = |y];
first increment: 6.1 = A(n + 3€Z| + (=6,.1)/(ty,1(8y1 — ty1));
foriin2,...,N do

accumulator: ty; = A(ty,i—1 — 0y,i—1);

increment: 6..; = A(n + 2e|2| + (=6y.0)/(ty,i(6y.i — ty.0));
end

3.3. Error analysis

This section compares the accuracy of radius computations in both proposed formats.
The main operation involved in this kind of computation is the rounded floating-point
addition. The following result, which concerns the error associated to floating-point
summation algorithmes, is useful for the analysis that is discussed later in this section.

THEOREM 3.6 (BOUND FOR THE ABSOLUTE SUMMATION ERROR [HIGHAM 2002]).
Let 1,...,2, € Rand S, = >, z;. Let S, be an approximation to S, computed
by a summation algorithm, which performs exactly n — 1 floating-point additions. Let
Tl, . ,Tn_l, be the n — 1 partial sums computed by such algorithm. Then,

n—1

E, = Sn_S’n SEZ T’L
=1

)

where ¢ is the relative rounding error.
PROOF. See [Higham 2002]. O

Hence, the absolute error introduced by a floating-point summation algorithm is no
greater than the relative rounding error, multiplied by the sum of magnitudes of all
the intermediate sums.

Theorem 3.6 is used for proving that the midpoint-increment format improves the
accuracy of basic fuzzy computations, compared to midpoint-radius. The result pre-
sented below is a direct consequence of the increments being smaller in magnitude
than the radii.
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THEOREM 3.7. Let o € {+,—,-,/} and [Z],[y],[Z], be fuzzy intervals, such that
[2] = [#] o [§]. Let [zi] be the a-cut of level i of [Z], and p. ;, the radius of [z;]. Let E(ad.)
and EU9)(.) return the maximum absolute error in the midpoint-radius and midpoint-
increment formats, respectively. Then,

E™I(p, ) < BT D(p. ), Vi>2.
PROOF. See Appendix 6. O

Theorem 3.7 allows concluding that the gain in accuracy is driven ultimately by
the fact that the radius at any a-level is always greater than the one at the previous
level. This, in turn, is a consequence of the monotonicity of the membership function.
In the midpoint-increment format, the smallest radius is computed first, and then
the others by simply adding the increments. In other words, large values are broken
down into smaller ones, prior to perform fuzzy computations. As these computations
are composed mainly of floating-point additions, the strategy reduces rounding error
in absolute value.

It can be shown that the result holds for any summation algorithm chosen to com-
pute the increments and the radii, as long as it is the same for both. However, this
proof is omitted for sake of brevity. The accuracy gain can also be quantified. It de-
pends on several factors, e.g., the considered summation algorithm (i.e., the order of
the operations); the ratio of increment to radius at different a-levels; the “precision” of
the intervals (i.e., the ratio of midpoint to radius); and the relative rounding error .

4. GPU IMPLEMENTATION

The proposed midpoint-radius and the traditional lower-upper format are imple-
mented into a library of fuzzy arithmetic operations written in CUDA and C++, avail-
able online at https:/github.com/mmarin-upvd/fuzzy-gpu/. The implementation of the
midpoint-increment format is planned as future work.

The library is designed to adapt itself to the underlying architecture, whether this
is CPU or GPU. It relies on a rounded arithmetic class which defines basic arithmetic
operations in different rounding modes. In the case of CPU, this is implemented by
updating the rounding mode before the operation, and restablishing it afterwards. In
the case of GPU, it is achieved by calling the dedicated machine instruction with the
specific rounding attribute.

The rounded arithmetic class is used to implement an interval class in the lower-
upper format, which is subsequently used to implement a fuzzy interval class in the
lower-upper format. The above is the traditional approach. Now, in the case of the
midpoint-radius approach, we do not provide the intermediate interval class as we
want to exploit the results from Theorem 3.3 in the previous section. This result es-
tablishes that midpoint-radius fuzzy intervals are better handled as a whole entity,
where the midpoint is shared by all the a-cuts, rather than with a collection of inter-
vals where the same midpoint is represented several times. Therefore, the midpoint
radius fuzzy interval class is implemented directly over the rounded arithmetic class.

Both the fuzzy classes are implemented using templates and parametrized by the
number of a-cuts N and the underlying data type 7. Basic arithmetic operators are
overloaded to work on these fuzzy classes. We decided not to spread the main loop,
which sweeps the set of a-cuts, among multiple threads in GPU code (see Algorithms 1,
2,3 and 4). The reason behind this choice is that most real-life fuzzy arithmetic appli-
cations do not involve more than three to four a-cuts [Buisson and Garel 2003; Bondia
et al. 2006; Chen et al. 2006; Cortés-Carmona et al. 2010]. This number is way too low
to conveniently exploit thread level parallelism (TLP) at this scope. However, TLP can
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Table Il. Number of instructions per operation, for different data types

Data type Addition | Multiplication | Division
Scalar 1 1 2
Lower-upper interval 2 14 16
Midpoint-radius interval 5 11 21
Lower-upper fuzzy 2N 14N 16N
Midpoint-radius fuzzy 342N 6+5N 11 + 10N
Midpoint-increment fuzzy | 4 + N 645N 11 4+ 10N

N: number of a-cuts.

be exploited by our library in vector operations over fuzzy intervals, with the classic
technique of assigning one thread to each element in the fuzzy arrays.

Performance of basic operations over complex data type such as fuzzy intervals is
impacted by numerous factors. Following paragraphs discuss and compare different
representation formats regarding number of instructions, memory requirements and
instruction level parallelism (ILP).

4.1. Number of instructions

Table IT shows the number of instructions, such as basic operations with different
rounding, minimum, maximum and absolute value, required by the addition, multi-
plication and division of different data types, including fuzzy intervals. In fuzzy data
types, N represents the number of a-cuts. Note that lower-upper fuzzy requires slightly
fewer arithmetic instructions than the midpoint-radius for the addition, but much
more for the multiplication and the division. Therefore, we can anticipate that the
midpoint-radius format shall bring a speed-up over lower-upper.

For illustration, let us consider the case of performing one addition and one mul-
tiplication. This is the core set of operations of the AXPY kernel that we present in
the next section. For this example, we can compute the ratio between the number of
instructions required by lower-upper and midpont-radius, as follows:

16N
947N’

where N is the number of a-cuts. This ratio corresponds to the theoretical speed-up
that can be achieved by midpoint-radius over lower-upper when running the AXPY
application.

(4)

4.2. Memory usage

Table IIT shows the memory space required to store different data types. The units
have been normalized to the size of one scalar. In fuzzy data types, once again, N
represents the number of a-cuts. Note that the lower-upper fuzzy requires twice the
amount of memory than the midpoint-radius and midpoint-increment fuzzy. Therefore,
for an application that needs to access memory at a high rate, we can anticipate that
midpoint-radius and midpoint-increment shall bring a speed-up over lower upper. We
can compute the ratio between the memory required by lower-upper and midpoint-
radius, as follows:

2N
1+ N’
where N is the number of a-cuts. This ratio represents the theoretical speed-up that
can be achieved in memory accesses by midpoint-radius over lower-upper.
It is worth noting that the memory footprint of the two proposed formats can be fur-
ther reduced by storing the radius or the increment in a lower precision. This strategy
does not affect the representativeness of the formats, as the impact is solely on the

(5)
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Table Ill. Memory requirements of different data types

Data type Memory usage
Scalar 1

Lower-upper interval 2

Midpoint-radius interval 2

Lower-upper fuzzy 2N

Midpoint-radius fuzzy (I+N)or (1+N/2)
Midpoint-increment fuzzy | (1+ N) or (1 + N/2)

N: number of a-cuts.

width of the a-cuts and not on the dynamic of numbers. For example, we can consider
storing the midpoint in double precision and the radius in single precision. In this
case, memory usage becomes 1 + N/2, which is 4 times smaller than lower-upper. The
ratio could be further reduced by storing the radius in an even smaller representation
format, such as the binary16 of the IEEE-754 Standard (the ratio becomes 8!).

The amount of memory required by the fuzzy intervals becomes particularly relevant
on GPU applications, because of the memory hierarchy. GPU memory is organized in
three main areas: global memory, shared memory and registers. The former is off-chip,
and has a latency of hundred of cycles, whereas the two latter are located on-chip,
and have a latency of a few cycles. Registers are allocated to each thread according
to its needs, and spilled onto global memory if the register space becomes insufficient.
For example, CUDA architectures of compute capability 2.0 and 3.0 can allocate up to
63 registers of 32 bits per thread, per kernel execution. Register spilling can be very
harmful for performance as it introduces memory accessess with high latency. Since
midpoint-radius and midpoint-increment require less memory space than lower-upper,
we can expect that the former two shall cause less register spilling than the latter.

4.3. Instruction level parallelism

Ideal ILP, defined as the ratio of the number of instructions to the number of levels in
the dependency tree, is a good measure of how a given sequence of instructions can be
handled on today’s and future architectures [Goossens and Parello 2013]. The higher
the ideal ILP is, the higher the amount of instructions that can be pipelined during the
execution of a given program. However, a bigger ideal ILP requires a larger amount of
hardware resources.

Table IV shows the ideal ILP for the addition, multiplication and inversion of dif-
ferent data types. Note that in lower-upper and midpoint-radius fuzzy data types, the
number of a-cuts does not affect the size of the dependency tree (in the denominator),
as each a-cut is processed independently from all others. The same is valid for the
addition in the midpoint-increment format. However, the above does not hold in the
multiplication and inversion, because of dependencies between computations belong-
ing to different a-cuts. Accordingly, the size of the dependency tree depends in this
case on N, the number of a-levels.

In general, lower-upper fuzzy exhibits more ideal ILP than midpoint-radius and
midpoint-increment in either the addition, the multiplication and the inversion. How-
ever, ILP is exploited differently depending on the GPU generation as well as the pre-
cision in use (single or double). For example, GPUs with CUDA capability 3.0 can
schedule up to 2 independent instructions for a given warp scheduler. The impact of
ILP on example applications is also studied in the next section.

5. TESTS AND RESULTS

The CUDA Programming Guide states that GPU performance is mainly driven by the
ratio of computing intensity to memory usage [Corporation 2012]. With this regard,
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Table IV. ILP per arithmetical operation, for different data types

Data type Addition | Multiplication | Inversion
Scalar 1 1 1
Lower-upper interval 2 i 2

3o s e 5 11 9
Midpoint-radius interval 1 = 5
Lower-upper fuzzy 2N 15—1 N 2N
Midpoint-radius fuzzy % + %N g + N 1+ %N
Midpoint-increment fuzzy | 1+ iN 6315]3] 53tr5]fjv

N: number of a-cuts.

Table V. Test environment

Device Compute capability | Number of cores
Xeon X560 N/A 12 (1 used)
GeForce GTX 480 | 2.0 480

GeForce GTX 680 | 2.0 1,536

this section evaluates the performance of the proposed fuzzy arithmetic library on GPU
for two benchmark applications: compute-bound application, where arithmetic instruc-
tions are dominant over memory accesses; and memory-bound application, where the
opposite is true. For an example of the former, see [Beliakov and Matiyasevich 2015].
For an example of the latter, see [Davis and Chung 2012]. By measuring the perfor-
mance of the implemented fuzzy arithmetic library for these two extreme cases, we
obtain a general idea of its behaviour.

The test environment is summarized in Table V. All the programs are compiled using
GCC 4.8.2 and CUDA 6.0. Tests scenarios consider the following parameters:

— Representation format (lower-upper and midpoint-radius).

— Number of a-cuts (1 to 24).

— Precision (single and double). We do not used the mixed mode format for the midpoint
radius or midpoint increment as described in section 4.2, both were stored using the
same representation format.

5.1. Compute-bound test: AXPY kernel

Figure 2 shows a kernel that computes the n-th element of the series xy; = axy +
b, where all the values are fuzzy intervals, through a sequential loop. Note that the
number of memory accesses per thread is bounded, as they only require to read the
value of a before entering the loop, and write back the result after leaving it. Therefore,
a large number of iterations of the loop leads to a large ratio of instructions devoted to
computation over global memory accesses.

In all our experiments, the number of iterations is set to n = 1000. The support of
the fuzzy intervals a and b is set randomly in the interval [—1, 1]. Then, the a-cuts are
defined randomly within the support.

Figure 3(a) shows the number of iterations per second as a function of the number
of a-cuts, for different scenarios running on different architectures. The three curves
at the top correspond to GPU runs, specifically on the GTX 480, with single precision
midpoint-radius showing the best performance. Note that double precision midpoint-
radius outperforms double precision lower-upper, showing the advantage of the pro-
posed format. The two curves at the bottom correspond to CPU runs, on the Xeon
X560, of a single-threaded version of the kernel using: (i) the proposed library, and (ii)
the Java library in [Kolarovic 2013]. The Java library is slightly more performant than
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#include "fuzzy_lib.h"

template<class T, int N>

__global__ void axpy(int n, fuzzy<T, N> * in, fuzzy<T, N> b, fuzzy<T, N> * out) {
int thread_id = blockIdx.x * blockDim.x + threadIldx.x;
fuzzy<T, N> a, c = 0;
a = input[thread_id];

for (int i = 0; i < mn; i++)
c =a * c + b;
output [thread_id] = c;

Fig. 2. AXPY kernel, compute-bound test.

ours, but it does not implement certified interval arithmetic with correct rounding at-
tributes, which is a highly time-consuming task on CPUs.

Figure 3(b) shows the speed-up of the midpoint-radius over the lower-upper format
for different precisions on two GPU architectures. We observe that between 1 and 8 a-
cuts, the curves follow the theoretical speed-up function presented in equation (4). Note
that this behaviour is independent from both the architecture and the precision. For
more than 8 a-cuts, we observe the effect of register spilling as described in Section 4.
Register spilling is affecting different scenarios for various numbers of a-cuts. We can
determine these numbers by looking at Fig. 4. Specifically, Fig. 4(a) shows the amount
of registers used by different representation formats and precisions. Figure 4(b) shows
the number of instruction replays observed in global memory accesses. Note that, in
most cases, instruction replays start shortly after the limit on the maximum number
of registers per thread (63 in this case) has been reached. The phenomenon can be
associated with register spilling. In single precision, it starts at 10 and 19 «a-cuts for
the lower-upper and midpont-radius representation, respectively. This is consistent
with Fig. 3(b), where the speed-up in single precision raises after 10 a-cuts and then
falls back after 19. In double precision, register spilling starts at 5 and 8 a-cuts for the
lower-upper and midpont-radius representation, respectively. This is again consistent
with Fig. 3(b), where the speed-up in double precision raises after 5 a-cuts and then
falls back after 8.

It is worth noting at this point that real-life applications typically do not involve
more than 3 to 4 a-cuts. In consequence, register spilling, which only occurs if more
than 8 a-cuts are used, should not be a major limitation for the proposed format. In
addition, it is possible to delay the apparition of this phenomena by using a smaller
representation format for the radius or the increment (i.e. single precision) than for
the midpoint (i.e. double precision) as mentioned in 4.2.

5.2. Memory-bound test: sort by keys

Figure 5 shows a THRUST [Hoberock and Bell 2010] program that sorts a vector of
fuzzy intervals on the device. This example shows how easily the proposed library is
integrated into other GPU libraries, as all the arithmetic operators are overloaded.
The vector is sorted by keys that are integers of 32 bits. The sorting algorithm used by
THRUST is radix sort. In addition, THRUST fully use GPU’s memory hierarchy, and rely
on costly global memory accesses solely when shared memory becomes insufficient.

In each of our experiments, the length of the array is set to m = 10°. The support
of each one of the 10° fuzzy intervals is randomly selected within the interval [—1,1],
and the a-cuts randomly selected within the support. Integer keys are also randomly
generated between 0 and the maximum representable integer number.

Figure 6(a) shows the number of sorted elements per second as a function of the
number of a-cuts. Figure 6(b) shows the speed-up of midpoint-radius over lower-upper.
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Fig. 3. Results of the compute-bound test: (a) Performance comparison of different representation formats.
(b) Speed-up achieved by midpoint-radius over lower-upper.

The time spent in transferring data between host and device is not considered in this
result. Note that for fewer than 7 a-cuts, the speed-up curve follows the theoretical
speed-up function represented in equation (5), regardless of the used precision. In sin-
gle precision, the situation persists until reaching 16 a-cuts. In double precision, it is
lost at 8 a-cuts and then restablished after 15. The areas where the speed-up curve
does not follow the theoretical function correspond to the case where shared memory
becomes insufficient to hold all data. This is analogous to register spilling, as the ap-
plication needs to rely on high latency accesses to global memory. In single precision,
this occurs at 16 a-cuts for the lower-upper format, whereas it is not observed in the
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Fig. 4. Results of the compute-bound test: (a) Registers used in each representation format. (b) Instruction
replays due to local memory accesses in each format.

#include "fuzzy_lib.h"
#include <thrust/sort.h>

int main(){
thrust::device_vector<fuzzy<double, 4> > d_a(m);

thrust::device_vector<unsigned int> k(m);

thrust::sort_by_key(k.begin(), k.end(), d_a.begin());

Fig. 5. THRUST’s sort by keys, memory-bound test.
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Fig. 6. Results of the memory-bound test: (a) Performance comparison of different representation formats.
(b) Speed-up achieved by midpoint-radius over lower-upper.

midpoint-radius format. In double precision, it occurs at 9 a-cuts and 16 a-cuts for the
lower-upper and midpoint-radius format, respectively.

As stated in Section 4, it is also possible to store the radius or the increment in single
precision while keeping the midpoint in double precision. In this case, the performance
of double precision lower-upper has to be compared with the performance of single-
precision midpoint radius. The above means that the proposed format is at least 20
times more efficient than the lower-upper format for 8 or more a-cuts.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 M. Marin et al.

6. CONCLUSIONS

This paper proposes and compares different representation formats for fuzzy intervals
and their implementation on the GPU. Specifically, the conventional lower-upper ap-
proach is compared with the midpoint-radius approach. Since the latter is particularly
well adapted to model symmetric membership functions, we investigate the benefits of
having a representation format based on the midpoint-radius. We show that thanks to
this format, it is possible to divide by up to 8 the memory usage and by 2 the number of
operations with respect to the lower-upper format. The midpoint-increment format is
also explored in this paper and we show that it improves the accuracy of the midpoint-
radius format while using the same number of operations.

With this aim, a library of fuzzy interval arithmetic operations, written in CUDA
and C++, is described. The evaluation of this library using compute-bound and
memory-bound benchmarks shows that the proposed format can be 20 times more
efficient than the traditional lower-upper format.

Future work will focus on defining more complex operations, such as applications of
arbitrary functions and operations on interactive fuzzy numbers [?].

APPENDIX: PROOF OF THEOREMS AND PROPOSITIONS

In this appendix, we provide original proofs of the theorems and propositions origi-
nated form the discussion above.

PROPOSITION A.1. Let [Z] be a symmetric fuzzy interval with kernel &. Let N € N,
ie{l,...,N}, and [x;] = (4, ps,i), an a-cut. Then,

(7] is symmetric <= %; =%, Vie {l,...,N}.

PROOF.
The reciprocal is proven, i.e.,

[Z] is non-symmetric <= 3j € {1,...,N}, &; # .

Let p(-) denote the membership function of [Z]. Also, let ; and Z; respectively denote
the lower and upper bounds of [z;],Vi € {1,...,N}.

D) (=)
By definition, if [Z] is non-symmetric, then 3 z( € R such that,
(& — o) # pu(& + o). (6)
Without loss of generality, we can assume that there is an «-cut,
[z;],j €{1,..., N}, where z; = & — xo. If this a-cut is centered on the kernel,

ie., if 7; = 7, then T; = & + x¢. But, by definition of a-cut, z; and 7; have the same
membership degree, i.e., u(¢ — z9) = p(& + o), which contradicts (6). Hence, [z;]
is not centered on the kernel, i.e., Z; # &.

i) (<)

Let xo be the distance between i and z;, so that z; = & — z¢. Then, since [z,] is not
centered on the kernel, 7; # & + x¢. Moreover, since the membership function is
strictly decreasing for x > %, we also have u(%;) # (% + o). And, by definition of
a-cut, we obtain u(& — xg) # pu(& + xo), which means that p is not symmetric.

O

THEOREM 3.3. Let [7] and [g] be fuzzy intervals, o € {+,—,-,/}. If [Z] and [j] are
symmetric, then [Z] = [Z] o [g] is also symmetric.
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PROOF. Leti € {1,..., N}, be an uncertainty level. Recalling the a-cut concept,
[2i] = [wi] o [yi] -
If [Z] and [g] are symmetric, then, by Proposition 3.2,
=% U=y, Vi
Without loss of generality, let a; = 1. Then, the a-cuts of level 1 are singletons. The
kernel of [Z] can be expressed as the midpoint of such (degenerated) a-cut, i.e.,

Z=2z.
Ifo € {4, —,}, then,
=0 09) =01 0g) =4 =4 Vi
Hence, [Z] is symmetric. If o is the inversion, a similar calculation yields the result. O

PROPOSITION A.2. Let [Z] be a fuzzy interval, N € N, i,j € {1,..., N}, and [z;], [z;],
a-cuts. Then

;> o = [ZL’Z] C [l’j] .

PRrROOF. The following result, characterizing the inclusion of intervals, is used [Neu-
maier 1990]:

(Z,pc) C (U, py) = |§—Z| < py = pa
Let [z;] = (%4, ps,i) and [y;] = (s, py.i). Let () be the membership function of [Z], and
I, its kernel. By definition of a-cut,
(%5 + pei) = au,
(Z5 + paj) = .

(i — pa,i)
1(E; = paj)
From above, if o; > «, then,

=p
=p

(& = i) > (T — pej),
1(Zi + pai) > 1(&; + paj)-
Now, by construction, both &; — p,; and &; — p, ; are lower than Z, where p is strictly

increasing. Similarly, both &; + p, ; and Z; + p, ; are higher than &, where 1 is strictly
decreasing. Then,

T = Poi > Tj — Paj,
T+ poi < Tj + Paj-
Combining these two,
—(pz,j = Pzi) < Ej — Ti < Paj — P
And, more synthetically,
|Tj — i < paj — Pai-
(|

THEOREM 3.7. Let o € {+,—,-,/} and [%],[9],[Z], be fuzzy intervals, such that
[2] = [#] o [§]. Let [2] be the a-cut of level i of [Z], and p. ;, the radius of [z;]. Let E("9) ()
and E("9)(.) return the maximum absolute error in the midpoint-radius and midpoint-
increment formats, respectively. Then,

E)(p. ) < D (p, ), Vi>2.
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PROOF. The result is proven for the addition and subtraction. The other two cases
(multiplication and inversion) can be obtained by a similar reasoning. The notation
used below is extracted from Table I.

The proof proceeds by induction.

1) (Assume i = 2.)
In the midpoint-increment representation,

Pz2 = 5z,1 + 52,2-
Applying the error function,

E(inc) (Pz,2) _ E(inc) (5271) + E(mc) (5272). (10)
Now, according to Algorithm 2,

1
5271 = A (26 ‘,’2| + 5x,1 + (Sy’1> .

Without loss of generality, assume that the above is computed with the following
summation algorithm,

Ti=A <;E|é| +5z,1> )
Ty = (T +6,1).
By Theorem 3.6,
B9 (5,0) = e (|Ta] +|T2]) = € (2600 + 6y0) + €221, (11)
Similarly,
EU(6,0) = ¢ (3u,2 + 8y,2) - (12)
Replacing (11) and (12) in (10),
EU) (p.5) = €(001 + po2 + py2) + €[],
Following an analogous procedure,
BT (p, o) = €(0p1 + 022 + pu2 + py2) + €7].
And, since d, 2 > 0,
E(mc)(ﬂzz) < B D (p, ).

ii) (Assume B0 (p. ;) < ECD(p. ), Vi > 2.)
In the midpoint-increment representation,

Pritl = Pzi+024i11-
Applying the error function,
B (p.i41) = B (p. i) + EO(8,,41).
By the induction hypothesis,
E(inc) (pz,i+1) < E(Tad)(pz,i) + E(mc)(éz,i+1)- (13)
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By Theorem 3.6,
ET D (p. i) = € (2pai+ pyi) + €|,
B (8, 41) = € (0pig1 + Oyiv1)-
Replacing in (13),

EW (1) < € (payi+ pajit1 + pyiv1) + €3],
Again, by Theorem 3.6,

EC D (p, i41) = € (2pwi1 + pyiv1) + €22

And, since p, ; < pzi+1,
Eline) (pziv1) < E(md)(l’z,i+1)~
O
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