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Implicit Continuous Newton Method for Power Flow Analysis
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Abstract— This letter proposes an implicit form of the continuous
Newton method to solve the power flow problem. The implicit formulation
prevents the need to factorize the inverse of the Jacobian matrix of the

power flow equations and allows exploiting implicit integration solvers.
The backward Euler method is utilized in the letter for its L-stability
and numerical robustness, which is independent from the step size. A
21,177-bus model of the ENTSO-E transmission system serves to show

the performance of the proposed technique and to compare it with
conventional methods considering both well-posed and ill-conditioned
scenarios.

Index Terms— Power flow analysis, nonlinear equations, implicit dif-
ferential equations (IDEs), implicit integration schemes.

I. INTRODUCTION

In their most general form, power flow equations are a set of

nonlinear algebraic equations:

0 = g(y) , (1)

where y (y ∈ R
n) and g (g : Rn 7→ R

n). The solution of (1) poses

both theoretical and numerical challenges, which have been object

of intense and continuous studies with the power system community

since the first formulations in the mid 1950s [1].

The conventional Newton method to solve (1) leads to the follow-

ing map [2]:

y
i+1 = y

i − J
−1(yi)g(yi) , (2)

where J = gy is the Jacobian matrix of the power flow equations and

the super-indexes indicate the i-th iteration of the map. The initial

value yo is the initial guess. A fixed point of (2), namely yi+1 = yi,

is a solution of (1), which in practice is assumed to have been reached

if |yi+1 − yi| < ǫ, where ǫ > 0 is a given error tolerance.

II. IMPLICIT CONTINUOUS NEWTON METHOD

Reference [3] proposes a formal analogy between (2) and a map

representing a Forward Euler Method (FEM) for the following set of

explicit nonlinear ordinary differential algebraic equations:

ẏ = f(y) = −J−1(y)g(y) , (3)

and the i-th iteration of the FEM is:

y
i+1 = y

i + h f(yi) , (4)

where h is the step size of the FEM, which in (2) is implicitly

assumed to be h = 1. The convergence properties of (3) are

thoroughly discussed in [3], which shows that sufficiently close to

the equilibrium point, (3) is asymptotically stable.

In [4], the advantages of an implicit formulation of differential

equations for transient stability analysis is discussed. Taking the

cue from [4], (3) can be rewritten as a set of Implicit Differential

Equations (IDEs):

J(y) ẏ = −g(y) , (5)

which solves (1) in two cases: (i) equilibrium points for which ẏ = 0;

and (ii) singular points for which J(y) ẏ = 0 and |ẏ| 6= 0. In the

latter case, however, the system is not in stationary conditions.
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Equations (5) can be conveniently integrated using an implicit

integration scheme, whereas (3) can not due to the presence of the

term J−1. The Backward Euler Method (BEM) appears a particularly

promising scheme as it is L-stable [5]. This means that the BEM is

intrinsically stable regardless the integration step size h, for h > 0.

The i-th iteration of the BEM applied to (5) requires to solve the

following set of nonlinear equations:

0 = φ(yi) = J(yi)
(

y
i − y

i−1
)

+ hg(yi) , (6)

where yi is the vector of unknowns and yi−1 is the known vector

of variables determined at the previous step. Equations (6) can be

solved using a Newton iteration, as follows:

y
i
k+1 = y

i
k − φ

−1

y (yi
k)φ(y

i
k) , (7)

where the sub-indexes indicate the k-th iteration of the Newton

method that solves the i-th step of the integration of (5), and

φ(yi
k) = J(yi

k)
(

y
i
k − y

i−1
)

+ hg(yi
k) . (8)

The solution of (6), which in turn is the i-th step of the time domain

integration of (5) is achieved when the map (8) returns |yi
k+1−y

i
k| <

δ, where δ > 0 is a given error tolerance. Then, the integration of

(5) proceeds, until |yi+1 − yi| < ǫ, which also implies a stationary

condition, i.e., ẏ ≈ 0.

The implicit BEM requires to iterate twice: in the inner loop

over k for every time step i, and then in the main loop over i, to

integrate the fictitious dynamic system (5). The solution of the inner

Newton method for the i-th step requires to compute φy(y
i
k), whose

expression can be deduced from (8):

φy(y
i
k) = (1 + h)J(yi

k) +H(yi
k)

(

y
i
k − y

i−1
)

, (9)

where H = gyy is the Hessian matrix of the power flow equations,

namely a tensor of order 3.

The implementation of the implicit BEM based on (5) thus appears

computationally demanding. However, this is not the case, for the

following reasons.

• Since the BEM is L-stable, the step size h can be “large” without

compromising the numerical stability of the method. A large

h results in a small number of steps to reach the stationary

condition ẏ ≈ 0 and thus |yi+1 − yi| < ǫ.

• The Newton method to solve the inner loop for the i-th step

is particularly efficient and, in time domain analysis and for

sufficiently small step size h, typically requires about two or

three iterations to reach the condition |yi
k+1 − yi

k| < δ [6].

• The calculation of the Hessian matrix H(yi
k) can be a deal-

breaker for the efficiency and the implementation of the pro-

posed method. As a matter of fact, the need to compute the

Hessian matrix is one of the main reasons that have limited the

utilization of robust methods such as [7] and [8]. Nevertheless,

empirical tests have shown that the term H(yi
k)

(

yi
k−yi−1

)

is

immaterial for the convergence of the inner loop.

The latter point has relevant consequences on the implementation

and computational burden of the proposed implicit Newton method.

Equation (9) can be conveniently approximated as:

φy(y
i
k) ≈ (1 + h)J(yi

k) , (10)
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which leads to rewrite (7) with the following approximated BEM k-th

iteration:

y
i
k+1 ≈ y

i
k − (1 + h)−1

J
−1(yi

k)φ(y
i
k) (11)

= y
i
k − (1 + h)−1

[

(yi
k − y

i−1) + hJ
−1(yi

k)g(y
i
k)
]

= (1 + h)−1{yi−1 + h [yi
k + f(yi

k)]} .

There are at least two ways to further speed up the solution of the

inner loop, as follows.

On one hand, one can approximate its solution, for example, by

limiting the maximum number of k. Even if the inner-loop solution

is not “exact,” in fact, the main loop can eventually converge to the

final equilibrium point. The case study considers the case of solving

only one iteration of the inner loop, i.e., the inner-loop iterations are

stopped at k = 1, regardless the convergence of the inner loop itself.

Note that yi
1 = yi−1 holds ∀i due to the initialization of the inner

loop, and, hence, H(yi
1)

(

yi
1 − yi−1

)

= 0. This implies that the

Hessian matrix does not need to be calculated if approximating the

inner-loop solution with its first iteration.

On the other hand, one can try to speed up the solution of the

inner loop by taking advantage of the Dishonest Newton method that

proved to be very efficient for time-domain integration [6]. Hence,

(11) can be further simplified as follows:

y
i
k+1 ≈ (1 + h)−1{yi−1 + h [yi

k + fo(y
i
k)]} , (12)

where

fo(y
i
k) = −J

−1
o g(yi

k) , (13)

and Jo is a constant matrix, e.g., computed at the initial guess yo.

Also this iteration setup is considered in the case study.

To complete this section, the proposed implicit continuous Newton

method based on BEM integration is summarized in Algorithm 1

using pseudo code. In the pseudo code the function stepSize updates

the step size h according to the number of iterations required by the

inner loop to complete. An example of how to update h is discussed

in the case study.

Algorithm 1 Main steps of the BEM

1: procedure IMPLICIT CONTINUOUS NEWTON METHOD

2: Initial step size: h← 1
3: Set main-loop counter: i← 0
4: Initial variable guess: yi ← yo

5: Main loop

6: while max{|g(yi)|} > tolerance1 do

7: Initial inner-loop counter: k ← 0
8: Initial value: yi

1 ← yi−1

9: Inner loop

10: for k < kmax do

11: Solve (7) # or approximated expression

12: if max{|yi
k+1 − yi

k|} < tolerance2 then break

13: Update inner loop counter: k ← k + 1

14: Adjust step size: h← stepSize(k)
15: if Inner Loop converged then

16: Update variables: yi ← yi
k+1

17: Update main loop counter: i← i+ 1
18: goto 7

19: else

20: if i ≥ imax then break # divergence

21: goto 8

22: return solution yi

III. CASE STUDY

In this case study, the properties and the performance of the

proposed implicit continuous Newton method (ICNM) are compared

through a static model of the ENTSO-E transmission system. The

model includes 21,177 buses, 30,968 transmission lines and trans-

formers, 1,144 zero impedance branches, 15,756 loads, and 4,828

generators. All simulations are obtained with Dome [9] running on

a 3.5 GHz Intel Core i7 with 16 GB RAM.

Several other test systems, ranging from a few tens to a few

thousands of buses have been tested with the proposed implicit

continuous Newton method. Different networks require different

numbers of iterations to reach convergence, but the behaviour and

performance of the proposed implicit continuous Newton method

as well as the main conclusions discussed below are the same. For

this reason, only the largest network available to the author, i.e. the

ENTSO-E system, is discussed below.

Four implementations of the ICNM are considered, namely:

ICNM-JH that considers the expression with Jacobian and Hessian

matrices (7); ICNM-J that utilizes the approximated expression

(11) where the Hessian matrix is neglected; ICNM-J1 where the

solution of the inner loop is approximated with its first iteration,

i.e., kmax = 1, and, hence, the Hessian matrix does not need to

be calculated; and ICNM-Jo that utilizes (13) where the Jacobian

matrix is kept constant. These three methods are compared with

the standard Newton method (NM); a dishonest Newton method

where the Jacobian matrix is factorized only once, i.e., at the first

iteration (DNM); the optimal multiplier Newton method (OMNM) in

polar coordinates defined in [8]; and the explicit continuous Newton

method with 4th order Runge-Kutta method (CNM-RK4) discussed

in [3]. Note that, since the network includes non-conventional devices

such as zero-impedance branches, which are efficiently modelled as

variable power injections [10], the commonly-used fast decoupled

power flow method (see, e.g., [11]) cannot be applied in this case

as it requires that the only variables are bus voltage magnitudes and

phase angles.

For the ICNMs, ǫ = δ = 10−5 is used in all tests. The initial

step size for the ICNM is h = 1. The step size is increased by 25%

if the number of iterations of the inner loop to get to convergence

is k < 4, and decreased by 25% if k > 10. The smaller h the

more the iterations i of the main loop but the less the iterations of

the inner loop. In time domain integration, the choice of the size

of the step length h depends on the dynamics of the system. h is

generally tuned in such a way to calculate enough points to properly

plot the trajectories. This requires a relatively small h and, hence,

the inner loop generally converges in no more than an handful of

iterations. However, for the solution of the power flow, the main

requirements is to reduce the total computing time to reach steady-

state. The intermediate “transient” values taken by y during the

iterations, in fact, are discarded. Finally, h = 1 is the value utilized

in the conventional Newton method, which in this context can be

interpreted as an explicit (forward) Euler method. Hence, using h = 1
allows for a fair comparison of the proposed method with existing

ones.

Table I compares the statistics of the proposed method with

conventional methods for the base-case flat-start power flow problem.

Since the base case is feasible and well posed, all methods converge,

being the conventional NM the least computationally demanding.

Results also indicate that the statistics of the ICNM-JH and ICNM-J

are effectively the same but for the CPU time, which is substantially

lower for the ICNM-J as it does not require the calculation of

the Hessian matrix H. Thus, as anticipated in Section II, the term

H(yi
k)

(

yi
k − yi−1

)

is not needed for the ICNM to converge. On
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the other hand, approximating the Jacobian matrix with a constant

matrix Jo, while not preventing convergence, does not lead to a

performance improvement. The best performing setup is ICNM-

J1, i.e., the approach that uses kmax = 1. This result suggests

that the accuracy of the solution of the inner loop is not crucial

for the convergence. In this scenario, the performance of ICNM-

J and ICNM-J1 is comparable to that of a robust Newton method

with adaptive step size, such as the OMNM. Note that, except for

the ICNM-J1, the inner loop requires a relatively high number of

iterations (at least compared to typical time domain analysis). This is

due to the relatively high step length h. Reducing h can help reduce

the number of inner-loop iterations but would increase the number

of iterations of the main loop. By trial-and-error, h = 1 was found

to be the initial guess that led to the minimum CPU times.

TABLE I

STATISTICS OF THE FLAT-START POWER FLOW ANALYSIS FOR THE

ENTSO-E SYSTEM WITH VARIOUS SOLVERS

Method
Number of iterations Number of CPU time

Main loop Inner loop factorizations [s]

NM 7 – 7 0.195
DNM 28 – 1 0.183
OMNM 8 – 8 0.431
CNM-RK4 20 – 80 1.819
ICNM-JH 5 21 21 0.992
ICNM-J 5 21 21 0.543
ICNM-J1 11 1 11 0.338
ICNM-Jo 8 118 1 1.832

The goal of the proposed ICNM is to solve ill-conditioned prob-

lems, i.e., power flow problems that have a solution but that cannot

be solved with conventional methods and the standard flat-start initial

guess, i.e., all bus voltage phase angles equal to zero. With this aim,

the initial guess of the ENTSO-E system are modified with respect

to the flat start to obtain a case for which conventional methods do

not converge. Concretely, the initial-guess bus voltage phase angles

are uniformly distributed in the interval [−0.02, 0.02] rad, except for

the slack bus, whose phase angle is zero. The same initial guess

was used for all considered methods. This was obtained by using the

same random number seed to generate the bus voltage phase angles

for each solver tested in the case study.

Table II shows the results obtained with the same methods con-

sidered for the base case problem in Table I. Since generation and

load profiles are unchanged, the sought solution is still the base-case

one. However, due to the poor initial guess, NM, DNM and CNM-

RK4 diverge. The OMNM, rather then diverging, finds in a local

minimum for which g(y) 6= 0 and its optimal multiplier slowly

goes to zero. On the other hand, all ICNM variants converge. Note

that a variety of different symmetrical and asymmetrical intervals,

not just [−0.02, 0.02], were also tested, with similar results as those

shown in Table II. The ICNM-JH and ICNM-J show same figures,

thus confirming that the calculation of the Hessian matrix does not

improve the robustness of the method. The best performing setup

is again ICNM-J1 that is thus the iteration setup to show the most

promising results. The ICNM-Jo converges with a slow pace but,

since it requires only one factorization, its performance is similar to

the ICNM-JH. Overall, the best trade-off between performance and

robustness is achieved with ICNM-J.
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