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Simplified Model to Study the Induction Generator Effect of
the Sub-Synchronous Resonance Phenomenon
F. Bizzarri, Senior Member, IEEE, A. Brambilla Member, IEEE, F. Milano, Fellow, IEEE

Abstract— This letter presents a simple model of induction machines
able to appraise the induction generator effect of the sub-synchronous
resonance phenomenon. The proposed model is general and can be
applied to induction machines utilized in wind power applications, such
as doubly-fed induction generators. A rigorous stability analysis is carried
out based on the proposed model. This analysis shows that the induction
generator effect leads to a Neimark-Sacker bifurcation.

Index Terms— Sub-synchronous resonance, induction generator effect,
Neimark-Sacker bifurcation, doubly-fed induction generator.

I. INTRODUCTION

The sub-synchronous resonance (SSR) effect has been largely
studied since the first evidence in 1971 when generators of a steam
power plant were damaged (and also before this event, see for
example [1]–[5]). Literature classifies the SSR as induction generator
effect (IGE), torsional interaction (TI) and torsional amplification (TA)
[1]. The onset of SSR is explained by observing that the synchronous
generator embeds a “parasitic” induction generator. If the stator
“sees” a rotor turning at a frequency above the synchronous one,
then the slip is negative and the equivalent circuit exhibits a negative
resistance [5].

In the past, IGE was mostly considered an academic problem since,
although possible, it was never seen in practice for synchronous
generators. This situation, however, has considerably changed in the
last decade due to the increasing penetration of wind power plants
based on doubly-fed induction machines. Recent works show that
SSR can occur for compensated wind power plants [6] and that the
IGE is actually a significant issue in real-world applications [7], [8].

Existing literature on IGE is based on a parametric eigenvalue
analysis. Typical studies show that the onset of the SSR phenomenon
originates from an Hopf bifurcation (HB), which leads to the appear-
ance of a limit cycle. This letter tackles the IGE from a circuital
point of view and carries out a thorough bifurcation analysis to study
the stability of the aforementioned limit cycle. The letter shows that,
depending on the amount of capacitive compensation, the limit cycle
can undergo a Neimark-Sacker bifurcation (NSB), thus becoming
unstable and generating a torus. Whenever the newborn torus is
unstable, The occurrence of the NSB makes the SSR phenomenon
critical as it can lead to unbounded oscillations and collapse. The
letter also suggests simple remedial actions to reduce the risk of or
prevent at all the occurrence of the IGE.

II. MODELLING

A symmetrical three-phase AC system can be represented through a
two-phase equivalent in the αβ-frame through the well-known Clarke
transform. Let’s consider an induction machine with a capacitor
connected in series to the stator impedance. In the αβ-frame and
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per unit, such a system can be described by the following set of
equations [9]:

φαs(t) = Lsıαs(t) + cos (δr(t))Mıαr(t)− sin (δr(t))Mıβr(t)

φβs(t) = Lsıβs(t) + sin (δr(t))Mıαr(t) + cos (δr(t))Mıβr(t)

φαr(t) = cos (δr(t))Mıαs(t) + sin (δr(t))Mıβs(t) + Lrıαr(t)

φβr(t) = cos (δr(t))Mıβs(t)− sin (δr(t))Mıαs(t) + Lrıβr(t)

φ̇αs(t) +Rsıαs(t)− vαs(t)− Eαs = 0

φ̇βs(t) +Rsıβs(t)− vβs(t)− Eβs = 0

φ̇αr(t) +Rrıαr(t)− Eαr = 0

φ̇βr(t) +Rrıβr(t)− Eβr = 0

Csv̇αs(t) + ıαs(t) = 0

Csv̇βs(t) + ıβs(t) = 0

τe(t) = φαs(t)ıβs(t)− φβs(t)ıαs(t)
δ̇r(t)− Ωωr(t) = 0

2Hω̇r(t)− τm + τe(t) +Dωr(t) = 0 ,
(1)

where s and r suffixes refer to quantities related to the stator and
rotor, respectively; the upper dot symbol means time derivative; Ω
is the nominal frequency in rad s−1; φ, ı and v indicate magnetic
fluxes, currents and voltages, respectively; E are imposed voltages;
Ls is the sum of the self-inductances of the stator coils and of the
equivalent line; Lr is the self-inductances of the rotor coils; M =
k
√
LsLr is the peak value of the mutual inductance that periodically

varies according to the mutual positions of the turns; k ∈ (−1, 1)
is the coupling coefficient; ωs and ωr are the angular speed with
which stator and rotor coils rotate around their common rotational,
respectively; Rr models the resistance of the rotor coils whereas Rs
models the overall resistance of both the stator coils and the line;
Cs models line capacitive compensation, i.e., it is assumed that the
overall reactance of the line at the SSR frequency is capacitive; and
H , D and τm are the inertia, the damping coefficient and torque of
the single-mass generator, respectively.

The TI and TA phenomena are due to the interaction of the last
two equations of (1) with the electrical system. The IGE, instead,
originates exclusively from the coupling of electrical and magnetic
equations of the machine and the compensated line. Since this letter
focuses on the IGE only, the last three equations in (1) are dropped
and thus δr(t) is imposed. This allows reducing the dynamic order
of the system.

Since our goal is to define the minimal set of equations that shows
the IGE, let us proceed as follows. First we define complex vectors of
the αβ components of fluxes, currents and voltages. So, for example,
considering the stator current:

ı̄s(t) = ıαs(t) + jıβs(t) . (2)

Using this notation, electrical and magnetic equations of (1) can be
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rewritten as:

φ̄s(t) = Ls ı̄s(t) + exp(jδr(t))Mı̄r(t)

φ̄r(t) = exp(−jδr(t))Mı̄s(t) + Lr ı̄r(t)

˙̄φs(t) +Rs ı̄s(t)− v̄s(t)− Ēs = 0

˙̄φr(t) +Rr ı̄r(t)− Ēr = 0

Cs ˙̄vs(t) + ı̄s(t) = 0 .

(3)

This set of equations is formally equivalent to a single-phase machine
with complex time-varying fluxes, currents and voltages. This equiva-
lency does not apply to the expression of the electromagnetic torque.
However, since we are not interested in the mechanical equations of
the machines, the formal equivalence holds.

To carry out the bifurcation analysis, we consider the single-mass
two-coil system shown in Fig. 1, which is the real-domain version
of (3). The resulting set of equations is:

φs(t) = Lsıs(t) + sin (δr(t))Mır(t)

φr(t) = sin (−δr(t))Mıs(t) + Lrır(t)

φ̇s(t) +Rsıs(t)− vs(t)− Es = 0

φ̇r(t) +Rrır(t)− Er = 0

Csv̇s(t) + ıs(t) = 0 .

(4)

This is the minimal set of equations that allows studying the IGE. The
rationale for utilizing a simplified model is that the derivation of an
accurate and reliable set of differential-algebraic equations describing
the three-phase dynamic system does not add information on the SSR

phenomenon [2], [3].

Fig. 1. The schematic of a distributed-lumped simplified equivalent circuit
used to describe the onset of the IGE.

In normal operation, (4) exhibits a stable equilibrium. If this
equilibrium undergoes a HB, then the limit cycle originated by the
HB leads to the SSR. The evolution of the limit cycle can be studied
as a function of the line parameters.

The δr(t) time varying angle modulates the sin ( · ) functions in
the flux equations, therefore any variation of ωr reflects in the slip
between the rotor and stator time-varying fluxes. Let us define a slip
variable σ = ωr − ωs and study a “specific” limit cycle originated
at the HB point, i.e., a limit cycle whose period is 2π/σ.

With simple algebraic transformations, (4) can be rewritten as:

A(t)︷ ︸︸ ︷ Ls −M sin (σt) 0
M sin (σt) Lr 0

0 0 Cs

 ı̇s(t)
ı̇r(t)
v̇s(t)

=

 −Rs Mσ cos(σt) 1
−Mσ cos(σt) −Rr 0

−1 0 0


︸ ︷︷ ︸

B(t)

 ıs(t)
ır(t)
vs(t)

+

 Es
Er
0


(5)

If σ = 0, the first and second equations in (5) are decoupled, A(t)
and B(t) are constant, and the system admits a stable equilibrium
point. This means that, for σ = 0, the IGE cannot occur. This is
the typical operation condition of synchronous machines. For these
machines, the condition σ 6= 0 occurs only during transients triggered
by large disturbances. This is the reason why the IGE is unlikely
for conventional power plants. However, for constant speed and/or
doubly-fed induction generators, as those utilized in wind farms, σ 6=
0 always applies during normal operation. This makes the IGE a
relevant phenomenon, as shown in the case study below.

The detailed model (1) and proposed model (4) behave in the
same way until the occurrence of the NSB. This is so because,
before the NSB, the effect of the mechanical equations and controllers
(if considering a DFIG configuration), do not affect the coupling
of machine electrical and magnetic equations. After the NSB, the
mechanical equations do play an important role in the machine
dynamics, i.e., the rotor speed decreases and the currents increase.
Also the coupling between the α and β axis is not immaterial after the
NSB. However, (4) is enough to define “where” the bifurcation occurs
and provides information on how to keep the operating point of the
machine away from such a bifurcation. This is illustrated through a
numerical example in the following section.

III. CASE STUDY

Let assume that σ is constant and equal to zero in (5) and check
whether, for some values of the model parameters, the parasitic induc-
tion machine leads to an unstable and unbounded – i.e., catastrophic
– dynamical evolution.

Figure 2 shows the results of a stability analysis that assumes
Cs and Rs as bifurcation parameters. We focus first on the black
continuous curve in Fig. 2, which represents the locus of NSBs [10].
To explain the changes in the dynamic response of the system,
let us consider the dashed vertical line for Rs = 0.02 p.u. At
P1, the system admits a stable periodic steady state solution and
the corresponding limit cycle, say Γ, undergoes a NSB at NS1 by
increasing Cs. As a consequence, the stability of Γ is lost and the
system either admits a quasi-periodic behavior or, as it happens in this
case study, becomes asymptotically unstable. The whole light yellow
region inside the continuous black curve is unstable and characterized
by unbounded oscillations. By further increasing Cs, Γ undergoes a
further Neimark-Sacker bifurcation at NS2 and, after that, becomes
stable again (e.g., P3).

The sequence of bifurcations illustrated above is slightly modified
by increasing Ls, which leads to the gray curve in Fig. 2. This curve
also represents the locus of NSBs. For illustration, Fig. 3 shows the
trajectories projected on the (ıs, ır) plane obtained for the parameters
values corresponding to P2 in Fig. 2. In particular, the gray line
represents a portion of the unbounded solution whereas the black
line corresponds to the Γ limit cycle that is unstable in P2.
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Fig. 2. Bifurcation diagrams on the plane (Rs, Cs) in p.u.

Finally, the NSB does not occur at all if one chooses a value of Rs
corresponding to vertical lines that do not intersect the nose-shaped
bifurcation curves in Fig. 2. This means that, by properly increasing
Rs over a value R∗

s(Ls), the stability of Γ does not depend on Cs.
The following are two relevant conclusions that can be drawn

from the bifurcation analysis above: (i) increasing the (equivalent)
resistance Rs can prevent instability; and (ii) as Ls decreases, the
unstable SSR region shrinks and R∗

s(Ls) decreases.

Fig. 3. Trajectories projected on the (ıs, ır) plane obtained for the parameters
values corresponding to P2 in Fig. 2.

The discussion above refers to a given set of parameters. It is
thus relevant to discuss whether parameter uncertainty can change
the behavior of the system. Recent works, e.g., [6]–[8], show that
line compensation leads to the IGE with DFIGs configurations. In
particular in [7] the authors apply a frequency scanning for various
line lengths and always find a resonance (or bifurcation) condition.

According to our several simulation tests, we have also always
found that the bifurcation occurs for any given set of machine and
transmission line parameters (see for example the grey curve in
Fig. 2). These conditions appear to be independent from mechanical
equations and the control (in fact, the bifurcation occurs also for
squirrel cage induction generators utilized in Type A wind turbines).
These facts allow us empirically concluding that the NSB is persis-
tent,1 at least for parameters in the range of values that are of practical
interest. Thus, the effect of parameter uncertainty is to “move” the
bifurcation but not to “destroy” it. Moreover, for the well-konwn
properties of continuous equations, small parameter variations lead
to small variations of the point at which the NSB occurs.

From a practical point of view, the bifurcation diagram shown in
Fig. 2 provides the conditions for which the NSB occurs for a given
set of parameters but it can actually also be utilized in the other way
round, namely, to deduce the “distance” of a given set of parameters
to the bifurcation. The stability margin can be thus imposed by

1For a difinition of “persistence”, the interested reader can refer to [11].

assuming a safety distance similarly to the transmission reliability
margin (TRM) defined by NERC to calculate the available transfer
capability of a transmission system [12]. The TRM is basically a
heuristic margin that takes into account uncertainty and aspects of
the power system that are not explicitly modeled. For example,
considering the case study discussed in this section, for Rs = 0.02
pu, the bifurcation diagram of Fig. 2 shows that it is safe to assume
that the NSB does not occur for Cs > 0.06 or Cs < 0.02. This result
is still valid if Rs is varied in a small range to simulate typical
parameter uncertainty.
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