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Abstract— The paper focuses on the small-signal stability
analysis of systems modelled as differential-algebraic equations
and with inclusions of delays in both differential equations and
algebraic constraints. The paper considers the general case for
which the characteristic equation of the system is a series of
infinite terms corresponding to an infinite number of delays. The
expression of such a series and the conditions for its convergence
are first derived analytically. Then, the effect on small-signal
stability analysis is evaluated numerically through a Cheby-
shev discretization of the characteristic equations. Numerical
appraisals focus on hybrid control systems recast into delay
algebraic-differential equations as well as a benchmark dynamic
power system model with inclusion of long transmission lines.

Index Terms— Time delay, delay differential algebraic equa-
tions (DDAE), small-signal stability, long transmission line,
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I. INTRODUCTION

Time delays are intrinsic of a variety of electrical, electronic,

and communication systems. For example, several applications

of electronic circuits include delays, e.g., [1]–[4]. In control

applications, there is a huge variety of examples of neutral-

type time-delay systems as well as discrete-continuous hybrid

systems that can be regarded as Delay Differential-Algebraic

Equations (DDAEs). We cite, for example, [5]–[9]. Another

relevant example are power systems with long transmission

lines, which, under certain assumptions and approximations,

can be modelled as DDAEs [10]–[13]. Moreover, recent devel-

opments of wide area control schemes, the higher and higher

penetration of distributed generations with decentralized con-

trols and the increased number of measurements based on

telecommunication systems (e.g., phasor measurement units)

lead to an increasing impact of signal delays on power system

dynamic response and operation [14]–[21]. The study of the

stability of DDAEs is thus relevant for a large number of real-

world applications.

Recent works focus on delay stability margin and on the

impact of communication delays for load frequency control

(LFC) applications, e.g., [22] and [23]. In particular, in [22],

the authors consider an approach based on an iterative method

that involves the solution of linear matrix inequality (LMI)

problems and allows defining the stability of system with both

constant and time-varying delays. In [23], the authors provide
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an exact method to define the stability margin of systems

with one or multiple LFC areas. Both methods above are

frequency-domain methods that do not involve the solution

of an eigenvalue problem. However, such methods are model-

and application-dependent and cannot deal with non index-1

Hessenberg form DDAEs, which are the main objective of this

paper.

This paper focuses on the evaluation of the small-signal

stability of DDAEs. Delays transform the classical problem

of finding the roots of the state matrix of the system at

the equilibrium point into the solution of a transcendental

characteristic equation, with infinitely many roots. In this

paper, we show that the characteristic equation of the most

general form of DDAEs also have infinitely many delays which

are multiples of the actual delays that appear in the DDAEs.

This paper utilizes a method based on a Chebyshev dis-

cretization of a set of partial differential equations (PDEs) that

are equivalent to the original DDAEs [24]–[27] to solve the

small-signal stability analysis of DDAEs with multiple delays.

The Chebyshev discretization has been successfully applied to

power systems modelled as index-1 Hessenberg forms with

single [28], [29] and multiple delays [30].

The novel contributions of the paper are the following:

• The derivation of the analytical expression of the charac-

teristic equation of general DDAEs. Such an expression

consists of a series whose convergence condition is also

defined in the paper. To the best of our knowledge, this

is the first attempt to define the small-signal stability of

DDAEs which are not index-1 Hessenberg form.

• The derivation of the explicit solution of the condition

above for power systems models with inclusion of long

transmission lines with delays and with and without

attenuation.

• A numerical appraisal based on the Chebyshev discretiza-

tion method of the approximated solution of characteristic

equation deduced in the paper for converging and diverg-

ing series.

The remainder of the paper is organized as follows. Section

II defines the formulation of delay differential-algebraic equa-

tions and derives the expression of the characteristic equation

for the most general case. Section III briefly recalls the

approach based on the Chebyshev discretization to estimate the

spectrum of a DDAE with inclusion of multiple delays. Section

IV presents several examples based on hybrid control systems

and power system models and particularize the structure of

the characteristic equation for such specific DDAEs. Section



V presents numerical results of the small-signal stability

analysis using tow simple continuous-discrete hybrid control

system examples and the New England 39-bus 10-machine test

system. Conclusions are drawn in Section VI.

II. SMALL-SIGNAL STABILITY OF DELAYED DAES

This section recalls definitions of DDAEs and presents the

derivation of the characteristic equation of the general case,

which leads to an infinite series of matrices. In the following,

the case with only a single delay will be considered. The

extension to the multiple delay case is straightforward and

is considered in Subsection V-C of the case study.

A. Differential-Algebraic Equations with Delays

Let us recall first conventional DAE models without delays.

These are described by the following equations:

x′ = f(x,y) (1)

0q,1 = g(x,y)

where f (f : Rp+q 7→ R
p) are the differential equations; g

(g : Rp+q 7→ R
q) are the algebraic equations; x (x ∈ R

p) are

the state variables; and y (y ∈ R
q) are the algebraic variables.

We also assume that (1) is autonomous, i.e., does not depend

explicitly on time t. With 0i,j we denote the zero matrix of i
rows and j columns.

The DDAE formulation is obtained by introducing time

delays in (1). Let

xd = x(t− τ) (2)

yd = y(t− τ)

be the retarded or delayed state and algebraic variables,

respectively, where t is the current simulation time, and τ
(τ > 0) is the time delay. In the remainder of this paper, since

the main focus is on small-signal stability analysis, time delays

are assumed to be constant.

In the most general case, both x and y appear in both the

differential and algebraic equations, f and g, respectively. This

assumption leads to the following system:

x′ = f(x,y,xd,yd) (3)

0q,1 = g(x,y,xd,yd).

Definition 1. The DDAE (3) is index-1 Hessenberg if gy

is nonsingular, i.e. det(gy) 6= 0 and yd = 0. Using the

implicit function Theorem, y is a function of x, t and can be

defined uniquely by the algebraic equation and then replaced

in the differential equation. The DDAE (3) is non index-1

Hessenberg if yd 6= 0 or gy is singular, i.e. det(gy) = 0.

Note that, in (3), g depends on yd. Hence, (3) is not the

index-1 Hessenberg considered in most examples of delay

power systems, e.g., [28]–[32]. It is not possible to determine

a closed form of the characteristic equation of (3). The

determination of such a characteristic equation is the main

theoretical contribution of this paper and is discussed in the

following subsection.

B. Characteristic Equation of General DDAEs

Assume that a stationary solution of (3) is known and has

the form:

0p,1 = f(x0,y0,x0,y0) (4)

0q,1 = g(x0,y0,x0,y0)

where it has been used the fact that, in steady-state, xd0 =
x0 and yd0 = y0. Then, differentiating (3) at the stationary

solution yields:

∆x′ = f
x
∆x+ f

y
∆y + f

xd
∆xd + f

yd
∆yd (5)

0q,1 = g
x
∆x+ g

y
∆y + g

xd
∆xd + g

yd
∆yd (6)

where, neglecting without loss of generality singularity-

induced bifurcation points, it can be assumed that g
y

is non-

singular. This assumption holds in the remainder of this paper.

To define the characteristic equation we use the results of

the following proposition.

Proposition 1. The linearized system of DDAEs (3) can

be written in the following matrix differential equation with

multiple delays:

∆x′ = A0∆x+A1∆xd +

∞
∑

k=2

[Ak∆x(t− kτ)] , (7)

where

A0 =f
x
+ f

y
A , (8)

A1 =f
xd

+ f
yd
A+ f

y
D , (9)

Ak =ECk−2D, k ≥ 2, (10)

and

A = −g−1
y

g
x
, B = −g−1

y
g
xd

, (11)

C = −g−1
y

g
yd

, D = B +CA ,

E = f
y
C + f

yd
. 2

The first matrix A0 is the well-known state matrix that

is computed for standard DAEs of the form (1). The other

matrices are not null only if the system is of retarded type.

The matrix A1 is found in any delay differential equations,

while matrices Ak appear specifically in DDAEs. Note that

the series stops at k = 2 if g
yd

is null. This is the case

considered in most papers on power system models based on

DDAEs, e.g., [28].

The series in (7) converges if and only if ‖C‖ < 1, where

‖ · ‖ induced norm, or, equivalently, if and only if ρ(C) <
1, where ρ(·) spectral radius of the eigenvalues of a matrix.

Moreover, if ρ(C) < 1, the matrices Ak tend to 0p,p as k →
∞. Hence, based on the definition of Ak in (10), the following

condition must hold:

ρ(C) = ρ(g−1
y

g
yd
) < 1 . (12)

Note also that, in (10), we assume that C0 = Ip, hence:

A2 =ED . (13)

For the sake of completeness, we provide below the proof

of Proposition 1.
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Proof of Proposition 1. From (6), we have

∆y = −g−1
y

g
x
∆x− g−1

y
g
xd
∆xd − g−1

y
g
yd
∆yd , (14)

or, equivalently,

∆y = A∆x+B∆xd +C∆yd . (15)

Note that ∆y depends on ∆yd, which, based on the same

(15), can be written as

∆yd = A∆xd +B∆xdd +C∆ydd , (16)

where xdd = x(t − 2τ) and ydd = y(t − 2τ). In the same

vein, ∆yd depends on ∆ydd and so on. Hence, (15) can be

rewritten as follows:

∆y = A∆x+D∆xd +CB∆xdd +C2∆ydd , (17)

or, equivalently,

∆y =A∆x+D∆xd +CD∆xdd+ (18)

C2B∆xddd +C3∆yddd ,

or, equivalently,

∆y = A∆x+

n
∑

k=1

[Ck−1D∆x(t− kτ) ] + (19)

CnB∆x(t− (n+ 1)τ)+

Cn+1∆y(t− (n+ 1)τ).

If the condition (12) holds, then

∆y = A∆x+
∞
∑

k=1

[Ck−1D∆x(t− kτ)] . (20)

Substituting the above expression into (5), we obtain

∆x′ =(f
x
+ f

y
A)∆x+ (f

xd
+ f

yd
A)∆xd+ (21)

f
y

∞
∑

k=1

[Ck−1D∆x(t− kτ)]+

f
yd

∞
∑

k=1

[Ck−1D∆x(t− (k + 1)τ)] .

By taking into account that

f
y

∑∞

k=1[C
k−1D∆x(t− kτ)] =

f
y
D∆xd + f

y

∑∞

k=2[C
k−1D∆x(t− kτ)].

and
f
yd

∑∞

k=1[C
k−1D∆x(t− (k + 1)τ)] =

f
yd

∑∞

k=2[C
k−2D∆x(t− kτ)],

the equation (21) takes the form

∆x′ =(f
x
+ f

y
A)∆x+ (22)

(f
xd

+ f
yd
A+ f

y
D)∆xd+

f
y

∞
∑

k=2

[Ck−1D∆x(t− kτ)]+

f
yd

∞
∑

k=2

[Ck−2D∆x(t− kτ)],

or, equivalently,

∆x′ =(f
x
+ f

y
A)∆x+ (23)

(f
xd

+ f
yd
A+ f

y
D)∆xd+

∞
∑

k=2

[f
y
CCk−2D∆x(t− kτ)]+

∞
∑

k=2

[f
yd
Ck−2D∆x(t− kτ)],

or, equivalently,

∆x′ =(f
x
+ f

y
A)∆x+ (24)

(f
xd

+ f
yd
A+ f

y
D)∆xd+

∞
∑

k=2

[ECk−2D∆x(t− kτ)]

The proof is complete. 2

The characteristic equation of (7) is given by

det ∆(λ) = 0 (25)

where

∆(λ) = λIp −A0 −
∞
∑

k=1

e−λkτAk (26)

is the characteristic matrix [33]. In (26), Ip is the identity

matrix of order p. 2

The solutions of (25) are called the characteristic roots or

spectrum, similar to the finite-dimensional case (i.e., the case

for which Ak = 0, ∀k = 1, . . . ,∞ ). As for the finite-

dimensional case the stability of (3) can be defined based on

the sign of the roots of (25), i.e., the stationary point is stable

if all roots have negative real part, and unstable if there exists

at least one eigenvalue with positive real part.

Equation (25) is transcendental and, hence, shows infinitely

many roots. In general, the explicit solution of (25) is not

known and only approximated numerical solutions of a subset

of the roots of (25) can be found. The Chebyshev discretization

method has proved to be accurate for large systems [30]. For

this reason, the Chebyshev discretization discussed in the next

section is the numerical method utilized for the case studies

presented in this paper.

Equation (26) has been determined for the single-delay case.

It is straightforward to generalize (26) for the multi-delay case.

Assuming that if (3) includes r delays, say τi, i = 1, 2, . . . , r,

(26) can be rewritten as:

∆(λ) = λIp −A0 −
r

∑

i=1

∞
∑

k=1

e−λkτiAi,k (27)

where Ai,k is the matrix associated with delay kτi.

III. CHEBYSHEV DISCRETIZATION SCHEME

This approach consists in transforming the original problem

of computing the roots of a retarded functional differential

equations into a matrix eigenvalue problem of a PDE system

of infinite dimensions. No loss of information is involved in

this step. Then the dimension of the PDE is made tractable

using a discretization based on a finite element method.
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In this paper, we consider the Chebyshev discretization,

which has led to excellent results for large DDAEs (see, for

example, [30]). The discretized matrix is build as follows. Let

ΞN be the Chebyshev differentiation matrix of order N (see

the Appendix I) and define

M =

[

Ψ̂⊗ Ip

ÂN ÂN−1 . . . Â1 Â0

]

, (28)

where ⊗ indicate the tensor product or Kronecker product (see

Appendix II); Ip is the identity matrix of order p; and Ψ̂ is

a matrix composed of the first N − 1 rows of Ψ defined as

follows:

Ψ = −2ΞN/τ , (29)

and matrices Â0, . . . , ÂN are defined as follows.

Let us consider that the characteristic equation (26) is

truncated at the first s terms, i.e., k = 1, 2, . . . , s. Hence, the

matrices Ak in the sum is associated with delay τk = kτ , with

τ1 < τ2 < · · · < τs−1 < τs. Let us also assume the general

case for which s 6= N , i.e., the point of the Chebyshev grid are

not the same as the number of matrices Ak. This assumption

will allow generalize the discussion given in this section to

the multi-delay case of (27).

The Chebyshev grid corresponds to a delay θj = (N −
j)∆τ , with j = 1, 2, . . . , N and ∆τ = τs/(N − 1). Hence,

j = 1 corresponds to the state matrix As, which corresponds

to the maximum delay τs = s τ ; and j = N is taken by the

non-delayed state matrix A0. If a delay τk = θj for some

j = 2, . . . , N −1, then the correspondent matrix Ak takes the

position j in the grid. However, in general, the delays of the

system will not match the points of the grid. In this case, a

linear interpolation is considered in this paper, as follows. Let

the time delay τk, k 6= j, satisfy the condition:

θj < τk < θj+1 . (30)

Then, the matrices that will be added to the positions j and

j + 1 are, respectively:

Âj,k =
τk − θj
∆τ

Ak , Âj+1,k =
θj+1 − τk

∆τ
Ak . (31)

Then, the resulting matrix of each point j of the grid is

computed as the sum of the contributions of each delay that

overlaps that point:

Âj =
∑

k∈Ωk

Âj,k , (32)

where Ωk is the set of delays τk that satisfies (30). Other more

sophisticated interpolation schemes can be used. For example,

a Lagrange polynomial interpolation is implemented in [34].

The eigenvalues of M are an approximated spectrum of

(25). As it can be expected, the number of points N of the

grid affects the precision and the computational burden of the

method, as it is further discussed in the case study.

The matrix M is the discretization of a set of PDEs where

the continuum is represented by the interval ξ ∈ [−τmax, 0].
The continuum is discretized along a grid of N points and

the position of such points are defined by the Chebyshev

polynomial interpolation.

Figure 1 illustrates the Chebyshev discretization approach

through a pictorial representation of matrix M . Note that, by

construction, τs = θ1 always holds. The other delays, however,

might not match exactly the nodes of the grid.

−θ1 −θ2 −θ3 −θN−2 −θN−1 0

−τs −τs−1 −τ1−τ2

1

1 2

2

N

N

...

. . .

Â0Â2 Â1Â
N

Â
N−1

Â
N−2

p × p

Fig. 1. Representation of the Chebyshev discretization for a system with s
delays τ1 < τ2 < · · · < τs−1 < τs. In the general case, the delays do not
match exactly the grid and, thus, an interpolation between consecutive nodes
of the grid is required.

In practice, N cannot be very large, as the size of M

would prevent applying any numerical technique to compute

the eigenvalues. And, clearly, it is impossible to impose

N → ∞. Hence, (26) must be truncated at a certain s, for

s sufficiently big to allow properly estimate the spectrum of

(26) and sufficiently small to make tractable the solution of

the eigenvalue problem. The characteristic matrix that can be

evaluated is thus:

∆(λ) ≈ λIp −A0 −
s

∑

k=1

e−λkτAk (33)

for some finite value of s.

The multi-delay case of characteristic equation (27) can be

treated just in the same way as the single-delay case above.

In this case, the matrices of (27) are A0 (corresponding to the

null delay) and r sets, each one composed of s matrices Ai,k,

with i = 1, 2, . . . , r and k = 1, 2, . . . , s. The delays associated

with these matrices can be arranged in a sequence of r·s terms,

corresponding to r · s sorted delays, i.e., τ1 < τ2 < · · · <
τr·s. Then the r · s matrices can be accommodated into the

Chebyshev grid as discussed above. The resulting truncated

characteristic equation of a multi-delay case is as follows

∆(λ) ≈ λIp −A0 −
r

∑

i=1

s
∑

k=1

e−λkτiAi,k (34)

for some finite value of s.
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IV. APPLICATIONS

This section illustrates applications of the formula deduced

in the previous section to neutral-type hybrid systems (Subsec-

tion IV-A) as well as to a power system model with inclusion

of long transmission lines (Subsection IV-B).

A. Neutral-Type Time-Delay Control Systems

In this section, we illustrate the small-signal stability anal-

ysis discussed above through two simple control systems that

were originally proposed in [35]. These are examples of hybrid

systems that include both continuous and discrete variables.

The latter can be reformulated as delayed variables, where the

delays are the sampling time of the original discrete variables,

as discussed, for example, in [36]. The two systems considered

in this subsection are linear and thus allow a straightforward

application of (7). These examples are also utilized in the first

two case studies included in Section V.

1) DDAE Example 1: Let us assume the following single-

delay linear system:

(y(t)−K22y(t− τ))′ = K11y(t) +K12y(t− τ) . (35)

If we set x(t) = y(t)−K22y(t−τ), we obtain the following

DDAE system:

x′ = K11x+ (K11K22 +K12)yd (36)

0p,1 = x− y +K22yd .

where:

f
x
= K11 , f

xd
= 0p,p ,

f
y
= 0p,q , f

yd
= K11K22 +K12 ,

g
x
= Ip , g

xd
= 0p,q ,

g
y
= −Ip , g

yd
= K22 ,

and, according to the notation in (11):

A = Ip , B = 0p,p , (37)

C = K22 , D = K22 ,

E = K11K22 +K12 .

Then A0, A1 and Ak, k ≥ 2, in (8)-(10) take the form

A0 = K11 , (38)

A1 = K11K22 +K12 ,

Ak = (K11K22 +K12)(K22)
k−1 , k ≥ 2 .

2) DDAE Example 2: Assume the following single-delay

linear system, which is again taken from [35]:

x′(t) = K11x(t) +K12y(t) , (39)

y(t) = K21x(t) +K22y(t− h) ,

or, equivalently, using the formulation of (3):

x′ = K11x+K12y , (40)

0p,1 = K21x− y +K22yd .

where

f
x
= K11 , f

xd
= 0p,p ,

f
y
= K12 , f

yd
= 0p,q ,

g
x
= K21 , g

xd
= 0q,p ,

g
y
= −Ip , g

yd
= K22 ,

and according to the notation in (11):

A = K21 , B = 0p,p , (41)

C = K22 , D = K22K21 ,

E = K12K22 .

Then A0, A1 and Ak, k ≥ 2 in (8)-(10) take the form:

A0 = K11 +K12K21 , (42)

A1 = K12K22K21 ,

Ak = K12(K22)
kK21 , k ≥ 2 .

According to (12), the series converges if and only if

ρ(K22) < 1.

B. Power Systems with Long Transmission Lines

In this section, we consider the small-signal stability of a

power system model with inclusion of transmission line time

delays. Long transmission lines are best modelled through

a continuum, which leads to the well-known set of partial

differential equations:

∂v(ℓ, t)

∂ℓ
= Ri(ℓ, t) + L

∂i(ℓ, t)

∂t
(43)

∂i(ℓ, t)

∂ℓ
= Gv(ℓ, t) + C

∂v(ℓ, t)

∂t

where R, L, C and G are the resistance, inductance, capaci-

tance and conductance per unit length, respectively.

Equations (43) along with the conditions:

v(0, t) = vi(t), v(ℓij , t) = vj(t) (44)

i(0, t) = ii(t), i(ℓij , t) = ij(t) = −ii(t)

where ℓij is the total length of the line, define a boundary value

problem whose general solution is too complex to be used for

systems with hundreds of lines. Thus, some simplifications are

required.

The first commonly accepted assumption is to use fast

balanced time-varying phasors. The boundary value problem

becomes:

∂v̄(ℓ, t)

∂ℓ
= Rī(ℓ, t) + L

∂ī(ℓ, t)

∂t
+ jω0Lī(ℓ, t) (45)

∂ī(ℓ, t)

∂ℓ
= Gv̄(ℓ, t) + C

∂v̄(ℓ, t)

∂t
+ jω0Cv̄(ℓ, t)

v̄(0, t) = v̄i(t), v̄(ℓij , t) = v̄j(t)

ī(0, t) = īi(t), ī(ℓij , t) = īj(t)

where ω0 is the synchronous pulsation.

Assuming G ≈ 0, the boundary value problem (45) has an

explicit solution [12]. Let define the following quantities:

• Characteristic admittance Yc =
√

C/L.
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• Time delay (or travelling time) τij = ℓij
√
LC, i.e., the

time required by a wave to pass through the line at the

wave speed 1/
√
LC.

• Phase shift βij = ω0τij and attenuation factor αij =
Rℓij
2 Yc.

Then, (45) has the solution:

0 =− īi(t) + īi(t− 2τij)e
−2(αij+jβij) − Ycw̄i(t) (46)

+ 2Ycw̄j(t− τij)e
−(αij+jβij)

− Ycw̄i(t− 2τij)e
−(αij+jβij)

0 =− īj(t) + īj(t− 2τij)e
−2(αij+jβij) − Ycw̄j(t)

+ 2Ycw̄i(t− τij)e
−(αij+jβij)

− Ycw̄j(t− 2τij)e
−2(αij+jβij)

where w̄i and w̄j satisfy the following set of complex differ-

ential equations:

w̄′
i − v̄′i = −jω0w̄i −

R

2L
w̄i + jω0v̄i (47)

w̄′
j − v̄′j = −jω0w̄j −

R

2L
w̄j + jω0v̄j

If R ≈ 0 (e.g., loss-less line), equations (46) become:

0 =− īi(t) + īi(t− 2τij)e
−j2βij − Ycv̄i(t) (48)

+ 2Ycv̄j(t− τij)e
−jβij − Ycv̄i(t− 2τij)e

−j2βij

0 =− īj(t) + īj(t− 2τij)e
−j2βij − Ycv̄j(t)

+ 2Yij v̄i(t− τij)e
−jβij − Ycv̄j(t− 2τij)e

−j2βij

Equations (46)-(47) or (48) are a set of functional differ-

ential equations with constant delays. These equations lead

to power system models in the form of (3). In particular,

assuming that synchronous machines and primary regulators

are modelled using conventional delay-free dynamic equations

(see, for example, [37]), one obtains:

• Equations (46)-(47) lead to:

x′ = f(x,y) (49)

0q,1 = g(x,y,xd,yd).

where delayed quantities are transmission line transient

voltages xd = [wre,d,wim,d], with w̄ = wre+ jwim and

currents yd = [ire,d, iim,d], with ī = ire + jiim.

• Equations (48) lead to:

x′ = f(x,y) (50)

0q,1 = g(x,y,yd).

where delayed quantities are only transmission line cur-

rents yd = [ire,d, iim,d].

Note that, in (49) and (50) the complex expressions (46)-(47)

and (48), respectively, are split into their real and imaginary

parts to obtain a set of real equations.

From observing (49), we have, for each delay τij :

f
x
6= 0p,p , f

xd,ij
= 0p,p , f

y
6= 0p,q , f

yd,ij
= 0p,q ,

g
x
6= 0q,p , g

xd,ij
6= 0q,p , g

y
6= 0q,q , g

yd,ij
6= 0q,q .

and, substituting in (10), we obtain:

Ak,ij =f
y
Ck−1

ij Dij , k ≥ 1 , ij ∈ Ωij . (51)

where Ωij is the set of transmission lines. Hence, this is a

multi-delay system – delays τij are as many as the trans-

mission lines – and each delay generates an infinite series

of non-null matrices Ak,ij associated to delays kτij , k ≥ 1.

Such matrices converge to 0p,p if and only if ρ(Cij) < 1 for

ij ∈ Ωij .

Loss-less line model (50) shows same Jacobian matrices as

(49) but for g
xd,ij

= 0q,p, which leads to:

Ak,ij =f
y
Ck

ijAij , k ≥ 1 , ij ∈ Ωij . (52)

To complete this section, we provide a proposition and

a corollary and their proofs regarding the spectral radii of

models (49) and (50), respectively, discussed above.

Proposition 2. The spectral radius of transmission lines

modelled with (46)-(47) satisfy the condition

ρ(Cij) = e−2αij . (53)

Proof of Proposition 2. Let us consider the structure of

equations (46)-(47) and their Jacobian matrices g
y

and g
yd

.

Current injections īi and īj are the only algebraic variables

in (46) and appear as instantaneous and as delayed quantities,

with delay 2τij . While instantaneous currents also appear in

other equations, at least in the current balances of networks

buses, delayed currents do not appear in any other equation

of the system. Let us assume that (46) are split into their real

and imaginary parts, and write Jacobian matrices g
y

and g
yd

by separating the terms depending on the real and imaginary

parts of īi and īj , respectively. Then, we obtain:

g
y
=

[

Jq−4,q−4 Jq−4,4

04,q−4 −I4

]

(54)

g
yd

=

[

0q−4,q−4 0q−4,4

04,q−4 H4

]

(55)

where Jq−4,q−4 and J4,q−4 are sparse, non-null matrices and

H4 =

[

H2 02,2

02,2 H2

]

(56)

where

H2 =

[

e−2αij cos(2βij) e−2αij sin(2βij)

−e−2αij sin(2βij) e−2αij cos(2βij)

]

(57)

Given the structure of the Jacobian matrices above, we have:

Cij = −g−1
y

g
yd

=

[

0q−4,q−4 Ĵq−4,4

04,q−4 H4

]

(58)

where Ĵq−4,4 is a sparse, non-null matrix. Hence Cij has q−4
zero eigenvalues and two pairs of complex eigenvalues equal

to e−2(αij±jβij). The proof is complete. 2

Corollary 1. The spectral radius of transmission lines

modelled with (48) satisfies the condition ρ(Cij) = 1.

Proof of Corollary 1. Loss-less transmission lines have

R = 0, and, by the definition of the attenuation factor, αij = 0.

Hence, using Proposition 2, we obtain ρ(Cij) = e0. The proof

is complete. 2
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V. CASE STUDIES

In this section, we utilize the DDAE systems discussed

above to illustrate, through numerical examples, the impact

on small-signal stability of the series given in (7). With this

aim, we consider four relevant relevant cases: ρ(C) ≪ 1;

ρ(C) > 1; ρ(C) = 1; and ρ(C) < 1 with ρ(C) ≈ 1. The

first two examples are based on the control systems discussed

in Subsections IV-A.1 and IV-A.2, respectively, while the last

two examples are based on the power system models with

delay line models discussed in Subsection IV-B.

A. DDAE with ρ(C) < 1

In this subsection, we study the numerical appraisal of the

small-signal stability analysis of a DDAE system for which

ρ(Ak) < 1. With this aim, let us consider the DDAE system

(36) described in Subsection IV-A.1. We assume the following

parameters:

K11 =







−5 1 1

0 −5 1

1 0 −5






, K12 =







1 2 1

3 0 1

1 −1 2






,

K22 =







0 0.5 1

0.1 0.1 0

0 1 0






.

The equilibrium point (x,y) = (0p,1,0q,1) is stable for τ = 0.

The question is whether the system is stable for τ > 0. Let

us assume that τ = 0.005 s. Note that ρ(K22) = 0.279 < 1,

hence Ak satisfies condition (12) and converges to 0p,p for

k → ∞. The rightmost roots of (25) are thus expected to

converge to a constant value for sufficiently high values of k.

This fact is confirmed by the results shown in Fig. 2 that

depicts the three rightmost roots of (25). The eigenvalues

have been computed using N = 80 for the Chebyshev

discretization, which leads to a 120× 120 matrix M defined

in (28). Moreover, we have used (33) for s ∈ [2, 40]. Figure

2 indicates that, in this case, if s < 10, the stability margin

of the system, i.e., the distance of the rightmost eigenvalues

from the imaginary axis, as well as the dominant oscillation

mode can be overestimated. Finally, the rightmost eigenvalues

vary within a tolerance of less than 10−5 for s > 35.

B. DDAE with ρ(C) > 1

In this subsection, we consider the DDAE system described

by (40) discussed in Subsection IV-A.2 to illustrate the be-

haviour of the eigenvalues for an equilibrium point for which

ρ(Ak) > 1. We assume the following matrices:

K11 =







−20 0 10

−10 −25 0

10 1 −20






,K12 =







0.5 −1 −1

0.5 1 0

1 0 0.5






,

K21 =







0.5 0 1

1 1 0

0 0.5 1






,K22 =







0.9 0 1

1 0.6 0

0 −0.1 1






.
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Fig. 2. Three rightmost eigenvalues of (36) for τ = 0.005 s.

Note that ρ(K22) = 1.147 > 1, hence Ak will not converge

to 0p,p for k → ∞, so the impact on the system of the delay

increases as one increases the value of s in the truncated

characteristic matrix (33). For τ = 0, the equilibrium point

(x,y) = (0p,1,0q,1) is stable, but, since the eigenvalues

of K22 are positive, we expect that the system is actually

unstable for τ > 0. The real and imaginary parts of the

rightmost eigenvalue are depicted in Fig. 3. Simulations are

solved using τ = 0.001 s and N = 80 for the Chebyshev

discretization grid. The system instability becomes apparent

by properly increasing s, in this case for s ≥ 12. Clearly, the

value of s for which the instability of the system is revealed

depends on τ .

C. New England 39-bus System with Long Transmission Lines

In this subsection, the IEEE 39-bus system is utilized to

illustrate the effect of transmission line delays. Base case
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Fig. 3. Real and imaginary parts of the rightmost eigenvalues of (40) for
τ = 0.001 s.

TABLE I

LENGTHS, ATTENUATION FACTORS AND DELAYS OF FOUR TRANSMISSION

LINES OF THE NEW ENGLAND 39-BUS SYSTEM

Line i-j ℓij [km] αij [Np] e−αij e−2αij τij [ms]

1-2 276 0.0179 0.9822 0.9648 1.131

23-24 234 0.0152 0.9849 0.9700 0.962

25-26 216 0.0141 0.9860 0.9723 0.887

26-29 418 0.0271 0.9732 0.9472 1.713

dynamic data1 have been modified as follows: (i) machine

inertias are reduced by ten times; (ii) AVR amplifier control

gains are reduced by ten times; and (iii) no PSS controller is

included.

Table I indicates the four lines that are considered “long”

and their lengths. For all these lines, the following per unit-

length parameters are assumed: R = 0.037 Ω/km, X =
ω0L = 0.367 Ω/km, and B = ω0C = 4.518 µS/km. These

are typical data of 345 kV lines as given in [38] and lead

to an attenuation factor α̂ij = 0.00066 Np/km and phase

shift β̂ij = 0.00129 rad/km. The total attenuation factors

αij = α̂ij · ℓij , coefficients e−αij and time delays τij are

indicated in Table I.

We consider three cases:

• Standard lumped models of transmission lines, which

1Power flow and dynamic data of the New England 39-bus system can be
easily found on the internet. For example, data in PSS/E format are available
at: http://electrica.uc3m.es/pablole/new england.html.

TABLE II

STATISTICS OF THE THREE DYNAMIC MODELS OF THE NEW ENGLAND

39-BUS SYSTEM

DAE (1) DDAE (49) DDAE (50)

# of states, p 70 70 86

# of alg. vars, q 190 222 222

# of eigs., p ·N 70 700 860

# of delays - 51 204

lead to a conventional non-delayed DAE as in (1);2

• Dynamic delay models of the lines with attenuation, i.e.,

models (46)-(47), which lead to the DDAE as in (49);

• Delay loss-less line models (48), which lead to the DDAE

as in (50).

Since we assume four long lines, the system includes multiple

delays and r = 4. Then, to compute the truncated character-

istic equation (34), we have assumed s = 50. Hence, the total

number of terms in (34) are r ·s = 200. Finally, we have used

N = 10 to generate the Chebyshev grid. Statistics for the three

cases above are given in Table II. Note that the number of total

delays considered is not simply a multiple of s, as delays that

differs less than a given tolerance are merged into a single

delay and delays associated to Ak whose elements have a

maximum absolute value below a given threshold (10−18 in

the simulations solved for this case study) are neglected.

The spectral radii of each matrix Cij associated with each

delay are indicated in Table III. As expected, the lines with

attenuation show a spectral radius ρ < 1. On the other hand,

loss-lines have ρ = 1. This is thus a special case for which the

matrices Ak do not converge to 0p,p. Even if the series in (7)

does not converge, the values of matrices Ak are sufficiently

small not to concern the stability of the system. In the case of

line models with delay and attenuation, spectral radii satisfy

the condition ρ < 1, however, the attenuation is small, and

ρ ≈ 1, so the convergence of matrices Ak is slow. Also in

this case, the impact of Ak on the rightmost eigenvalues of

the system is negligible well before Ak vanishes. In this case

study, for s = 50, the error on the rightmost eigenvalues is

lower than 10−5. Finally, note that numerical results confirms

Proposition 2 given in Subsection IV-B. In fact, the values in

the fifth column of Table I and in the second column of Table

III are the same.

Table IV shows the 15 rightmost pairs of complex eigen-

values for the three cases above. Note that the impact of

line models is not negligible. The three models show the

same numbers of poorly damped oscillations modes, however,

the models with delays show, in general, a slightly lower

damping, in particular the case considering loss-less delay

2The lumped model of transmission lines is the standard π-circuit where
the series impedance and shunt admittance are evaluated based on per-unit
length parameters, as follows:

Z̄ij =
1

Yc

sinh(γ̄ijℓij), Ȳij = Yctanh(0.5γ̄ijℓij) ,

where

γ̄ =

√

R+ jω0L

G+ jω0C
.
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TABLE III

SPECTRAL RADII ρ(Cij) OF FOUR TRANSMISSION LINES OF THE NEW

ENGLAND 39-BUS SYSTEM

Line i-j Model (46)-(47) Model (48)

1-2 0.9648 1.0000

23-24 0.9700 1.0000

25-26 0.9723 1.0000

26-29 0.9472 1.0000

TABLE IV

15 RIGHTMOST COMPLEX PAIRS OF EIGENVALUES FOR THE NEW

ENGLAND 39-BUS SYSTEM AND DIFFERENT LINE MODELS

Lumped model Model (46)-(47) Model (48)

−0.1326± j14.250 −0.1209± j0.7791 −0.1314± j0.7290

−0.1505± j0.7320 −0.1529± j14.423 −0.1454± j15.017

−0.1851± j0.2378 −0.1765± j0.2383 −0.1810± j0.2379

−0.1909± j16.385 −0.2010± j0.3703 −0.1934± j0.3489

−0.2067± j0.3473 −0.2019± j0.3443 −0.1943± j0.5219

−0.2119± j0.3662 −0.2075± j16.547 −0.1971± j0.3724

−0.2262± j0.2149 −0.2079± j0.3311 −0.1990± j0.2169

−0.2293± j0.5186 −0.2105± j0.2167 −0.2050± j0.3264

−0.2306± j0.3343 −0.2120± j0.5240 −0.2127± j0.1967

−0.2405± j0.2293 −0.2191± j0.2323 −0.2130± j0.2307

−0.2501± j0.1802 −0.2282± j0.1909 −0.2277± j16.775

−0.2523± j0.4649 −0.2510± j0.4674 −0.2365± j20.883

−0.2810± j24.242 −0.2831± j24.396 −0.2507± j0.4665

−0.2842± j22.897 −0.2841± j22.659 −0.2910± j24.622

−0.3355± j20.643 −0.3186± j20.658 −0.2921± j22.639

line models. Note also that, without a proper small-signal

stability analysis, the only way to determine the behaviour

of the system would be a time domain integration, which, for

DDAEs, is particularly involved as it requires computationally

demanding implicit integration techniques, e.g., Lobatto IIIC.

The interested reader can find more details on the numerical

integration of DDAEs in [25].

VI. CONCLUSIONS

The paper provides a derivation of the characteristic equa-

tion of DDAEs. This is found to be a series of infinite terms as-

sociated with infinite delays, which are multiples of the delay

of the DDAE. The condition for the convergence of this series

are also provided in the paper. Then the paper discusses the

convergence condition of the characteristic equation for power

system models with inclusion of long transmission lines and

derives an explicit formula. The paper also provides a numeri-

cal appraisals based on a Chebyshev discretization methods of

the small-signal stability analysis based on truncated version of

the characteristic equation previously determined and defines

how the convergence of the series impact on the stability of

neutral-type hybrid control and power systems.

Future work will focus on the evaluation of the small-signal

stability analysis of hybrid systems combining continuous

and discrete (e.g., digital) variables and, in particular, on the

dynamic interaction of communication and power systems.

APPENDIX I

CHEBYSHEV DIFFERENTIATION MATRIX

Chebyshev’s differentiation matrix ΞN of dimensions N +
1 × N + 1 is defined as follows. Firstly, one has to define

N + 1 Chebyshev nodes, i.e., the interpolation points on the

normalized interval [−1, 1]:

xk = cos

(

kπ

N

)

, k = 0, . . . , N. (59)

Then, the element (i, j) differentiation matrix ΞN indexed

from 0 to N is defined as [39]:

Ξ(i,j) =























ξi(−1)i+j

ξj(xi−xj)
, i 6= j

− 1
2

xi

1−x2
i

, i = j 6= 1, N − 1
2N2+1

6 , i = j = 0

− 2N2+1
6 , i = j = N

(60)

where ξ0 = ξN = 2 and ξ2 = · · · = ξN−1 = 1. For example,

Ξ1 and Ξ2 are:

Ξ1 =

[

1
2 − 1

2
1
2 − 1

2

]

, with x0 = 1, x1 = −1 .

and

Ξ2 =





3
2 −2 1

2
1
2 0 − 1

2

− 1
2 2 − 3

2



 , with x0 = 1, x1 = 0, x2 = −1 .

APPENDIX II

KRONECKER PRODUCT

If A is a m × n matrix and B is a p × q matrix, then

Kronecker product A⊗B is an mp× nq block matrix [40],

as follows:

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






(61)

For example, let A =

[

1 2 3
3 2 1

]

and B =

[

2 1
2 3

]

.

Then:

A⊗B =

[

B 2B 3B
2B 2B B

]

=









2 1 4 2 6 3
2 3 4 6 6 9
6 3 4 2 2 1
6 9 4 6 2 3









Observe that A⊗B 6= B ⊗A.
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