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Abstract—This paper proposes a new power flow (PF) for-
mulation for electrical distribution systems using the current
injection method and applying the Laurent series expansion.
Two solution algorithms are proposed: a Newton-like iterative
procedure and a fixed-point iteration based on the successive
approximation method (SAM). The convergence analysis of the
SAM is proven via the Banach fixed-point theorem, ensuring
numerical stability, the uniqueness of the solution, and indepen-
dence on the initializing point. Numerical results are obtained for
both proposed algorithms and compared to well-known PF for-
mulations considering their rate of convergence, computational
time, and numerical stability. Tests are performed for different
branch R/X ratios, loading conditions, and initialization points
in balanced and unbalanced networks with radial and weakly-
meshed topologies. Results show that the SAM is computationally
more efficient than the compared PFs, being more than ten times
faster than the backward-forward sweep algorithm.

Index Terms—Current injection power flow, Laurent series,
fixed-point iteration, three-phase systems.

I. INTRODUCTION

A. Motivation

It is well-known that specific system characteristics might

create numerical issues for certain PF formulations, decreasing

their convergence speed or even causing them to diverge [1].

For instance, high R/X branch ratios, the loading condition,

and poor initialization have been identified as potential rea-

sons for numerical instabilities in several formulations, com-

monly known as ill-conditioned cases [2]. Electric distribution

systems are characterized by high R/X branch ratios and

unbalanced operation in medium/low voltage levels, making

them good candidates to present numerical instabilities. Hence,

although it is a well-studied subject, finding scalable, compu-

tationally efficient, and numerically stable PF algorithms for

distribution networks is still of interest to the power systems

community.

B. Literature Review

Classical PF algorithms in transmission systems rely mainly

on the Newton-Raphson (NR) method or its decoupled ver-

sions [3]. However, some particularities of distribution sys-

tems, such as their radiality, unbalanced operation, mixed

loading models, and the number of nodes and branches, mo-

tivate the formulation of specific solution methods exploding

such characteristics, e.g., the backward-forward sweep method

(BFS) [4]. The convergence of the BFS for different load

models has been studied in [1], where it was found that it

is related to the magnitude of the equivalent line impedance

and load admittance, but it is not highly affected by the load

power factor. Similarly, the current injection method (CIM)

was proposed in [5] for unbalanced three-phase networks using

a Newton-like scheme. Results showed that the CIM converges

in fewer iterations than the BFS, especially under heavy-

load conditions and is practical for ill-conditioned cases [6].

Furthermore, the Jacobian matrix presents some interesting

properties over the classical NR formulation, such as a reduced

number of elements that need to be updated. Substantial work

has been done towards solving ill-conditioned cases, such

as in [2], [7] using the implicit continuous Newton method

(ICN), in [8] using an NR with step-size optimization (Braz),

in [9] using a second-order approximation and the Levenberg-

Marquardt (LM) method, or using Runge-Kutta formulas as

in [10].

The Laurent series expansion is a representation of a

complex function as a power series and can be seen as an

extension of Taylor series at singularity points [11]. The use

of Laurent series expansions for solving the PF problem was

first introduced in [12] to obtain a linear non-iterative solution

using the CIM. Still, it approximates over a single operating

point (1∠0), meaning its accuracy might be affected by the

loading condition and branches R/X ratio. More recently,

authors in [13] proposed an iterative formulation using Laurent

series expansion to linearize the product of variables, showing

computational improvements over the classical NR method

and equivalent results to the BFS. Nevertheless, it was only

tested in one-line equivalent networks, disregarding different

load models.

A recent class of PF formulations based on fixed-point

iterations have been proposed in the literature. A linear ap-

proximation is introduced in [14] where the authors have

derived a sufficient condition for the existence of a practical

solution to the PF in balanced distribution systems using the

Banach fixed point theorem. Authors in [15] extended these

findings to unbalanced three-phase networks using the Z-bus

iterative method providing four conditions that guarantee the

convergence to a unique solution. Multiphase systems are dealt

with in [16], where a condition for the non-singularity of the

load-flow Jacobian is presented. In [17], the authors proposed
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a successive approximation method based on a modification of

the Gauss-Seidel PF for radial and meshed networks showing

computational improvements over the compared algorithms.

A fixed-point iteration is described in [18] to solve the PF

problem iteratively without matrix inversions. However, the

formulation is suitable only for single-line equivalent net-

works, and the rate of convergence is low, requiring almost 100

iterations to achieve mismatches of 0.001 pu. Finally, authors

in [19] proposed a derivative-free fixed-point method based

on the upper-triangular-based PF with better convergence

properties; however, it only works for radial networks.

C. Contributions

This paper proposes a novel PF formulation for electrical

distribution systems using the CIM and applying the Laurent

series expansion. Since it is based on the admittance matrix

and nodal current injections, the proposed formulation can

cope with radial and weakly-meshed topologies. This paper

proposes two solution algorithms: a Newton-like iterative

procedure named direct solution (DS) and a successive approx-

imation method (SAM). The convergence analysis of the SAM

is proven via the Banach fixed-point theorem, ensuring numer-

ical stability and the uniqueness of the solution regardless of

the initializing point. Compared to [15] or [16], this paper ex-

tends the solution to weakly-meshed networks and introduces

an inductive physical interpretation to the mathematical proof

by relating the existence and uniqueness of the PF solution

to the physical operating point in terms of static voltage

stability. Results are obtained for both proposed algorithms

and compared to well-known PF algorithms in terms of rate

of convergence, computational time, and numerical stability.

Several tests are performed considering different branch R/X
ratios, loading conditions, and initialization points. Finally, the

scalability of the formulations is assessed using balanced and

unbalanced networks ranging from 33 to 3,120 buses.

II. CURRENT INJECTION POWER FLOW METHOD

Consider a system with a set of nodes represented as ΩB.

Y is the three-phase admittance submatrix of size ΩB × ΩB,

composed by constant voltage nodes (s) and load nodes (d),

such as s, d ⊂ ΩB as:

where Y
T
sd = Y ds. The relationship between voltages and

currents is expressed using Kirchhoff’s laws as:
[

Is

−Id

]

=

[

Y ss Y sd

Y ds Y dd

] [

V s

V d

]

(1)

where vectors Is and Id represent three-phase complex nodal

current injections, while V s and V d the three-phase complex

components of the nodal voltages.

It must be noticed that V s =
[

1, a2, a
]

, for all constant

voltage nodes, unless specifically stated, with a = ej2π/3

hereinafter. Additionally, the current injection at load nodes

(Id) is a function of the complex power injection Sd, ac-

counting for loads and renewable energy resources at each bus

directly since they are considered as constant power injections.

Hence, the system of equations has an equal number of

equations and unknowns but is nonlinear due to (2b):

diag (V ∗
s)

−1
S

∗
s = Y ssV s + Y sdV d (2a)

−diag (V ∗
d)

−1
S

∗
d = Y dsV s + Y ddV d (2b)

where diag(·) represents a squared diagonal matrix.

Let Id =
[

irei,φ + j iimi,φ

]

be the vector containing the current

injection at each load node i ∈ d and phase φ ∈ ΩΦ. Similarly,

take V d =
[

vrei,φ + j vimi,φ

]

, and Sn = [Pi,φ + jQi,φ], repre-

senting the voltage and nominal complex power, respectively.

In order to consider the ZIP load model, nodal loads are

defined as:

Sd=
(

diag (αP )+diag (αIV d)+diag
(

αZ |V d|
2
))

Sn (3)

Hence, considering that Sd = V dI
∗
d, nodal currents’

components are expressed as:

Id=
(

αP diag (V ∗
d)

−1
+diag (αI) + αZdiag (V d)

)

S
∗
n (4)

where αZ , αI , and αP represent the ZIP coefficients per load

node and phase. Notice that the ZIP model implemented has

a constant-current-phasor representation as in [12]; thus, it is

linear for constant current and constant impedance loads in the

presented formulation. Hence, the proposed formulation is not

an approximation to the traditional PF, and the nonlinearity is

introduced by the constant power load component.

III. LINEAR APPROXIMATION WITH LAURENT SERIES

A linear expression for (4) could be obtained using first-

order Taylor series expansion as in [5] since it satisfies the

Cauchy-Riemann equations. However, the proposed approach

uses Laurent series to approximate the complex domain since

it provides a more general and condensed representation. A

Laurent series is a complex-differentiable function on the

annulus r1 < |z − z0| < r2 of the form:

f(z) =

∞
∑

n=0

an (z − z0)
n
+

∞
∑

n=1

bn
(z − z0)

n (5)

where z is a complex number, while an and bn are defined

by a line integral generalizing the Cauchy’s integral formula,

and z0 is a complex number located at the center of the

annulus [11]. In particular, it is said that the first component

of f(z) converges to an analytic solution for |z − z0| < r2,

while the second one converges to an analytic solution for

|z − z0| > r1. Based on these conditions, we propose the

following:

Proposition 1. The nonlinearity introduced by the expres-

sion f(Vi) = (Vi)
−1

at a node i ∈ d, is approximated

around V0 ∈ C using Laurent series expansion assuming

Vi = V0 −∆V , as f(Vi) ≈ 2/V0 − Vi/V
02.
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Fig. 1. Graphical representation of Assumption 1.

Proof. Function f(∆V ) can be expressed with the following

power series, with ξ = ‖∆V ‖ /
∥

∥V0
∥

∥

f(∆V )=
1

V0 −∆V
=























∞
∑

n=0

−V0n

∆V n+1 for ξ > 1.0

∞
∑

n=1

∆V
n−1

V0n for ξ < 1.0

(6)

Assumption 1. Voltages are expected to exist within a close

boundary, as depicted in Fig. 1. Thus, after assuming ξ < 1.0,

f(∆V ) can be rewritten as

f(∆V ) =
1

V0
+

∆V

V02
+O (7)

where O represents the high order terms. Hence, the first order

approximation (n ≤ 2) in terms of the nodal voltage reads

f(Vi) ≈
2

V0
−

Vi

V02
. (8)

By applying Proposition 1, nodal currents at a node i ∈ d
are approximated as:

Ii,φ =

[

αP,i,φ

(

2V0
i,φ

−1
− V0

i,φ

−2
V i,φ

)∗

+

αI,i,φ + αZ,i,φV i,φ

]

S
∗
n,i. (9)

It should be pointed out that (9) is a general approximation

for any operational point V0 =
[

V0
i,φ

]

. Proposition 1 can be

extended to a three-phase representation; thus, it can be seen

that a particular case with V0
i,φ =

[

1, a2, a
]

∀i ∈ d is equiva-

lent to the linear non-iterative approximation proposed in [12].

IV. PROPOSED ALGORITHMS

The following system of linear equations is obtained after

substituting (9) in (2):

AV d
∗ −BV d = C +D (10)

where

A = diag
(

αP ⊙ V0∗−2
⊙ S

∗
n

)

(11a)

B = diag (αZ ⊙ S
∗
n) + Y dd (11b)

C = Y dsV s + αI ⊙ S
∗
n (11c)

D = 2αP ⊙ V0∗−1
⊙ S

∗
n (11d)

Algorithm 1 Direct Solution (DS)

1: Initialize k = 0, tol > ǫ
2: Initialize V0

i,φ =
[

1, a2, a
]

∀ i ∈ d
3: Compute B and C

4: while tol ≥ ǫ and k ≤ K:

5: Compute A
(k), and D

(k)

6: Solve for V
(k+1)
d :





M
(k)
11 M

(k)
12

M
(k)
21 M

(k)
22









V
re

d

(k+1)

V
im

d

(k+1)



=







C
re+D

re
(k)

C
im+D

im
(k)







7: −S
∗(k+1)
d

= diag
(

V
∗(k+1)
d

)(

Y dsV s + Y ddV
(k+1)
d

)

8: tol←− max
∥

∥

∥S
∗

d − S
∗(k+1)
d

∥

∥

∥

9: V0
←− V

(k+1)
d

10: k ←− k + 1

11: Compute S
∗
s = diag (V ∗

s)
(

Y ssV s + Y sdV
(k)
d

)

12: Return: V
(k)
d , Ss

with ⊙ representing the Hadamard product, and V0∗−1
repre-

senting the element-wise inverse of vector V0 conjugate. This

paper proposes two alternatives for solving the system of linear

equations in (10):

A. Direct Solution (DS)

The complex expression in (10) can be rewritten as:
[

M11 M12

M21 M22

](

V
re

d

V
im

d

)

=

(

C
re+D

re

C
im+D

im

)

(12)

where superscripts re and im stand for the real

and imaginary components of each matrix. Notice

that matrices M11 = A
re−Bre, M12 = A

im+B
im,

M21 = A
im−Bim, and M22 = −Are−Bre.

An iterative method to solve the linear three-phase PF

problem in (10) is given in Algorithm 1 assuming flat-start.

A similar procedure can be performed for balanced single-

line equivalents. It must be pointed out that B and C do not

change within the iterative process; hence, only A
(k) and D

(k)

need to be updated. Thus, the algorithm converges in only one

iteration if αP = 0. Moreover, similar to the Jacobian in [5],

only the diagonals of the submatrices in M need to be updated

at each iteration. In fact, note that the proposed algorithm is

a compacted, simpler form of the one introduced in [5].

B. Successive Approximation Method (SAM)

The system of linear equations in (10) can be rearranged

as:

V d = B
−1 (AV d

∗ −C −D) . (13)

The set of equations in (13) presents a typical structure

to apply the Banach fixed-point theorem for solving roots in

nonlinear problems. Notice that (13) is a function of the form

V
(k+1)
d = f

(

V
(k)
d

)

, (14)
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Algorithm 2 Successive Approximation Method (SAM)

1: Initialize k = 0, tol > ǫ
2: Initialize V0

i,φ =
[

1, a2, a
]

∀ i ∈ d

3: Compute B
−1 and C

4: while tol ≥ ǫ and k ≤ K:

5: Compute A
(k), and D

(k)

6: Solve for V
(k+1)
d :

V
(k+1)
d = B

−1
(

A
(k)V∗0

d −C −D
(k)
)

7: −S
∗(k+1)
d = diag

(

V
∗(k+1)
d

)(

Y dsV s + Y ddV
(k+1)
d

)

8: tol←− max
∥

∥

∥
S

∗
d − S

∗(k+1)
d

∥

∥

∥

9: V0
d ←− V

(k+1)
d

10: k ←− k + 1
11: Compute S

∗
s = diag (V ∗

s)
(

Y ssV s + Y sdV
(k)
d

)

12: Return: V
(k)
d , Ss

leading to

V
(k+1)
d = B

−1
(

A
(k)

V
∗(k)
d −C −D

(k)
)

. (15)

An iterative method to solve the PF using the SAM is shown

in Algorithm 2. It should be highlighted that the successive

solution of (15) requires a single matrix inversion, whose

values do not change in the iterative process. Obtaining B
−1

by direct inversion can be a challenge in large networks;

however, efficient building algorithms can be used [20]. More-

over, B
−1 can be factorized (e.g., LDU), stored, and only

updated in case of topological changes or demand variations

in constant impedance loads. This particularity presents a

potential computational advantage over other methods that rely

on matrix inversions within the iterative process to obtain the

result of the PF, e.g., NR, Braz, or DS. It is also noteworthy

that the main difference with the BFS is that the SAM

uses the current injection method instead of branch current

flows. This difference allows directly considering weakly-

meshed networks and not relying on a specific node sequence

enumeration. The code implementations of the DS and SAM

algorithms for balanced and unbalanced networks can be found

in [21].

Furthermore, it can be demonstrated that (15) is a contrac-

tion mapping. Hence, the convergence of Algorithm 2 can be

analyzed using the Banach fixed-point theorem as in [17].

Let Ud represent the exact solution of the PF, i.e., a vector

containing the voltages of the demand nodes at all phases,

and v the minimum voltage magnitude, i.e., v = mini∈d ‖ui‖
with ui ∈ Ud.

Proposition 2. Algorithm 2 is a contraction mapping of the

form V
(k+1)
d = f

(

V
(k)
d

)

; hence, it is stable and has unique

solution for any initial value V
0
d if

∥

∥

∥f
(

V
(k)
d

)

− f (Ud)
∥

∥

∥ ≤ η
∥

∥

∥V
(k+1)
d

− Ud

∥

∥

∥ (16)

where

η = max

{
∥

∥B
−1 diag (αP ⊙ S

∗

n)
∥

∥

v2

}

, 0 ≤ η < 1. (17)

Proof. Based on the Banach fixed-point theorem, the fixed-

point Ud satisfying f (Ud) = Ud exists and is unique if f (Ud)
is a contraction mapping on Ud; thus:

∥

∥

∥
V

(k+1)
d

− Ud

∥

∥

∥
=

∥

∥

∥
f
(

V
(k)
d

)

− f (Ud)
∥

∥

∥

=
∥

∥

∥
B

−1
A

(k)
(

V
∗(k)
d − U

∗
d

)∥

∥

∥
(18)

since A
(k) is a diagonal matrix, we have

∥

∥

∥
V

(k+1)
d

− Ud

∥

∥

∥
≤

∥

∥B
−1 diag (αP ⊙ S

∗

n)
∥

∥

∥

∥

∥
(V

∗(k)
d

∥

∥

∥

2

∥

∥

∥
V

∗(k)
i

− U
∗

i

∥

∥

∥

i∈d

≤ η
∥

∥

∥
V

∗(k)
d

− U
∗

d

∥

∥

∥
(19)

hence, if the solution exists, then

η = max

{

∥

∥B
−1 diag (αP ⊙ S

∗
n)
∥

∥

‖Ud‖
2

}

with 0 ≤ η < 1.

(20)

Thus, two conditions need to be satisfied v > 0 and
∥

∥B
−1 diag (αP ⊙ S

∗
n)
∥

∥ < v2.

Assumption 2. Matrix B is full rank, and is hence invert-

ible [22]; thus, Z = B
−1, where Zij is the impedance

between nodes ij.

Assuming αP i = 1 and defining ZLi = v2/ ‖S∗
n‖i

as the load impedance at each node using the lowest volt-

age of the system. Considering that Zii ≥ Zij , then

η ≈ max
i∈d
{‖Zii/ZLi‖}. The second condition can be rewrit-

ten as

‖Zii‖ < ‖ZLi‖ , ∀ i ∈ d. (21)

The first condition (v > 0) can be ensured since voltage

magnitudes are greater than zero in normal operation, implying

that the PF equations can be solved. The second condition

can also be satisfied since Zii is the Thevenin impedance as

seen from node i, while ZLi denotes the maximum loading

impedance at node i for a given operating point. According to

the maximum power transfer theorem, the maximum loading

impedance at a node is lower than its Thevenin impedance

(except at the maximum loading point where they are numer-

ically identical [23]). Since both conditions can be satisfied

in normal operation, then f (V d) is a contraction mapping on

V d which completes the proof.

Notice that Proposition 2 is coherent with the conditions on

the existence and uniqueness of PF solutions in distribution

systems described in [15], [24]. It should also be remarked that

smaller values of η mean higher rates of convergence. In this

sense, η = 0 implies that αP = 0, indicating that the solution

is analytical if loads are modeled as a combination of constant

current and constant impedances. Instead, notice that (10) can

also be rearranged as V
(k+1)∗
d

= A
(k)−1

(

BV
(k)
d

+C +D
(k)

)

,
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which would not require inverting the admittance matrix.

However, using (16), it can be shown that it is not useful

since it is not a contraction mapping on V d, i.e., η > 1 in

normal operation.

V. TESTS AND RESULTS

A. Balanced systems

A set of tests are performed in two radial, medium-voltage

balanced systems with 34 and 136 buses, whose topology and

nominal loading can be found in [25], and [26], respectively.

Results are compared with traditional algorithms, namely, NR,

BFS, Levenberg-Marquardt method (LM), NR with step size

optimization (Braz), Runge-Kutta 4th order method (RK4),

and the implicit continuous Newton method (ICN), all of them

implemented in the software Dome [27]. The convergence

criterion ǫ = 10−6 has been assumed for all algorithms. First,

the algorithms’ performance to different branch R/X ratios is

assessed by comparing the number of iterations to converge.

Then, the algorithms’ sensitivity to different loading conditions

is compared.

1) Sensitivity to R/X ratio: Tests are performed consid-

ering different R/X ratios by scaling each line’s resistance

with a factor ρ ∈ [1.0, 5.0]. The nominal load condition was

assumed, and all algorithms were initialized with a flat-start.

The number of iterations required for the tested algorithms

to converge is depicted in Fig. 2 for both test systems and

two different values of ρ. It can be seen that the proposed

DS algorithm converges in fewer iterations than the other

tested algorithms, even for high R/X ratios. As a remark,

note that the first iteration of the DS algorithm corresponds to

the solution of the method proposed in [12].

For instance, in Fig. 2d, the DS and ICN algorithms con-

verged after four iterations, while the NR and Braz converged

in 6. Similarly, the LM in 12 iterations, the SAM in 18,

the BFS in 19, and the RK4 in 16. However, it should be

mentioned that the ICN performs an additional number of

iterations due to its inner loop [7]. Moreover, it can be seen

that the DS algorithm presents better rates of convergence than

the BFS, which is a similar result as in [5]. From Fig. 2 it is

also evident that the rate of convergence of the SAM algorithm

decreases after increasing the impedance magnitude, i.e., the

number of iterations increases. In fact, as can be inferred

from (17), increasing the branches’ impedance magnitude

implies decreasing the rate of convergence, e.g., for the 136-

bus test system with ρ = 1.0 is η = 0.0757, while for ρ = 3.0
is η = 0.1488. On the other hand, considering topological

meshed systems would increase the rate of convergence since

η would be lower.

2) Sensitivity to loading condition: Tests are performed

with ρ = 1.0 and scaling all loads in both test systems with a

factor λ ∈ [1.0, λmlp), where λmlp represents the scale factor

at the maximum loading point of each system. The maximum

loading point of both systems was found with the method

described in [8], i.e., when the optimal step size is equal to

zero using the Braz step size optimization algorithm. For the

34-bus test system, it was found a λmlp = 9.48282, whereas
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Fig. 3. Power flow performance for different loading conditions. a) 136-bus,
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for the 136-bus test system λmlp = 2.45013. The number of

iterations to converge as a function of the loading factor can

be seen in Fig. 3 using four different load flow algorithms.

It can be seen that the DS algorithm outperforms all tested

algorithms and has a similar performance to the NR since

the rate of convergence is not highly affected by the loading

condition. On the other hand, the SAM and BFS algorithms

present a higher sensitivity to λ, increasing rapidly as the load

approaches λmlp. This behavior can be inferred from (21) for

the SAM algorithm since η ≈ 1.0 at the maximum loading

point, hence decreasing its rate of convergence.

B. Unbalanced systems

Several tests are performed in the IEEE 123-node test

feeder, a radial, medium-voltage distribution system with un-

balanced laterals. Without loss of generality, voltage regulators

were assumed as fixed in the nominal position. Four different

PF algorithms were considered, namely, DS, SAM, BFS,

and the formulation proposed in [13] adapted to three-phase

networks (3PL). The convergence criterion ǫ = 10−6 has been
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Fig. 4. Power flow performance for different initializing points.

assumed for all algorithms. In this case, the sensitivity of

the formulations’ performance to the initializing value and

the effect of different ZIP load model combinations will be

assessed. As a remark, the 3PL formulation presented similar

characteristics to a traditional NR in [13].

1) Sensitivity to the initializing value V
0: For simplicity,

let

ξs = max
i∈d,φ∈ΩΦ

∥

∥V0s
i,φ − Vi,φ

∥

∥ /
∥

∥V0s
i,φ

∥

∥ , ∀ s ∈ N (22)

define the ratio of the boundary as in (6) for each ran-

dom realization s within a specified number of scenarios

N = {1, 2, ..., N}. Random values were associated to the

initializing point as V0s
i,φ = Vs

i,φ∠θ
s
i,φ, ∀ s ∈ N , where

Vs
i,φ ∼ U

(

10−12, 3.0
)

and θsi,φ ∼ U (−40◦, 40◦) follow

uniform distributions. The operational point was arbitrarily

assumed for loads and R/X ratio (λ = ρ = 1.0); hence,

Vi,φ is fixed corresponding to η = 0.1142. The maximum

number of iterations was defined as K = 100 and the number

of scenarios as N = 10,000. The number of iterations for the

algorithms to converge as a function of ξ is displayed in Fig. 4.

It can be seen that a flat-start provides a ratio of ξ = 0.1052,

for which the DS converges in 2 iterations, the 3PL in 3, the

SAM in 6, and the BFS in 7. Notice that the 3PL algorithm

presents convergence problems around ξ > 0.4, while the

other algorithms are able to find a solution. However, it must

be pointed out that although the DS algorithm converged

within the iterations limit for ξ > 1.0, it was not always

to the same solution. On the other hand, the SAM and BFS

did not present convergence problems and converged to the

same solution independently on the initial value. This result

is an application of Proposition 2 for the SAM algorithm and

shows its independence on the initial value. Finally, it is worth

mentioning that the DS, SAM, and the BFS did not present

any convergence problems within the expected range of the

initial value (0.8 < Vs
i,φ < 1.2) always converging to the

same solution.

2) Sensitivity to the load model: Random values were

associated to the load ZIP components as αs
P ∼ U (0, 1.0),

αs
I = U (−1.0, 1/3), and αs

Z = 1 − αs
P − αs

I , ∀ s ∈ N ,

following uniform distributions. Such range values are con-

sistent with field measurement reports [28]. Random loading

η
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n
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BFS
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SAM

N
o
m

in
al

ca
se

Fig. 5. Power flow performance for different load model combinations.
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BFS
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Fig. 6. Execution time per iteration - 123 node test system.

conditions were also assumed within the stable region as

λs ∼ U (0.5, 2.8). Values were arbitrarily assumed for the

R/X ratio (ρ = 1.0) and a flat-start was used as initial point.

The nominal case consists on αP = λ = 1.0. The maximum

number of iterations was defined as K = 100 and the number

of scenarios as N = 10,000. From (17) it can be seen that the

load model affects the value of η directly in the numerator and

indirectly in the denominator. Hence, the number of iterations

for the algorithms to converge as a function of η is displayed in

Fig. 5. It can be seen that the nominal case has an η = 0.1142,

presenting the same results described in the previous section.

In addition, the dependence on the loading model of the SAM

and BFS algorithms is evidenced in Fig. 5, backing up the

proof of Proposition 2. However, notice that the BFS and the

3PL presented convergence problems around η > 0.7, whereas

the SAM diverges for η > 1.0, as deducted from (21). Finally,

it must be pointed out that the DS converged under some

loading points where η > 1.0 since in those cases αP ≈ 0.

C. Computational burden

Tests were performed for the IEEE 123-node test feeder

for the nominal case. From the obtained results, the DS

and 3PL algorithms display the highest rates of convergence

among the tested approaches. However, the time per iteration

is considerably higher in the 3PL formulation, as can be seen

in Fig. 6, where the histograms of the execution times per

iteration are displayed after running 10,000 PF instances for

the same operating point with different initializing values. It

can be seen that the fastest algorithm is the SAM with an

average time per iteration of 0.21 ms, followed by the DS
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TABLE I
AVERAGE COMPUTATIONAL RESULTS

κ Average DS SAM BFS 3PL

33
Total time [ms] 0.4408 0.0739 0.6248 0.7384

Time/iter. [ms] 0.1880 0.0149 0.1223 0.1510

Iterations 2.34 4.99 5.07 4.89

99
Total time [ms] 1.2190 0.2169 1.0374 1.6762

Time/iter. [ms] 0.4269 0.0376 0.1849 0.5587

Iterations 2.86 5.64 5.63 3.00

135
Total time [ms] 1.4640 0.2267 1.8773 4.1967

Time/iter. [ms] 0.5123 0.0437 0.3129 0.8368

Iterations 2.86 5.07 5.80 5.01

357
Total time [ms] 5.0544 1.0249 11.7294 22.4750

Time/iter. [ms] 1.7447 0.2065 1.9682 7.4917

Iterations 2.91 4.96 5.37 3.00

1,947
Total time [ms] 58.9358 31.6269 362.5343 1,386.60

Time/iter. [ms] 17.9239 4.5415 57.1974 419.5348

Iterations 3.11 6.14 6.32 3.31

3,120
Total time [ms] 169.9171 68.2701 906.4752 –

Time/iter. [ms] 38.8961 11.3581 147.3772 –

Iterations 4.40 5.92 6.11 –

with 1.74 ms, the BFS with 1.97 ms, and finally the 3PL

with 7.49 ms. The main driver for these time differences is

the number of operations required by each algorithm. Let

κ = |d| |ΩΦ| define the number of equations that need to be

solved in the PF. Then, the PF solution with the DS or 3PL

algorithms requires solving a system of 2κ equations, whereas

the SAM relies on a matrix-vector multiplication of size κ,

demanding a lower computational complexity per iteration.

Notice also that the fundamental difference of time between

the DS and 3PL is the number of internal operations, as can

be seen by inspection in [13].

A summary of the computational time required by the tested

algorithms is shown in Table I, where the average total time,

average time per iteration, and the average number of iterations

is displayed for a single operating point with η ≈ 0.05
and different initial points inside the expected range. Results

were obtained for the described tested systems (balanced and

unbalanced), including the EPRI feeder K1 in [29], which

is a radial, unbalanced 13 kV system with 650 buses and a

nominal load of 6 MW, and a representation of the 3,120-bus

Polish transmission system consisting on 400, 220 and 110

kV network equivalents [30]. In Table I it can be seen that the

computational burden per iteration in the more comprehensive

case (κ = 3,120) is at least three times lower using the

SAM algorithm than the DS and 12 times lower than the

BFS. Moreover, it can be seen that the 3PL was not able to

converge for this test case. Notice that the SAM algorithm is

computationally the most efficient in terms of execution times

as long as the operation point remains far from the maximum

loading condition, i.e., η ≪ 1.0 since the rate of convergence

is highly dependent on this parameter, as can be seen in Fig. 5.

VI. CONCLUSIONS

This paper proposed a novel PF formulation for electrical

distribution systems using the CIM and applying the Laurent

series expansion. Two solution algorithms were introduced: a

Newton-like iterative procedure named direct solution and a

successive approximation method. The convergence analysis

of the SAM was proven via the Banach fixed-point theorem,

ensuring numerical stability and the uniqueness of the solution

as long as the system’s operating condition is not at the

maximum loading point. Results showed that the SAM’s rate

of convergence depends on the loading point and the branches’

impedance, decreasing as η ∼ 1.0. Similarly, it was found that

the DS algorithm has a higher rate of convergence as long

as ξ < 1.0. On the other hand, it was shown that the SAM

is independent of the initializing point and is computationally

more efficient than the compared algorithms. It was found that

the DS is at least three times faster than the BFS algorithm,

while the SAM is more than three times faster than the DS.

These results validate the scalability and numerical stability

of the proposed algorithms. Furthermore, the computational

efficiency of the SAM formulation makes it an attractive option

for problems in which the PF is solved recursively, such

as using metaheuristics, probabilistic analysis, reinforcement

learning applied to power systems, among many others [31].
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