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Abstract— This letter focuses on the power flow problem and shows

the formal analogy between the Levenberg’s method and a fictitious

ODE built using Lyapunov’s second stability criterion. The letter also

illustrates theoretical caveats and numerical issues of both methods. In

particular, the case study, based on a 2383-bus system, shows that the

fixed points of these methods are not necessarily a solution of the power

flow problem.

Index Terms— Levenberg’s method, Levenberg-Marquardt’s method,

Lyapunov’s function, Newton-Raphson’s method, Power flow analysis.

I. INTRODUCTION

T
HE nonlinearity of power flow equations has been and is cur-

rently a challenge for system operators and practitioners. While

several techniques have been proposed to handle ill-conditioned

problems (see the literature review in [1]), convergence issues have

not been fully solved so far. Due to the extreme importance for

system operators of the availability of a solution of the power flow

problem, this topic is evergreen in power system analysis.

The general formulation of the power flow problem is:

f(x) = 0 , (1)

where x ∈ R
n is the vector of unknowns and f : R

n 7→ R
n

are nonlinear, smooth equations defining the active and reactive

power balance at network buses. Due to the nonlinearity of (1), it is

possible to obtain a solution only through iterative methods (e.g., the

well-known Newton-Raphson’s method), which, in turn, obtain the

solution of (1) through the computation of the fixed point of a given

discrete map. So, even if the map converges, it is always necessary

to verify that the fixed point of the map is actually also a solution

of the original problem (1).

This letter focuses on the application to the power flow problem

of two techniques, namely the Levenberg’s method [2], [3] and the

Lyapunov’s function-based technique [4]. The contributions of the

letter are as follows: (i) to prove that the Lyapunov-based method

is a special case of the Levenberg’s method; and (ii) to show that,

while the Levenberg’s and Lyapunov-based methods are claimed to

be robust, they can be ill performing.

II. LEVENBERG’S METHOD

The Levenberg’s method is a nonlinear programming technique

and as such has been successfully applied to optimization problems

including optimal power flow analysis (see, for example, [5]). Let

xi be the value of the vector x at the i-th step of an iterative method

applied to (1). The error vector associated with xi is:

ǫi = f(xi) . (2)

A variation of xi, say xi+1 = xi + ∆xi, will lead to the new

error vector ǫi+1, which can be approximated through a first order

Taylor’s expansion:

ǫi+1 = f(xi +∆xi) ≈ ǫi + J i∆xi , (3)

where J i = ∇Tf(xi) is the Jacobian matrix of f computed at xi.

The Levenberg’s method consists in determining the variation ∆xi

that minimizes the sum of squares of the errors:

ηi = ǫ
T
i+1ǫi+1 = ∆x

T
i J

T
i J i∆xi + 2∆x

T
i J

T
i ǫi + ǫ

T
i ǫi . (4)
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The minimum of ηi is obtained at:

∇ηi(∆xi) = 0 . (5)

Hence, merging together (4) and (5), one has:

2JT
i J i∆xi + 2JT

i ǫi = 0 . (6)

Then (6) is solved for ∆xi:

∆xi = −[JT
i J i]

−1
J

T
i ǫi , (7)

and the vector of variables x is updated as follows:

xi+1 = xi +∆xi . (8)

Observe that, from the property of the inverse of the product of two

invertible square matrices, one has:

[JT
i J i]

−1
J

T
i = J

−1
i [JT

i ]
−1

J
T
i = J

−1
i I = J

−1
i . (9)

Hence, (7) is actually the increment as obtained by using the well-

known Newton-Raphson’s method. It is also well-known that the

Newton-Raphson’s method and, thus, (7), tends to diverge if the

initial guess x0 is to far away from a fixed point of the map defined

by (7)-(8). The main contribution of Levenberg has been to modify

the objective function ηi in order to improve numerical convergence.

This is achieved by including in the objective function the distance

from the current point xi, as follows:

ηλ,i = ηi + λ∆x
T
i ∆xi , (10)

where λ is called the damping factor of the Levenberg’s method.

Equation (10) leads to modify (7) as:

∆xi = −[JT
i J i + λI]−1

J
T
i ǫi . (11)

It is important to note that if λ is large, the effect of JT
i J i vanishes.

This fact will be discussed more in detail in Section III. Moreover,

the value of λ has a strong impact on the number of iterations

required to reach the convergence. This point is discussed in Section

IV. This explains why, in most cases, a variant of (11) is preferred,

as provided by Marquardt:

∆xi = −
[

J
T
i J i + λdiag

(

J
T
i J i

)]

−1

J
T
i ǫi , (12)

where the identity matrix I is replaced with a diagonal matrix

consisting of the diagonal elements of JT
i J i. This modification

allows scaling the effect of the damping factor and reduces the

number of iterations required to reach the convergence. Equation (12)

is the well-known Levenberg-Marquardt’s method. Several variants

aimed to improve numerical stability and convergence have been

proposed in the literature. See, for example, [6] and references

therein.

III. LYAPUNOV-BASED METHOD

This subsection shows that the Lyapunov-based method proposed

in [4] is actually a special case of (11). The starting point of the

Lyapunov-based method is again the minimization of the sum of

squares of f but, in this case, instead of using a discrete map, a

continuous error function is defined:

ǫ = f(x) . (13)

Then, a scalar function V (x) is defined as follows:

V (x) =
1

2
ǫ
T
ǫ =

1

2
η . (14)
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The main idea of this technique is to define a fictitious dynamic

system for which V (x) is a Lyapunov’s function candidate. This can

be obtained by defining the following set of first order differential

equations:

ẋ = −K
∂V (x)

∂x
= −K

[

∂ǫ

∂x

]T

ǫ = −KJ
T
ǫ , (15)

where K is a diagonal matrix of arbitrary positive coefficients. The

interested reader can find in [7] the proof that V (x) is a Lyapunov

function of (15). This fact allows concluding that (15) is certainly

stable and converges to an equilibrium point that corresponds to

V (x) = 0. Then any numerical integration scheme can be used

to integrate (15), starting from the initial condition x(0) = x0. In

particular, the forward Euler’s method gives:

∆xi = −hKJ
T
i ǫi , (16)

where h is the time step of the Euler scheme. Note that (16) can be

deduced from (11) by assuming that all elements kii of the diagonal

matrix K are equal, i.e., kii = κ, ∀i = 1, . . . , n, and imposing

λ = 1/(hκ), with λ very large in order to nullify the effect of

JT
i J i.

The equivalence stated above leads to the following remarks:

• The Lyapunov-based method has to be expected to converge

with a relatively high number of iterations (at least with

respect to the Newton-Raphson’s method). This is confirmed

by simulation results given in the next section.

• Given that (15) is an ODE and that (15) is basically a special

case of the Levenberg’s method, one could apply any sophisti-

cated integration scheme to (11) or (12) to improve convergence,

thus leading to a continuous Levenberg-Marquardt’s method.

This very idea but applied to the continuous Newton’s method

is exploited in [1].

• Observing (12) and (16), one can deduce:

hK =
[

λdiag
(

J
T
i J i

)]

−1

, (17)

where the step length h functions as the inverse of the damping

factor λ. The equality above can help define proper values of

K and obtain convergence in case of stiff equations.

Another important remark concerns the ability of the map resulting

from applying the Levenberg’s method and its variants to converge to

a solution of the original power flow problem (1). With this regard,

let’s define the function ϕ(x) = JT ǫ. The zeros of this function

can be obtained by applying the Newton-Raphson’s method, which

leads to the following expression of the increment ∆xi:

∆xi = −[∇T
ϕ(xi)]

−1
ϕ(xi) = −[JT

i J i + (∇T
J

T )ǫi]
−1

J
T
i ǫi ,

(18)

where ∇TJT is a third-rank tensor that represents the gradient of

JT . The interested reader can find further details on ∇TJT in [1].

Based on (18), the following remarks are relevant:

• The map (7) is an approximation of (18). The approximation

is “good” only if the term (∇TJT )ǫi ≈ 0, which certainly

applies close to the solution. This fact explains why (7) tends

to diverge if the initial guess x0 is far away from the solution.

• The Levenberg’s method finds a solution of ϕ(x) = 0, not

(1). Hence, the fixed points of (7) or its variants (11), (12) and

(16) might not be a solution of (1). It is also straightforward

to observe that a solution of (1) is certainly also a solution of

(18), but the other way round does not apply, in general.

Another way to state the latter remark is that to minimize ηi (or

its variants ηλ,i and ηΛ,i) does not necessarily imply that, at the

optimum x∗, one has η(x∗) = 0. Note also that, if η(x∗) 6= 0, then

the Lyapunov’s conditions are not satisfied as V (x∗) 6= 0 at the

equilibrium point and, hence, (15) is not guaranteed to be stable or

to converge to a solution of (1). Unfortunately, despite the noteworthy

attempt to include slack variables proposed in [4], the issue regarding

TABLE I

PERFORMANCE OF DIFFERENT POWER FLOW SOLVERS

Method λ # of Iter. time [s] max{|ǫ|} [pu]

Newton-Raphson 0 4 0.022 2.2 · 10−9

LM, eq. (12) 1 3413 78.43 4.8 · 10−7

LM, eq. (12) 10 147 2.396 0.0475

LM, eq. (12) 100 85 1.394 0.1391

Lyapunov, eq. (16) 10
5

18 0.311 11.75

Method [6] adaptive 14 0.286 1.2042

the potential mismatch of the solutions of (1) and (18) cannot be

solved in practice, as shown in the next section.

IV. CASE STUDY

This case study reports a set of simulations based on the stan-

dard Newton-Raphson technique, the Levenberg-Marquardt’s (LM)

method, the improved LM method proposed in [6], as well as the

Lyapunov-based method described in Section III. For the last method,

the slack variables defined in [4] are not considered as these do not

affect the convergence of the method itself. The network considered

for this case study is a 2383-bus model of the Polish system,

representing the winter 1999-2000 peak. The data of this system are

available at http://www.pserc.cornell.edu/matpower/. All simulations

are obtained using Dome [8] running on a 3.5 GHz Xeon. A flat start

was used as initial condition and max{|∆xi|} ≤ 10−3 was imposed

as convergence criterion. Note that in most power system analysis

tools, the convergence criterion considers max{|ǫ|}, but this cannot

be used in this case, as discussed below.

Results are shown in Table I. As expected, the Levenberg-based

methods cannot guarantee that max{|ǫ|} → 0 in all cases. The

higher the value of the damping factor λ, the smaller the number

of iterations but, since the relative weight of JTJ decreases, the

convergence cannot be guaranteed. This is particularly evident for

the Lyapunov-based method, for which the fixed point of the method

does not correspond to a solution of the power flow problem.

Intermediate results are obtained using a modified method such as

the one proposed in [6] that defines an adaptive value of λ. Note,

however, that the fixed point of this method depends also on the

initial value of λ. For this case study, λ0 = 0.01 has been used.

This value has been heuristically determined.

V. CONCLUSIONS

This letter provides theoretical and practical insights on the

Levenberg’s method for power flow analysis. Based on the results of

the case study, it can be concluded that this technique and its variants,

do not, in general, provide a solution of the power flow problem, but

rather of a different problem whose set of solutions contains those of

the original power flow problem. Simulation results also show that

the standard Newton-Raphson method outperforms the Levenberg’s

method and its variants in terms of both robustness and speed.
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