
The Möbius transform effect in singular systems of
differential equations

Ioannis Dassios1∗, Georgios Tzounas1, Federico Milano1,
1AMPSAS, University College Dublin, Ireland

∗Corresponding author

Abstract: The main objective of this article is to provide a link between the solutions of an

initial value problem of a linear singular system of differential equations and the solutions of its

proper M-systems, i.e. systems that appear after applying the generalized Möbius transform

to the pencil of the original singular system (prime system). Firstly, we prove that by using

the pencil of the prime system we can study the existence and uniqueness of solutions of its

proper M-systems. Moreover these solutions can be explicitly represented without resorting

to any further processes of computations. Finally, numerical examples are given to illustrate

our theory.
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1 Introduction

Singular systems of linear differential/difference equations are inherent in many
physical, engineering, mechanical, and financial models. Having in mind such
applications, for instance in finance, we mention the well-known input-output
Leontief model and its several important extensions, see [3], [6], [8]. Another
application of a singular system is the constrained mechanical and robotic sys-
tem described in [15]. Singular systems also appear in control theory, see [5], in
macroeconomics, see [7], circuit theory, see [18], and in the modeling of power
systems, see [20], [21], [23]. For some other recent contributions on singular sys-
tems see [1], [4], [10], [11], [12], [19], [25], [26], [28], and the references therein.

We consider the following system:

EY ′(t) = AY (t), (1)

where E,A ∈ Cr×m, Y : [0,+∞] → Cm×1. The matrices E, A can be non-
square (r 6= m), or square (r = m) with E singular (detE=0). By Y ′ we denote
the first order derivative of Y (t). The pencil sE −A is then used to study this
system. A matrix pencil is a family of matrices sE − A, parametrized by a
complex number s, see [9], [16]:

Definition 1.1. Given E, A ∈ Cr×m, and an arbitrary s ∈ C, the matrix
pencil sE −A is called:

1. Regular when r = m and det(sE −A) 6≡ 0;

2. Singular when r 6= m or r = m and det(sE −A) ≡ 0.
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In this article we consider the case that the pencil sE − A is regular with
E singular. This type of pencil, see [2], [16], [27], has finite eigenvalues which
are the zeros of the function det(sE − A), and eigenvalues that tend to infin-
ity. The existence of an infinite eigenvalue in pencils of singular systems can
be seen if we write the generalized eigenvalue problem in the reciprocal form
EX = s−1AX. If E is singular with a null vector X, then EX = 0m,1, so that
X is an eigenvector of the reciprocal problem corresponding to the eigenvalue
s−1 = 0, i.e. s→∞.

Definition 1.2. The general form of the Möbius transformation, or linear
fractional transformation, is given by

s := f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0. (2)

The restriction in this definition is necessary because if ad = bc then s is constant
which can not be possible. We consider the pencil sE − A of system (1). Its
eigenvalues are then given by solving the following characteristic equation:∣∣sE −A∣∣ = 0,

whereby applying the transform (2) we get∣∣∣az + b

cz + d
E −A

∣∣∣ = 0,

or, equivalently, by using determinant properties∣∣(az + b)E − (cz + d)A
∣∣ = 0,

or, equivalently, ∣∣(aE − cA)z − (dA− bE)
∣∣ = 0,

which is the characteristic equation of a linear dynamical system

ẼỸ ′(t) = ÃỸ (t), (3)

with pencil
zẼ − Ã,

where
Ẽ = aE − cA, Ã = dA− bE.

Definition 1.3. The system (1) will be referred to as the prime system, and
the family of systems (3) will be defined as its proper M(a, b, c, d)-systems, or
simply M-systems.

The importance of the family of systems of type (3) has been further emphasized
by their role on specific cases in defining some important notions as duality, or
studying the stability of a discrete time system through the spectrum of the
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pencil of (1). This can be seen as follows. If we consider the transformation (2)
for a = d = 0, and b = c = 1, then

s =
1

z
,

and by applying it to the pencil of (1) we get the pencil

Az − E,

which is the pencil of the dual system

AY ′(t) = EY (t),

of system (1). Some studies on the duality of systems can be found in [7], [17],
[22].

Furthermore, if we consider the inequality Re(s) < 0, and rewrite it as

s+ s̄

2
< 0,

or, equivalently,
s+ s̄ < 0,

by applying (2) for a = c = d = 1, and b = −1, we get

z − 1

z + 1
+
z̄ − 1

z̄ + 1
< 0,

or, equivalently,
(z̄ + 1)(z − 1) + (z̄ − 1)(z + 1) < 0,

or, equivalently, by taking into account that z̄z = |z|2

|z| < 1.

Hence the set {Re(w) < 0, ∀w ∈ C} maps to the set {|z| < 1, ∀z ∈ C}
through (1) for a = c = d = 1, and b = −1, i.e.

s =
z − 1

z + 1
.

Thus if we consider the transformation (2), by applying it to the pencil of
system (1), the stability of this continuous time system can be studied through
the stability of the discrete time system

(E −A)Xk+1 = (A+ E)Xk,

with pencil
(E −A)z − (A+ E),
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where X : N→ Cm×1. For example if we consider system (1) for E = Im, i.e.

Y ′ = AY,

then instead of studying the eigenvalues of A with Re(w) < 0 we can study the
eigenvalues of the pencil (I −A)z − (I +A) for |z| < 1.

The corresponding matrix pencil of (1) is sE − A, and of (3) zẼ − Ã. It is
clear that the essence of the above type depends on the relationships between
the associated pencils. The study of the relationship between (1), (3) is reduced
to an investigation of the links between their pencils. This notion defined above
may be qualified algebraically in terms of relationships between the strict equiv-
alence invariants of the associated pencils. A main result of this article is that,
if the solution of the prime system is known, then the solution of any of its
M-systems can be represented without further computation.

The paper is organized as follows: in section 2 we refer to the mathematical
background used throughout this paper, in section 3 we provide properties of
existence and uniqueness of solutions for the proper M-systems of (1) by only
using the invariants & properties of the pencil of (1). Furthermore, an explicit
formula of solutions is given in the case that there exists a unique solution.
Finally, in section 4, we provide numerical examples to illustrate our theory.

Throughout the paper, by 0ij we will denote the zero matrix of i rows and
j columns, by T the transpose tensor, and by Im the identity matrix m ×m.
Finally, let Bn1

∈ Cn1×n1 ,Bn2
∈ Cn2×n2 , . . . , Bnr ∈ Cnr×nr . By the direct

sum
Bn1 ⊕Bn2 ⊕ · · · ⊕Bnr

we will denote the block diagonal matrix:

blockdiag
[
Bn1 Bn1 . . . Bnr

]
.

2 Mathematical background and notation

This section introduces some preliminary concepts and definitions from matrix
pencil theory, which are used throughout the paper. The connection between
(1), (3), or between their matrix pencils sE − A, zẼ − Ã, may be seen as a
consequence of the special transformation (2). The notions of their relation may
be qualified algebraically in terms of relationships between the strict equivalence
invariants of the associated pencils. These relationships are summarized bellow.
Let si, zi, i = 1, 2, ..., ν be non-zero finite eigenvalue:

1. For a, c, d 6= 0:

• If s −→ 0 then z −→ − b
a ;

• If s −→∞ then z −→ −dc ;

• If s −→ si then z −→ −dsi+b
csi−a ;

• If z −→ 0 then s −→ b
d ;
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• If z −→∞ then s −→ −ac ;

• If z −→ zi then s −→ azi+b
czi+d

;

2. For a = 0 then:

• If s −→ 0 then z −→∞;

• If s −→∞ then z −→ −dc ;

• If s −→ si then z −→ −dsi+b
csi

;

• If z −→ 0 then s −→ b
d ;

• If z −→∞ then s −→ 0;

• If z −→ zi, si, i = 1, 2, ..., ν then s −→ b
czi+d

;

3. For c = 0:

• If s −→ 0 then z −→ − b
a ;

• If s −→∞ then z −→∞;

• If s −→ si, si then z −→ −dsi+b
−a ;

• If z −→ 0 then s −→ b
d ;

• If z −→∞ then s −→∞;

• If z −→ zi then s −→ azi+b
d ;

4. For d = 0:

• If s −→ 0 then z −→ − b
a ;

• If s −→∞ then z −→ 0;

• If s −→ si then z −→ b
csi−a ;

• If z −→ 0 then s −→∞;

• If z −→∞ then s −→ −ac ;

• If z −→ zi then s −→ azi+b
czi

.

As already mentioned in the previous section, in this article we consider that
the pencil is regular with invariants of the following type:

• ν finite eigenvalues of algebraic multiplicity pi, i = 1, 2, ..., ν;

• an infinite eigenvalue of algebraic multiplicity q,

where
∑ν
i=1 pi = p and p+ q = m. Unlike singular pencils, when a system has

a regular one there always exist solutions. This can be seen as follows. Let
L{Y (t)} = Z(s) be the Laplace transform of Y (t). By applying the Laplace
transform L to (1) we get

EL{Y ′(t)} = AL{Y (t)},
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or, equivalently,
E(sZ(s)− Y0) = AZ(s),

where Y0 = Y (0), i.e. the initial condition of (1). Since we assume that Y0 is
unknown we can use an unknown constant vector C ∈ Cm×1 and give to the
above expression the following form

(sE −A)Z(s) = EC.

From the above expression it can be seen that when sE −A is a regular pencil,
i.e. det(sE−A) 6≡ 0, there always exists a solution while if the pencil is singular
existence is not guaranteed. However, even if there exist solutions for a regular
pencil, it is not guaranteed that for given initial conditions a singular system will
have a unique solution, see also [5]. If the given initial conditions are consistent,
and there exist solutions for (1), then in the formulas of the general solutions
we replace C = Y0. However, if the given initial conditions are non-consistent
but there exist solutions for (1), then the general solution holds for t > 0 and
not for t = 0.

If sE−A is regular, then from its regularity there exist non-singular matrices
P , Q ∈ Cm×m such that

PEQ = Ip ⊕Hq,

PAQ = Jp ⊕ Iq,
(4)

where Jp ∈ Cp×p is the Jordan matrix related to the finite eigenvalues, see [16],
Hq∈ Cq×q is a nilpotent matrix with index q∗, constructed by using the alge-
braic multiplicity of the infinite eigenvalue, and p+ q = m. The matrices P , Q
contain all linearly independent left and right eigenvectors, respectively. Note
that in singular systems, for a pencil, there may not always exist a full set of lin-
early independent eigenvectors that form a complete basis. This happens when
the algebraic multiplicity of at least one eigenvalue is greater than its geometric
multiplicity (the nullity of the matrix, or the dimension of its nullspace). In
such cases, a generalized eigenvector of the pencil is a nonzero vector, which is
associated with the eigenvalue s having algebraic multiplicity k ≥ 1, satisfying
(sE −A)k = 0m,1.

Proposition 2.1. Consider the system (1) with known initial conditions Y (0) =
Y0 and a regular pencil. Let Jp be the Jordan matrix of the finite eigenvalues,
and Qp the matrix that contains all linear independent eigenvectors. Then there
exists a unique solution if and only if:

Y0 ∈ colspanQp.

In this case, the unique solution is given by

Y (t) = Qpe
JptZp(0),

where Zp(0) is the unique solution of the linear system

Y0 = QpZp(0).

6



Proof. By substituting the transformation

Y (t) = QZ(t).

into (1), and by multiplying by P we obtain

PEQZ ′(t) = PAQZ(t).

Let Qp, Qq be the matrices that contain all eigenvectors of the finite, and infinite
eigenvalues respectively. Then by setting

Z(t) =

[
Zp(t)
Zq(t)

]
, Q =

[
Qp Qq

]
,

with Zp0(t) ∈ Cp0×1, Zp(t) ∈ Cp×1, Zq(t) ∈ Cq×1, we arrive easily at two
subsystems of (1):

Z ′p(t) = JpZp(t);

HqZ
′
q(t) = Zq(t).

The first subsystem has solution:

Zp(t) = eJptZp(0),

For the second subsystem let q∗ be the index of the nilpotent matrix Hq, i.e.
Hq∗
q = 0q,q. Then if we obtain the following matrix equations

HqZ
′

q(t) = Zq(t)

H2
qZ
′′

q (t) = HqZ
′

q(t)

H3
qZ
′′′

q (t) = H2
qZ
′′

q (t)

H4
qZ

(4)
q (t) = H3

qZ
′′′

q (t)
...

Hq∗−1
q Z

(q∗−1)
q (t) = Hq∗−2

q Z
(q∗−2)
q (t)

Hq∗
q Z

(q∗
q (t) = Hq∗−1

q Z
(q∗−1)
q (t)

,

by taking the sum of the above equations we arrive easily at the solution:

Zq(t) = 0q,1.

By using the solutions of the two subsystems, we obtain:

Y (t) = QZ(t) =
[
Qp Qq

] [ eJptZp(0)
0q,1

]
,

or, equivalently,
Y (t) = Qpe

JptZp(0)

This solution is unique if and only if

Y0 = QpZp(0),

or, equivalently,
Y0 ∈ colspanQp.

The proof is completed.
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3 Main results

In this section we present our main results. By using only the invariants of the
pencil of system (1), we will provide insight on the solutions of the family of
systems (3). We provide the following Theorem:

Theorem 3.1. Consider system (1) with a regular pencil, and the family of
systems (3) with known initial conditions Ỹ (0) = Ỹ0. Then:

(a) If a, c 6= 0, then there exists a unique solution for (3) if and only if:

Ỹ0 ∈ colspan
[
Qp Qq

]
,

where:

• Qp ∈ Cm×p are the linear independent eigenvectors (including the
generalized) of all finite eigenvalue of sE − A except the eigenvectors
of s0, an eigenvalue of the pencil sE −A such that a = cs0;

• Qq ∈ Cm×q are the linear independent eigenvectors (including the
generalized) of the infinite eigenvalue of sE −A.

Then the solution is given by:

Ỹ (t) =
[
Qp Qq

]
eJp+qtZ̃p+q(0),

where eJp+qt = eJ̃pt⊕ eJ̃qt, Z̃p+q(0) =

[
Z̃p(0)

Z̃q(0)

]
, J̃p = (aIp− cJp)−1(dJp−

bIp), J̃q = (aHq−cIq)−1(dIq−bHq), Jp ∈ Cp×p is the Jordan matrix related
to the finite eigenvalues except s0, and Hq is a nilpotent matrix with index
q∗, constructed by using the algebraic multiplicity of the infinite eigenvalue.
Finally, Z̃p+q(0) is the unique solution of the algebraic system

Ỹ0 =
[
Qp Qq

]
Z̃p+q(0).

(b) If a = 0 , then there exists a unique solution for (3) if and only if:

Ỹ0 ∈ colspan
[
Qp Qq

]
,

where:

• Qp ∈ Cm×p are the linear independent eigenvectors (including the
generalized) of all non-zero finite eigenvalue of sE −A;

• Qq ∈ Cm×q are the linear independent eigenvectors (including the
generalized) of the infinite eigenvalue of sE −A.

Then the solution is given by:

Ỹ (t) =
[
Qp Qq

]
eJp+qtZ̃p+q(0),
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where eJp+qt = eJ̃pt ⊕ eJ̃qt, Z̃p+q(0) =

[
Z̃p(0)

Z̃q(0)

]
, J̃p = − 1

cJ
−1
p (dJp −

bIp), J̃q = − 1
c (dIq − bHq), Jp ∈ Cp×p is the Jordan matrix related to the

finite non-zero eigenvalues, and Hq is a nilpotent matrix with index q∗,
constructed by using the algebraic multiplicity of the infinite eigenvalue.
Finally, Z̃p+q(0) is the unique solution of the algebraic system

Ỹ0 =
[
Qp Qq

]
Z̃p+q(0).

(c) If c = 0 , then there exists a unique solution for (3) if and only if:

Ỹ0 ∈ colspanQp,

where:

• Qp ∈ Cm×p are the linear independent eigenvectors (including the
generalized) of all finite eigenvalue of sE −A;

Then the solution is given by:

Ỹ (t) = Qpe
J̃ptZ̃p(0),

where J̃p = 1
a (dJp − bIp), Jp ∈ Cp×p is the Jordan matrix related to the

finite eigenvalues, and Z̃p(0) is the unique solution of the algebraic system

Ỹ0 = QpZ̃p(0).

Proof.

(a) Let s0 be an eigenvalue of the pencil sE − A such that a = cs0. Then we
can give Q, defined in (4), the following form

Q =
[
Qs0 Qp Qq

]
,

where:

• Qs0 ∈ Cm×p0 are the linear independent eigenvectors (including the
generalized) of the eigenvalue s0 of sE −A;

• Qp ∈ Cm×p are the linear independent eigenvectors (including the
generalized) of all finite eigenvalue of sE − A except the eigenvectors
of s0;

• Qq ∈ Cm×q are the linear independent eigenvectors (including the
generalized) of the infinite eigenvalue of sE −A.

In this case (4) will take the form

PEQ = Is0 ⊕ Ip ⊕Hq,

PEQ = Js0 ⊕ Jp ⊕ Iq,
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where Js0 ∈ Cs0×s0 , Jp ∈ Cp×p are the Jordan matrices related to the s0,
and the finite eigenvalues except s0, respectively, Hq ∈ Cq×q is a nilpotent
matrix with index q∗, constructed by using the algebraic multiplicity of the
infinite eigenvalue, and s0 + p+ q = m. We apply the transformation

Ỹ (t) = QZ̃(t).

to (3), and multiply by P :

PẼQZ̃ ′(t) = PÃQZ̃(t),

or, equivalently,

P (aE − cA)QZ̃ ′(t) = P (dA− bE)QZ̃(t),

or, equivalently,

[(aIs0 − cJs0)⊕ (aIp − cJp)⊕ (aHq − cIq)]Z̃ ′(t) =

[(dJs0 − bIs0)⊕ (dJp − bIp)⊕ (dIq − bHq)]Z̃(t),

whereby setting

Z̃(t) =

 Z̃s0(t)

Z̃p(t)

Z̃q(t)

 ,
with Z̃s0(t) ∈ Cs0×1, Z̃p(t) ∈ Cp×1, Z̃q(t) ∈ Cq×1, and using the above
written notations we arrive easily at three subsystems of (3):

(aIs0 − cJs0)Z̃ ′s0(t) = (dJs0 − bIs0)Z̃s0(t);

(aIp − cJp)Z̃ ′p(t) = (dJp − bIp)Z̃p(t);

(aHq − cIq)Z̃ ′q(t) = (dIq − bHq)Z̃q(t).

Note that the matrix aIs0 − cJs0 has only zeros in its diagonal because
a = cs0. Furthermore the matrices aIp − cJp, aHq − cIq are both invertible
since all elements in their diagonal are non-zero. The solution of the first
subsystem is

Z̃s0(t) = 0p0,1.

This can be easily proved similarly to the relevant part of the proof of
Proposition 2.1. The two other subsystems have solutions:

Z̃p(t) = eJ̃ptZ̃p(0), and Z̃q(t) = eJ̃qtZ̃q(0),

respectively, where

J̃p = (aIp − cJp)−1(dJp − bIp), J̃q = (aHq − cIq)−1(dIq − bHq).
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By using the solutions of the three subsystems, and the notation for Q as
written in the beginning of the proof we obtain:

Ỹ (t) = QZ̃(t) =
[
Qs0 Qp Qq

]  0s0,1
eJ̃ptZ̃p(0)

eJ̃qtZ̃q(0)

 ,
or, equivalently,

Ỹ (t) = Qpe
J̃ptZ̃p(0) +Qqe

J̃qtZ̃q(0),

or, equivalently,

Ỹ (t) =
[
Qp Qq

]
eJp+qtZ̃p+q(0),

where eJp+qt = eJ̃pt ⊕ eJ̃qt, Z̃p+q(0) =

[
Z̃p(0)

Z̃q(0)

]
. This solution is unique if

and only if
Ỹ0 ∈ colspan

[
Qp Qq

]
.

In this case Z̃p+q(0) is the unique solution of

Ỹ0 =
[
Qp Qq

]
Z̃p+q(0).

(b) Let 0 be an eigenvalue of the pencil sE − A. Then we can give Q, defined
in (4), the following form

Q =
[
Qp0 Qp Qq

]
,

where:

• Qp0 ∈ Cm×p0 are the linear independent eigenvectors (including the
generalized) of the zero eigenvalue of sE −A;

• Qp ∈ Cm×p are the linear independent eigenvectors (including the
generalized) of all non-zero finite eigenvalue of sE −A;

• Qq ∈ Cm×q are the linear independent eigenvectors (including the
generalized) of the infinite eigenvalue of sE −A.

In this case (4) will take the form

PEQ = Ip0 ⊕ Ip ⊕Hq,

PEQ = Jp0 ⊕ Jp ⊕ Iq,

where Jp0 ∈ Cp0×p0 , Jp ∈ Cp×p are the Jordan matrices related to the zero,
and the finite non-zero eigenvalues, respectively, Hq ∈ Cq×q is a nilpotent
matrix with index q∗, constructed by using the algebraic multiplicity of the
infinite eigenvalue, and p0 + p+ q = m. We apply the transformation

Ỹ (t) = QZ̃(t).
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into (3), and multiply by P :

PẼQZ̃ ′(t) = PÃQZ̃(t),

or, equivalently,

−P (cA)QZ̃ ′(t) = P (dA− bE)QZ̃(t),

or, equivalently,

−c[Jp0 ⊕ Jp ⊕ Iq]Z̃ ′(t) = [(dJp0 − bIp0)⊕ (dJp − bIp)⊕ (dIq − bHq)]Z̃(t),

whereby setting

Z̃(t) =

 Z̃p0(t)

Z̃p(t)

Z̃q(t)

 ,
with Z̃p0(t) ∈ Cp0×1, Z̃p(t) ∈ Cp×1, Z̃q(t) ∈ Cq×1, and using the above
written notations we arrive easily at three subsystems of (3):

cJp0Z̃
′
p0(t) = (dJp0 − bIp0)Z̃p0(t);

−cJpZ̃ ′p(t) = (dJp − bIp)Z̃p(t);

−cIqZ̃ ′q(t) = (dIq − bHq)Z̃q(t).

Note that c 6= 0 since a = 0 and the relation in (2) must hold. Furthermore,
the matrix −cJp0 has only zeros in its diagonal because Jp0 is the Jordan
matrix of the zero eigenvalue of sE − A. Finally, the matrices −cJp, −cIq
are both invertible since all elements in their diagonal are non-zero. The
solution of the first subsystem is

Z̃p0(t) = 0p0,1.

This can be easily proved similarly to the relevant part of the proof of
Proposition 2.1. The two other subsystems have solutions:

Z̃p(t) = eJ̃ptZ̃p(0), and Z̃q(t) = eJ̃qtZ̃q(0),

respectively, where

J̃p = −1

c
J−1p (dJp − bIp), J̃q = −1

c
(dIq − bHq).

By using the solutions of the three subsystems, and the notation for Q as
written in the beginning of the proof we obtain:

Ỹ (t) = QZ̃(t) =
[
Qs0 Qp Qq

]  0s0,1
eJ̃ptZ̃p(0)

eJ̃qtZ̃q(0)

 ,
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or, equivalently,

Ỹ (t) = Qpe
J̃ptZ̃p(0) +Qqe

J̃qtZ̃q(0),

or, equivalently,

Ỹ (t) =
[
Qp Qq

]
eJp+qtZ̃p+q(0),

where eJp+qt = eJ̃pt ⊕ eJ̃qt, Z̃p+q(0) =

[
Z̃p(0)

Z̃q(0)

]
. This solution is unique if

and only if
Ỹ0 ∈ colspan

[
Qp Qq

]
.

In this case Z̃p+q(0) is the unique solution of

Ỹ0 =
[
Qp Qq

]
Z̃p+q(0).

(c) We can give Q, defined in (4), the following form

Q =
[
Qp Qq

]
,

where:

• Qp ∈ Cm×p are the linear independent eigenvectors (including the
generalized) of all finite eigenvalue of sE −A;

• Qq ∈ Cm×q are the linear independent eigenvectors (including the
generalized) of the infinite eigenvalue of sE −A.

From (4) we have:
PEQ = Ip ⊕Hq,

PEQ = Jp ⊕ Iq,

where Jp ∈ Cp×p is the Jordan matrix related to the finite eigenvalues,
Hq ∈ Cq×q is a nilpotent matrix with index q∗, constructed by using the
algebraic multiplicity of the infinite eigenvalue, and p + q = m. We apply
the transformation

Ỹ (t) = QZ̃(t).

into (3), and multiply by P :

PẼQZ̃ ′(t) = PÃQZ̃(t),

or, equivalently,

P (aE)QZ̃ ′(t) = P (dA− bE)QZ̃(t),

or, equivalently,

a[Ip ⊕Hq]Z̃
′(t) = [(dJp − bIp)⊕ (dIq − bHq)]Z̃(t),

13



whereby setting

Z̃(t) =

[
Z̃p(t)

Z̃q(t)

]
,

with Z̃p(t) ∈ Cp×1, Z̃q(t) ∈ Cq×1, and using the above written notations we
arrive easily at two subsystems of (3):

aIpZ̃
′
p(t) = (dJp − bIp)Z̃p(t);

aHqZ̃
′
q(t) = (dIq − bHq)Z̃q(t).

The solutions of the two subsystem are:

Z̃p(t) = eJ̃ptZ̃p(0), and Z̃q(t) = 0q,1,

respectively, where

J̃p =
1

a
(dJp − bIp).

By using the solutions of the two subsystems, and the notation for Q as
written in the beginning of the proof we obtain:

Ỹ (t) = QZ̃(t) =
[
Qp Qq

] [ eJ̃ptZ̃p(0)
0q,1

]
,

or, equivalently,

Ỹ (t) = Qpe
J̃ptZ̃p(0).

This solution is unique if and only if

Ỹ0 ∈ colspanQp.

In this case Z̃p(0) is the unique solution of

Ỹ0 = QpZ̃p(0).

The proof is completed.

4 Numerical examples

In this Section we provide numerical examples to illustrate our theory.

Numerical example 1

We consider system (1) with

E =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0

 , A =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−4 2 2 −3 −2 −1

1 1 −1 −1 0 0

 .
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By applying the Möbius transform (2) to the pencil of (1) we arrive at the

family of systems (3). Let Ỹ0 =
[
−4 6 −5 7 −7 9

]T
, be the initial

conditions of (3). We may now use Theorem 3.1, and the invariants of the
pencil sE−A of (1) in order to investigate the solutions of (3) ∀a, b, c, d ∈ C.
The pencil sE − A has three finite eigenvalues s1 = 3, s2 = 2, s3 = 1, of
algebraic multiplicity p1 = p2 = p3 = 1, and an infinite eigenvalue of
algebraic multiplicity q = 3. The eigenspaces of sE−A associated with the
eigenvalues 3, 2, 1, are :

〈
u1

〉
=
〈

−1

1
−3

3
−9

9


〉
,
〈
u2

〉
=
〈

−1

1
−2

2
−4

4


〉
,
〈
u3

〉
=
〈

−3

5
−3

5
−3

5


〉
,

while the eigenspace of sE − A associated with the infinite eigenvalue, in-
cluding the generalized eigenvectors, is:

〈
u4, u5, u6

〉
=
〈


0
0
0
0
−1

1

 ,


0
0
−1

1
0
1

 ,

−1

1
0
1

42
−48


〉
.

The Jordan matrix related to the finite eigenvalues, and the matrix Hq are
given by:

Jp =

3 0 0
0 2 0
0 0 1

 , Hq =

0 1 0
0 0 1
0 0 0

 .

The matrix Qq is defined as Qq =
[
u4 u5 u6

]
. We have the following

cases:

• If a, c 6= 0, then from Theorem 3.1, the general solution of system (3)
is given by

Ỹ (t) =
[
Qp Qq

]
eJp+qtZ̃p+q(0).

The matrices eJp+qt, Qp are defined as follows:

(i) If a 6= 3c, a 6= 2c, a 6= c, then Qp =
[
u1 u2 u3

]
, and:

eJ̃p+qt =



e
−b+3d
a−3c t 0 0 0 0 0

0 e
−b+2d
a−2c t 0 0 0 0

0 0 e
−b+d
a−c t 0 0 0

0 0 0 e−
d
c t bc−ad

c2
abc−ad
c3

0 0 0 0 e−
d
c t bc−ad

c2

0 0 0 0 0 e−
d
c t


. (5)
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(ii) If a = 3c, Qp =
[
u2 u3

]
, and:

eJ̃p+qt =


e
−b+2d
a−2c t 0 0 0 0

0 e
−b+d
a−c t 0 0 0

0 0 e−
d
c t bc−ad

c2
abc−ad
c3

0 0 0 e−
d
c t bc−ad

c2

0 0 0 0 e−
d
c t

 ;

(iii) If a = 2c, then Qp =
[
u1 u3

]
, and:

eJ̃p+qt =


e
−b+3d
a−3c t 0 0 0 0

0 e
−b+d
a−c t 0 0 0

0 0 e−
d
c t bc−ad

c2
abc−ad
c3

0 0 0 e−
d
c t bc−ad

c2

0 0 0 0 e−
d
c t

 ;

(iv) If a = c, then Qp =
[
u2 u3

]
, and:

eJ̃p+qt =


e
−b+3d
a−3c t 0 0 0 0

0 e
−b+2d
a−2c t 0 0 0

0 0 e−
d
c t bc−ad

c2
abc−ad
c3

0 0 0 e−
d
c t bc−ad

c2

0 0 0 0 e−
d
c t

 .

It is easy to observe that in the case of (i), (ii), we have Ỹ0 ∈ colspan
[
Qp Qq

]
,

and hence the solution is unique. In this case for both (i), (ii), the
unique solution is given by:

Ỹ (t) =



−3e
−b+d
a−c t − e

−b+2d
a−2c t

5e
−b+d
a−c t + e

−b+2d
a−2c t

−3e
−b+d
a−c t − 2e

−b+2d
a−2c t

5e
−b+d
a−c t + 2e

−b+2d
a−2c t

−3e
−b+d
a−c t − 4e

−b+2d
a−2c t

5e
−b+d
a−c t + 4e

−b+2d
a−2c t


. (6)

It is also easy to observe that for both (iii), (iv), Ỹ0 /∈ colspan
[
Qp Qq

]
,

i.e. from Theorem 3.1 there does not exist a unique solution for these
systems. Since Z̃p+q(0) can not be defined uniquely, we set Z̃p+q(0) =[
c1 c3 c4 c5 c6

]
, and c̃4 = bc−ad

c2 c5 + abc−ad
c3 c6, c̃5 = bc−ad

c2 c6.
Then the general solution for (iii) is:

Ỹ (t) = e
−b+3d
a−3c tc1u1 + e

−b+d
a−c tc3u3 + e

−d
c t

6∑
i=4

ciui + c̃4u4 + c̃5u5.
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For (iv) again Z̃p+q(0) can not be defined uniquely, we set Z̃p+q(0) =[
c1 c2 c4 c5 c6

]
, and the general solution is:

Ỹ (t) = e
−b+3d
a−3c tc1u1 + e

−b+2d
a−2c tc2u2 + e

−d
c t

6∑
i=4

ciui + c̃4u4 + c̃5u5.

• If a = 0, then from Theorem 3.1, the general solution of system (3) is
given by

Ỹ (t) =
[
Qp Qq

]
eJp+qtZ̃p+q(0),

where, Qp =
[
u1 u2 u3

]
, and eJ̃p+qt is given by (5). It is easy

to observe that Ỹ0 ∈ colspan
[
Qp Qq

]
, and hence the solution is

unique, and given by (6).

• If c = 0, , then from Theorem 3.1, the general solution of system (3)
is given by

Ỹ (t) = Qpe
J̃ptZ̃p(0).

where, Qp =
[
u1 u2 u3

]
, and:

eJ̃pt =

e
−b+3d
a t 0 0

0 e
−b+2d
a t 0

0 0 e
−b+d
a t

 .
It is easy to observe that Ỹ0 ∈ colspanQp, and hence the solution is
unique, and given by (6).

Numerical example 2

We consider now the system (1) with

E =



0 −3 0 1 1 8 2
12 9 −5 −2 −4 −3 4
0 −4 −5 13 3 9 6
6 −2 −3 13 3 −7 0
0 0 0 0 0 0 0
0 −1 −11 26 4 −1 8
−3 −3 2 −1 1 3 −1


, A =



7 23 13 34 7 −8 17
−12 −8 8 3 7 6 −3
−1 6 −5 −2 5 −6 −6

5 13 1 −9 −1 38 3
8 22 22 42 1 16 29

11 19 31 20 13 14 21
7 16 5 13 5 −6 7


.

By applying the Möbius transform (2) to the pencil of (1) we arrive at

the family of systems (3). Let Ỹ0 =
[
1 0 1 0 1 1

]T
, be the initial

conditions of (3). In this example we will focus on two cases:

(i) For a = d = 0, b = d = 1, we get the dual system of (1):

EY = AY ′;
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(ii) For a = c = d = 1, b = −1, we get the discrete time system:

(E −A)Yk+1 = (E +A)Yk, k = 0, 1, 2, ...

We may now use Theorem 3.1, and the invariants of the pencil sE − A of
(1) in order to investigate the solutions of (i), (ii). The pencil sE − A has
three finite eigenvalues s1 = −1, s2 = 0, s3 = −2 of algebraic multiplicity
p1 = p2 = p3 = 1, and an infinite eigenvalue of algebraic multiplicity q = 4.
The eigenspaces of sE −A associated with the eigenvalues -1, 0, -2, are :

〈
u1

〉
=
〈


0.5981
−0.1773

0.2936
0.4628
−0.2070

0.1516
−1


〉
,
〈
u2

〉
=
〈


−0.6466
0.1937
−0.2696
−0.4712

0.1885
−0.1597

1


〉
,
〈
u3

〉
=
〈


−0.6675
0.2118
−0.3128
−0.4433

0.1773
−0.1872

1


〉
,

while the eigenspace of sE − A associated with the infinite eigenvalue, in-
cluding the generalized eigenvectors, is:

〈
u4, u5, u6, u7

〉
=
〈


0.6283
−0.1760

0.2854
0.4603
−0.2130

0.1531
−1


,



−0.6498
0.1802
−0.3133
−0.4687

0.1929
−0.1480

1


,



−0.5969
−0.1143

0.2738
0.4507
−0.1623
−0.1711

−1


,



0.6240
−0.1652

0.2997
0.4692
−0.2273

0.1578
−1


〉
.

The Jordan matrix related to the finite eigenvalues, and the matrix Hq are:

Jp =

−1 0 0
0 0 0
0 0 −2

 , Hq =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

The matrix Qq is defined as Qq =
[
u4 u5 u6 u7

]
. For the dual system

(i), since a = 0 then from Theorem 3.1, the general solution of system (3)
is given by

Ỹ (t) =
[
Qp Qq

]
eJp+qtZ̃p+q(0),

where Qp =
[
u1 u3

]
, and:

eJ̃p+qt =


e−t 0 0 0 0 0

0 e−
1
2 t 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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It is easy to observe that Ỹ0 /∈ colspan
[
Qp Qq

]
, and hence there does

not exist a unique solution. Since Z̃p+q(0) can not be defined uniquely, we

set Z̃p+q(0) =
[
c1 c3 c4 c5 c6 c7

]
, and the general solution is:

Ỹ (t) = e−tc1u1 + e−
1
2 tc3u3 +

7∑
i=4

ciui.

For the discrete time system (ii), it is worth noting that since the steady
state of (1) is neutral stable, the steady state of the discrete time system
will be neutral stable as well. Furthermore, a, c 6= 0, and there does not
exist an eigenvalue s0 such that a = s0c. Then from Theorem 3.1, it is easy
to observe that Ỹ0 /∈ colspan

[
Qp Qq

]
, and there does not exist a unique

solution. Hence, since

J̃p+q =



0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 − 1

3 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1


,

if we set Z̃p+q(0) =
[
c2 c3 c4 c5 c6 c7

]
, the general solution is given

by:

Ỹk = c2u2 + (−1

3
)kc3u3 + (−1)k

7∑
i=4

ciui.

Numerical example 3

h k

Machine Line Infinite−bus

Figure 1: OMIB system.

Power systems can be modelled as a set of nonlinear differential algebraic
equations, as follows:

T ẋ = f(x, y)

Rẋ = g(x, y) ,

where T , R are constant singular matrices, f are the differential equations,
g are the algebraic equations, and x ∈ Rn×1, y ∈ Rm×1 are the state
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and algebraic variables, respectively. This semi-implicit formulation is a
recently proposed alternative, see [24], to the explicit differential algebraic
formulation ẋ = f(x, y), 0 = g(x, y), which may be more familiar.

Eigenvalue analysis, which is a fundamental tool of the small-signal stability
analysis of power systems, requires linearization around the operating point:

T ẋ = fx∆x+ fy∆y

Rẋ = gx∆x+ gy∆y ,

where fx, fy, gx, gy are the system Jacobian matrices. The linearized system
can be equivalently represented as a singular system:

EsỸ
′ = AsỸ , (7)

where Ỹ =

[
x
y

]
, Es =

[
T 0
R 0

]
, As =

[
fx fy
gx gy

]
. The matrices Es, As for-

mulate a generalized eigenvalue problem. Special Möbius transforms (e.g.,
Cayley, shift-&-invert) are utilized by solvers to obtain the root loci of large
scale power systems, especially by those that implement the Arnoldi itera-
tion or any of its variants [22].

For illustration purposes, consider the simple example of a fourth order (two-
axes) synchronous electrical machine connected through a transmission line
to a slack bus, as shown in Fig. 1.

This system, which in power engineering is known as one-machine infinite-
bus (OMIB) system, is commonly used for transient stability analysis stud-
ies. The term infinite is used as a consequence of the fact that the voltage
at bus k is constant (infinite inertia). The OMIB system equations and
variables are given in Table 1. The parameters of the system are given in
Table 2.

The matrices that describe the linearized OMIB system are:

As =



ε1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0ε2 0 0−0.410.23 0 0 0 0 0 0 0 1 0 0 0−0.70−0.73 0 0
0 0−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0−1.50 0 0 0
0 0 0−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.15 0 0
0 0 0 0 ε3 1 0 0 0 0 0 0 0 0 0 1 0 ε4 0 0 0
0 0 0 0 −1 ε5 0 0 0 0 0 0 0 0 0 0 1 0 ε6 0 0
0 0 0 0 0 0 5.19−5.19 0.71 0.20 0 0 0 0 0 0 0 0 0−1 0
0 0 0 0 0 0−5.14 5.14−0.71−0.19 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.20−0.20 4.89−5.04ε7 0 0 0 0 0 0 0 0 0−1
0 0 0 0 0 0 0.72−0.72−5.09 5.24 0−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ε8 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 ε9 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0ε10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 0 0 0 0 0 0

0.73 0 0 0 0 0−0.73 0 0.69 0 0 0 0 0 0 −1 0 0 0 0 0
−0.70 0 0 0 0 0 0.70 0 0.72 0 0 0 0 0 0 0 −1 0 0 0 0

0 0−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.55 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.230.41 0.70 0.73−1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−0.410.23 0.73−0.70 0−1


,
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Es =



0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


,

where εi represent components that 0 < |εi| < 10−5 in order to simplify the
notation.

Consider the special Möbius transform a = −0.01, b = −0.01, c = −1
and d = 1, which is a Cayley transformation. We apply our results to
the transformed system (1), where A = As + 0.01Es, E = As − 0.01Es.
This system has finite eigenvalues s1 = 0.8711, s2 = 0.9997 + 0.0029i, s3 =
0.9997−0.0029i, s4 = 1, s5 = 0, 9963 with respective algebraic multiplicities
p1 = p2 = p3 = p5 = 1, p4 = 17 and doesn’t have any infinite eigenvalues
(q = 0).

The original power system model is desrcibed by (7). In order to take
information about the uniqueness of the solution of this system, we apply
the inverse Möbius transform z = −ds+b

cs−a . In this case, Qp ∈ Cm×p are
the linear independent eigenvectors (including the generalized) of all finite
eigenvalues of sE −A except the eigenvectors of s4 = 1. Hence,

Qp =



−1 0.5822 + 0.0284i 0.5822 − 0.0284i −0.3163

4.62 · 10−4 −0.0005 − 0.0129i −0.0005 + 0.0129i 0.0055
0.8207 0.0031 − 0.0253i 0.0031 + 0.0253i −0.0194
−0.4199 0.0017 − 0.0244i 0.0017 + 0.0244i −0.9614

0.7942 0.1038 + 0.1384i 0.1038 − 0.1384i 0.1459
0.6091 −0.2689 − 0.0240i −0.2689 + 0.0240i 0.4185
−0.0204 −0.3240 − 0.0511i −0.3240 + 0.0511i 0.0827

0 0 0 0
0.1509 0.0305 + 0.0181i 0.0305 − 0.0181i −0.1846

0 0 0 0
0 0 0 0

−0.7835 −0.0355 − 0.1099i −0.0355 + 0.1099i 1
−0.0028 −0.8778 + 0.1135i −0.8778 − 0.1135i −0.2939

0 0 0 0
0 0 0 0

−0.6091 0.3240 + 0.0511i 0.3240 − 0.0511i −0.4185
0.7942 −0.2689 − 0.0240i −0.2689 + 0.0240i 0.1459
0.0882 0.9421 − 0.0012i 0.9421 + 0.0012i −0.5511
−0.3440 0.4005 − 0.1586i 0.4005 + 0.1586i 0.9871

6.70 · 10−4 0.8853 − 0.1147i 0.8853 + 0.1147i 0.2992
0.7346 0.1830 + 0.0836i 0.1830 − 0.0836i −0.8869


.

Since q = 0, the matrices Qq, Hq, Jq and J̃q do not exist. Therefore, there
exists a unique solution of (7), if and only if:

Ỹ0 ∈ colspan Qp.

In case that the condition for the existence of the solution does not hold,
the system does not have an equilibrium point. The nonexistence of an
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equilibrium point in a power system is typically due to a saddle-node or
limit-induced bifurcation point and indicates the collapse to the system’s
voltages due to its inability to deliver the power.

Conclusions

The aim of this article was to provide a link between the solutions of M-
systems and an original system in the form (1), whose coefficients are square
constant matrices and the leading coefficient singular. We proved that if
the invariants of the pencil sE−A are known, then it is possible to provide
necessary and sufficient conditions for existence and uniqueness of solutions
of the M-systems (3). This enables us to construct formulas for the solu-
tions of each such system, when the solutions exist and are unique, without
resorting to further processes of computations for each one separately. A
further extension of this article is to study the connection of the solutions
of singular systems of fractional nabla difference equations and their M-
systems with a singular pencil and the connection of these kind of systems
with singular systems of fractional differential equations. For all these there
is already some research in progress, see [13], [14].
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Table 1: OMIB system equations and variables

Devices Equations Variables

Machine 1
Ωb
δ̇ = ω − ωs δ: rotor angle

2Hω̇ = τm − τe −D(ω − ωs) ω: angular speed

T ′d0ė
′
q = −e′q − (xd − x′d)id + vf τm: mechanical torque

T ′q0ė
′
d = −e′d + (xq − x′q)iq τe: electrical torque

0 = −ph + vdid + vqiq e′q : q-axis transient emf

0 = −qh + vqid − vdiq id: d-axis current

0 = vhsin(δ − θh) − vd vf : field voltage

0 = vhcos(δ − θh) − vq e′d: d-axis transient emf

0 = −τe + ψdiq − ψqid iq : q-axis current

0 = τm0 − τm vd: d-axis voltage

0 = vf0 − vf vq : q-axis voltage

0 = rαid + ψq + vd vh: voltage at bus h

0 = rαiq − ψd + vq θh: voltage angle at bus h

0 = vq + rαiq − e′q + x′did ψq : q-axis magnetic flux

0 = vd + rαid − e′d − x′qiq ψd: d-axis magnetic flux

Line
0 = −ph + v2

h(gL + gL,h) −
vhvk(gLcosθhk + bLsinθhk)

ph: active power injection at
bus h

0 = −qh − v2
h(bL + bL,h) −

vhvk(gLsinθhk − bLcosθhk)
qh: reactive power injection at
bus h

0 = −pk + v2
k(gL + gL,h) −

vhvk(gLcosθhk − bLsinθhk)
pk: active power injection at
bus k

0 = −qk − v2
k(bL + bL,h) −

vhvk(gLsinθhk + bLcosθhk) ,
qk: reactive power injection at
bus k

where θhk = θh − θk.

Infinite-bus 0 = vG0,k − vk vk: voltage at bus k

0 = θG0,k − θk θk: voltage angle at bus k
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Table 2: OMIB system parameters

Device Parameters

Machine Ωb = 314.16 rad/s: base synchronous frequency,

ωs = 1 pu a (rad/s): reference frequency,

H = 5 MWs/MVA: inertia constant,

D = 0 pu: damping coefficient,

T ′d0 = 8 s: d-axis transient time constant,

T ′q0 = 0.4 s: q-axis transient time constant,

xd = 1.8 pu (Ω): d-axis synchronous reactance,

x′d = 0.3 pu (Ω): d-axis transient reactance,

xq = 1.7 pu (Ω): q-axis synchronous reactance,

x′q = 0.5 pu (Ω): q-axis transient reactance,

τm0 = 0.46 pu(MN·m): initial mechanical torque,

vf0 = 1.13 pu (kV): initial field voltage,

rα = 0 pu(Ω): armature resistance.

vG0,h = 1.01 pu (kV): initial voltage at bus h,

θG0,h = 1.08◦: initial voltage angle at bus h.

Line rL = 0.01 pu (Ω): series resistance,

gL,h = 0.04 pu (Ω−1): shunt conductance of sending-end h,

xL = 0.2 pu (Ω): series reactance,

bL,h = 0 pu (Ω−1): shunt susceptance of sending-end h,

where gL + jbL = (rL + jxL)−1.

Infinite-bus vG0,k = 1.03 pu (kV): initial voltage at bus k,

θG0,k = 0◦: initial voltage angle at bus k.

aper unit system (pu); in power system analysis, quantities are often expressed as fractions
of defined base units.
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