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Abstract—Multi-terminal HVDC (MTDC) grids are seen as
the enabling technology in the development of massive scale
international grids such as the European Supergrid. It is expected
that these grids can play a significant role in regulating ac system
frequencies. To date, many proportional-integral (PI) controller
based techniques have been proposed for frequency regulation in
ac MTDC-connected grids. In this paper Model Predictive Con-
trol (MPC) is proposed as a means of implementing Automatic
Generation Control, while minimising dc grid power losses. The
advantages of using MPC versus PI are highlighted with regard
to improvements in both frequency and dc grid regulation, while
explicitly considering both delays and dc voltage constraints.
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I. INTRODUCTION

H IGH voltage direct current (HVDC) technology has

the potential to radically transform the operation of

electrical grids around the world. As large stochastic renew-

able penetrations provide increasing challenges for the tight

regulation of electrical grids, interconnection via HVDC links

is seen as a means of aggregating these renewable sources

over a wide area. The underlying idea here is that in areas

where there is an excess of renewables produced, if this area

is connected by an HVDC link to another area capable of

absorbing the excess power production, then the excess can be

consumed by the connected area, thus allowing both areas to

increase their overall renewable penetration [1]. For example,

the NordLink HVDC link between Germany and Norway

will allow Germany and neighbouring countries to export

excess renewable reserves to Norway, where there are large

scale hydro reserves. Similarly, Germany and neighbouring

countries can import the clean hydro energy back via the

HVDC link at times of reduced renewable reserves. This

capability is giving rise to the concept of a so-called European

“Supergrid”, where a large scale meshed HVDC grid will

interconnect grids across Europe [1].

The enabling technology behind the construction of modern

HVDC grids is voltage source converter (VSC) technology.

VSCs offers significant advantages over traditional line com-

mutated converters (LCCs). VSCs allow independent control

of active and reactive powers, and do not consume reactive

power. The development of multi-terminal HVDC (MTDC)

grids is of particular interest in recent years. In MTDC grids a

number of HVDC lines can connect to a single VSC terminal,

thus allowing for the creation of meshed dc networks. VSCs

in particular enable significant flexibility in these networks in
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comparison to LCC based MTDC networks, due to the ability

of VSC based MTDC grids to enable bi-directionality of power

flows (LCC requires the reversal of the voltage polarity to

achieve this, severely limiting the potential for bi-directionality

in meshed LCC-based dc grids) [2]. The first MTDC grid in

the world was recently built in Zhousan, China [3].

As the number of VSC connected devices increases in

electricity grids it will be desirable for these VSC connections

to partake in frequency regulation. The majority of frequency

regulation schemes in the literature are based on proportional

(P) or proportional-integral (PI) based control approaches. A

number of decentralised primary control methods have been

proposed in the literature, where the VSC power delivery

setpoint loop is augmented by a frequency error term in

order to trade off frequency regulation against power setpoint

regulation [2], [4], [5]. Several secondary control algorithms

based on PI methods have been proposed [4], [6], [7].

Traditionally, P-based primary and PI-based AGC have been

temporally decoupled. The primary controllers were designed

using proportional control to counteract the initial fast tran-

sients associated with the angular frequency deviations at each

generator. This use of proportional control in a decentralised

fashion generally provides a stable response to a wide range

of contingencies, but also results in long term offsets. Thus

secondary control uses integral control over longer time scales

on the seconds to minutes scale in order to eliminate these long

term offsets. When using PI control, however, it is necessary

to temporally decouple these two control schemes so that there

is no strong interactions between the primary and secondary

controls. This has the effect of limiting the gains which can

be applied for use with PI-based AGC.

Model predictive control (MPC) is an optimisation based

MIMO control technique, which uses state-space predictions

in order to form optimal inputs to a system, with respect to

a cost function specified by the system designer [8]. Because

primary control can be modelled as part of the state-space

system representation, when MPC is used for AGC, it is

possible for the secondary control to explicitly consider the

interactions between primary and secondary control. Thus,

MPC based AGC allows for a greater symbiosis between

primary and secondary control, in turn allowing for improved

overall regulation performance.

MPC has been shown to offer setpoint tracking and robust-

ness performance in a range of power systems applications

including secondary frequency control, typically referred to

as automatic generation control (AGC) [9]–[11], and voltage

control [12], [13]. Additionally, MPC has been suggested for

application to the dynamic control of point-to-point HVDC

links [14], [15] and for providing predictive optimal power
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flow for MTDC systems in [16]. Recently it was shown

that MPC could be used as a means of improving AGC

performance and robustness for ac areas connected to MTDC

grids versus decentralised PI based techniques [11], [17]. In

[11], [17], several assumptions were made. First of all, it

was assumed that controllers could directly control dc node

voltages. Secondly, the controllers assumed that there were no

communication delays associated with control (it should be

noted that the effect of delays using MPC for point-to-point

HVDC links has been considered previously in [18]). Finally,

it was assumed that control agents had access to perfect state

measurements for use in control.

There are some practical issues associated with the afore-

mentioned assumptions. Typically transmission system opera-

tors (TSOs) send a power setpoint to VSCs in HVDC systems,

and the internal VSC controllers act to provide the desired

power injection into the ac grid controlled by the TSO. Thus,

the TSO does not directly control VSC voltages but controls

this setpoint, and the VSC will adjust the dc node voltage

based on this setpoint. Also, there are typically communication

delays associated with AGC in the seconds scale. To date,

some of these issues were addressed in [19], [20], where

MPC is used to aid AGC by manipulating the VSC setpoints,

explicitly considers control delays in the MPC formulation,

and considers voltage constraints on the dc grid using ‘soft’

constraints based on slack variables.

This paper provides a number of novel contributions to

address the aforementioned issues:

• Firstly, the authors use a Kalman filter to estimate the

system state based on a subset of state measurements.

• Secondly, the authors consider dc power losses in the

MPC cost function, in addition to minimising frequency

deviations in ac areas for AGC, and examine the effect

that this has on both the ac and dc side dynamics.

• Finally, the authors examine the effects of extra stochastic

sources on the performance of the MPC controller.

The following points as regards the MPC implementation

outlined in the paper are relevant. Firstly, as regards the

motivation for using MPC here, aside from the ability to

explicitly consider the DC voltage constraints, to the best of

the authors knowledge there is no trivial way to dynamically

consider losses in a DC grid using a simple PI approach.

Certainly, as will be seen in this paper, MPC provides a very

flexible framework for trading off the frequency regulation and

DC losses objectives. Finally, for researchers with an interest

in performing further research in the areas outlined in this

paper, it is noted that custom modules have been built in the

Dome simulation package [21] that allow the methodology

outlined in this paper to be applied to various combinations

of synchronous machines and VSCs for arbitrary ac/dc grid

configurations.

The paper is constructed as follows: the power system

modelling is outlined in Section II. MPC and Kalman filtering

are presented in Section III. The application of MPC and

Kalman filtering for AGC in ac systems connected to MTDC

grids is described in Section IV. A case study is then examined

in Section V. Finally, conclusions are drawn and some future

work is proposed in Section VI.

II. POWER SYSTEM MODELLING FOR CONTROL

The controllers in this paper are used to manipulate the

setpoints of both the synchronous ac generators and the

frequency regulation scheme of each of the VSCs. Thus the

dynamics of these devices are documented in this section.

A standard 6th order dynamic Marconata model is used for

simulation and control in this paper to capture the relevant

dynamics of the synchronous generators as follows:

δ̇ = Ωb(ω − ωs), (1)

2Hω̇ = (τm − τe −D(ω − ωs)), (2)

T ′
d0ė

′
q − T̃ ′′

d0ψ̇
′′
d = −e′q − (xd − x′d)id + vf , (3)

T ′
q0ė

′
d − T̃ ′′

q0ψ̇
′′
q = −e′d + (xq − x′q)iq, (4)

T ′′
d0ψ̇

′′
d = −ψ′′

d + e′q − (x′d − xℓ)id, (5)

T ′′
q0ψ̇

′′
q = −ψ′′

q − e′d − (x′q − xℓ)iq, (6)

coupled with the following algebraic equations:

τe = ψdiq − ψqid, (7)

0 = raid + ψq + vd, (8)

0 = raiq + ψd + vq, (9)

0 = ψd + x′′did − γd1e
′
q − (1− γd1)ψ

′′
d , (10)

0 = ψq + x′′qiq − γq1e
′
d − (1− γq1)ψ

′′
q , (11)

where δ is the rotor angle (rad), ω is the rotor angular

frequency (pu rad/s), τm is the mechanical torque (pu Nm), τe
is the electrical torque (pu Nm), ψd and ψq represent the d-

and q-axis fluxes (pu Wb), the d-axis flux e
′

q is the transient

emf due to field flux linkage (pu V), e
′

d is the transient emf

due to field flux linkage in the q-axis damper (pu V), id and

iq are the d- and q-axis components of stator current (pu A),

respectively, vf is the field voltage (pu V), and ψ
′′

d and ψ
′′

q are

the sub-transient emfs due to flux linkage in the d- and q-axis

dampers (pu V), and T̃ ′′
d0, T̃ ′′

q0, γd1, and γq1 are time constants

and gains as defined in [22]. The parameters associated with

the dynamic equations are given in Table I. The remaining

relevant algebraic equations associated with this generator type

are documented in [22].

The following simplified angular frequency model is pre-

sented here to illustrate principles central to frequency regu-

lation which are central to the themes of this paper:

2H
dω

dt
=

ng∑

i

pgi +

nvsc∑

i

pvsci − pL −D(ω − ω0) (12)

where pgi is the ac power generated in a particular ac area,

where there are ng generators, pvsci are dc injections into that

ac area, where there are nvsc dc connected sources, pL is

the load in that area, and D is the damping coefficient. In

this paper the ac sources are synchronous generators and the

dc sources are VSCs connected to MTDC grids. Thus the

regulation of the frequency is a matter of coordinating the

synchronous generator and VSC power injections depending

on the given load.
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TABLE I
SYNCHRONOUS MACHINE PARAMETERS

Variable Description Unit

Ωb Base angular frequency rad/s
ωs Reference angular frequency pu (rad/s)
D Damping coefficient pu (MW)
H Inertia constant MWs/MVA
ra armature resistance pu (Ω)
xl Leakage reactance pu (Ω)

xd/xq d/q-axis synchronous reactance pu (Ω)

x
′

d
/x

′

q d/q-axis transient reactance pu (Ω)

T
′

d0
/T

′

q0 d/q-axis open circuit transient time constant s

T
′′

d0
/T

′′

q0 d/q-axis open circuit sub-transient time constant s

1

Tss+1

1

R

T3s+1

Tcs+1

T4s+1

T5s+1

+

-
+

+
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Fig. 1. Turbine Governor control diagram [23].
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Fig. 2. Automatic Voltage Regulator model [23].

The mechanical power is generated using a turbine gov-

ernor [23], as given in Fig. 1. This consists of a primary

frequency controller, designed to control frequency variations

instantaneously based on local frequency measurements, and

an additional setpoint pord which allows the elimination of

longer term frequency offsets. The AVR model used with each

of the synchronous generators is the IEEE type DC1, given in

Fig. 2 [23].

The jth ideal VSC, acting as an interface between an ac

grid and the jth MTDC voltage node in a larger dc system, is

portrayed in Fig. 3. The following equality applies across the

ideal VSC:

vdcjidcj = vt,ajit,aj + vt,bjit,bj + vt,cjit,cj (13)

where vdcj and idcj represent the dc voltage and current

entering the jth VSC from the dc grid, respectively, vt,aj ,

vt,bj , and vt,cj are the sinusoidally varying a, b, and c phase

voltages produced on the ac side of the VSC, respectively,

and it,aj , it,bj , and it,cj are the sinusoidally varying a, b,

and c phase currents produced on the ac side of the VSC,

respectively.

The power balance between the dc and ac sides of the

converter is given by:

pacj + vdcjidcj − plossj −
1

2
Cdcj

d(v2dcj)

dt
= 0, (14)
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−
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Fig. 3. Block diagram of the VSC inner control loop and converter in dq
form [2].
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Fig. 4. Block diagram of the VSC outer loop ac voltage control [2].
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Fig. 5. The primary frequency VSC control loop [2].

where pacj =
1

2
(vac,djiac,dj + vac,qjiac,qj), vac,dj and vac,qj

are ac side voltages represented in the dq rotating frame, and

iac,dj and iac,qj are ac side currents represented in the dq

rotating frame; the
1

2
Cdcj

d(v2dcj)

dt
term represents energy vari-

ations in the dc side capacitor, where Cdcj is the capacitance

across the jth VSC’s dc voltage node, and ploss =
3

2
Racji

2
acj

is the circuit losses of the converter, where Racj represents the

ohmic power loss of the inductor, and i2acj = i2ac,dj + i2ac,qj .

Switching losses in the VSC are ignored here.

The VSC converter dynamics and fast internal VSC control

loop of the d and q component currents, iac,d and iac,q,

respectively, are given in Fig. 3. These are modelled in the

dq-domain [2]. An outer loop controllers is used to maintain

the ac voltage at its scheduled level, as in Fig. 4. Another

outer loop controller is used to provide primary frequency

regulation from VSCs, as in Fig. 5. This control loops trades

off frequency regulation, VSC power setpoint tracking and dc

voltage regulation performance.

The voltage dynamics at the jth dc grid node are given by:

Cdcj
d

dt
vdcj =

rj∑

i=1

R−1
dcjNj{i}

(vdcj − vdcNj{i}), (15)

where vdcj is the dc voltage at node j, Cdcj is the dc side

capacitor, Rdcjh is the resistance in the line connecting dc

voltage nodes j and h, and Nj is the indexed set of dc nodes

connected to dc node j through a dc line with cardinality rj .
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Traditionally PI controllers have been used to perform

AGC. Primary control acts on the local generator frequency

signal to regulate the power generated over short ms to s

time scales. AGC acts on the seconds to tens of seconds

scale using global system information to eliminate long term

offsets, which result from local primary control using only

proportional gains. Using PI for AGC, the Centre of Inertia

(COI) angular frequency signal is sent to a proportional and

integral controller to generate pord(t) as follows [24]:

pord(t) = kI

∫ t=∞

t=0

ωCOI(t)− ωs dt (16)

where kI is the integral gain and the centre of inertia angular

frequency ωCOI is given by:

ωCOI(t) =
1

HT

n∑

i=1

Hiωi(t) (17)

where there are n synchronous generators in the system and

HT =
∑n

i=1Hi.

In order to implement AGC, it is necessary for the TSO

to measure ωCOI(t), calculate the power to inject into the

system, and then communicate the various setpoints to each

of the generators. Thus, communication delays occur between

the measurement of the frequency and the point at which

generators receive the updated setpoint changes.

Finally, a scenario in which doubly fed induction generator

(DFIG) based wind farms contribute a significant stochastic

power injection into the system is considered in the case study.

The DFIG wind turbines are described by a variable-speed

wind turbine with a 5th-order DFIG model, a double-mass

elastic shaft model with tower-shadow effect, a turbine model

with continuous pitch control, a cubic maximum power point

tracking approximation, a first-order AVR model and a static

turbine governor. Wind speeds are modelled using a Weibull

distribution [23].

III. MODEL PREDICTIVE CONTROL AND KALMAN

FILTERING

A. Model Predictive Control

Model Predictive Control is an optimisation based control

technique that uses state-space based predictions in order to

form optimal inputs to a system over a prediction horizon.

While inputs are calculated over the full prediction horizon,

only the input for the first sample step of the prediction horizon

is applied to the system, and this process is repeated every

sample step.

A discrete-time, linear, time-invariant state-space model for

a system is given by

x(k + 1) = Ax(k) +Bu(k) (18)

y(k) = Cx(k), (19)

where x(k), u(k), and y(k) are the states, inputs, and outputs

of the system at sample step k, respectively. Matrices A, B,

and C are the relevant state-space matrices. An augmented

state-space model allows these equations to be framed in terms

of ∆u(k) and the augmented state χ(k)=[∆xT(k) xT(k)]T

(for a general variable b(k), ∆b(k)=b(k)−b(k−1), i.e., the ∆
operator denotes the change in a variable between sample steps

k−1 and k), which ensures integral action in the controller.

This is given as follows:

χ(k + 1) =

Â
︷ ︸︸ ︷
[
A 0

A I

]

χ(k) +

B̂
︷︸︸︷
[
B

B

]

∆u(k)
(20)

y(k + 1) =

Ĉ
︷ ︸︸ ︷
[
0 C

]
χ(k + 1).

(21)

The predicted state x̃(k + 1) and incremental predicted state

∆x̃(k+1) can be found from these equations, where for a gen-

eral vector p, its prediction vector is p̃(k) = [pT(k) . . .pT(k+
H − 1)]T, where H is called the prediction horizon for

the system [8]. This results in the following state prediction

matrices:

χ̃(k + 1) = Ãχ̃(k) + B̃∆ũ(k). (22)

The tilde notation is used with the matrices here to denote that

they are prediction matrices.

It should be noted that once these predictions have been

formulated it is straightforward to consider the case where

there is control communication delays. If there is a delay of ς

samples, then ∆u(k), . . . ,∆u(k+ ς − 1) are considered con-

stant at the values that they were calculated at in sample steps

k− ς, . . . , k−1, and inputs variables ∆u(k+ ς), . . . ,∆u(k+
H − 1) are optimised for. Thus B̃ in (22) can be separated

into those elements that correspond to the constant part of the

input vector and the part that corresponds to the subset of the

predicted inputs that are to be optimised for.

MPC problems are constructed to fulfill control objectives

for a system based on knowledge of x(k). A cost function,

J(χ(k),∆ũ(k)) (which will henceforth be denoted by J(k)),
is designed so as to embody the system’s objectives. Typically

this cost function is quadratic in ∆ũ. The quadratic function

used in this paper will be discussed in Section IV. The optimal

choice of controls can be found by solving the following

optimisation problem:

∆ũ∗(k) = min
∆ũ(k)

J(k),

s.t. A∆ũ(k) ≤ b,
(23)

where a superscripted * denotes the optimum value of a

variable, and A and b represent inequality constraints in the

control problem.

If there are feasibility issues associated with the inequality

constraints, due to model uncertainties, it is possible to reframe

the inequality constraints as ‘soft’ constraints by minimising

the infinite norm of an additional slack variable, ǫ. Feasibility

is thus maintained by seeking to minimise the value of ǫ

in order to maintain the desired inequality constraint. The

following formulation of the problem achieves this objective

[8]:

∆ũ∗(k) = min
∆ũ(k),ǫ

J(k) + ρǫ,

s.t. A∆ũ(k) ≤ b+ 1ǫ,

ǫ ≥ 0,

(24)
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where 1 is a vector of ones with the same dimensions as b.

Once the predicted inputs from MPC have been computed, the

input at the start of the horizon u(k) is applied to the system

and this process is repeated each sample step.

B. State estimation using Kalman filtering

When it is undesirable, un-economic or impossible to mea-

sure certain states for MPC, a Kalman filter can be used to

estimate them. Kalman filters allow a maximum likelihood

estimate of states to be formed provided the noise associated

with both the states and the output measurements are normally

distributed about the mean [25]. We will henceforth assume

that Kalman filtering is used with MPC for the rest of the

paper to estimate unmeasured states.

Consider the following state-space and output measurement

equations,

xǫ(k + 1) = Axǫ(k) +Bu(k) +w(k), (25)

z(k) = y(k) + v(k) = Cǫχ(k) + v(k), (26)

where xǫ(k) is the state estimate, the state noise uncertainty

w(k) ∼ N (0,σw), σw is the variance at sample step k

of the state noise uncertainty, the output measurement noise

uncertainty v(k) ∼ N (0,σv), σv is the variance at sample

step k of the output measurement, and Cǫ is the Kalman

state output matrix. A Kalman filter effectively merges the

predicted state measurement based on (18) with the new output

measurement given by (26), to give an update of the new state

estimate and the associated state covariance matrix P (k) as

follows [26]:

P ∗(k) = AǫP (k)AT
ǫ + σw, (27)

K(k + 1) = P ∗(k)CT
ǫ (CǫP

∗(k)CT
ǫ + σv), (28)

χǫ(k + 1) = (I −K(k + 1)Cǫ)(Aǫχ(k) +Bǫu(k))

+K(k + 1)z(k),
(29)

P (k + 1) = (I −K(k + 1)Cǫ)P
∗(k), (30)

where P ∗(k + 1) is the covariance as predicted by (18). The

Kalman gain matrix K is chosen on the basis of the error

covariance and noise statistics at sample step k − 1, so as to

minimise the variance of the next estimate. When the Kalman

filter is used with MPC x(k) = xǫ(k).

IV. FORMULATING MPC FOR AGC IN MTDC GRIDS

A. Deriving the state-space MPC model from the semi-implicit

DAE.

The first step involved in designing the MPC is to derive

a suitable state-space model that considers the dynamics of

the system at the time-scales of interest. The authors have

developed custom functionality for the ‘Dome’ power systems

simulation package [21] that automates the process whereby

the state-space matrix used for control is constructed. This

process will now be described.

The dynamic behaviour of electrical power systems can be

described using a nonlinear semi-implicit differential algebraic

equation (SIDAE) [22]:
[
T nl 0

Rnl 0

] [
ẋnl

0

]

=

[
f(xnl,ynl)
g(xnl,ynl)

]

(31)

where xnl denotes the dynamic states of the nonlinear power

system, y are the algebraic states, and in general T nl and Rnl

are time-variant, non-diagonal and non-full rank. The matrix

0 denotes a matrix of zeros. Equations fnl are the explicit

part of the nonlinear differential equations and gnl are the

explicit part of the nonlinear algebraic equations. The first

step to deriving the state-space matrices used by MPC is to

linearise (31) giving:
[
T̂ 0

R̂ 0

] [
ẋnl

0

]

=

[
fx fy

gx gy

] [
xl

y

]

, (32)

where T̂ , R̂, fx, fy, gx, and gy are the linearisations of

T nl, Rnl, f(xnl,y), and g(xnl,y) with respect to the xnl

and y0 at linearisation point (xnl0,y0). The linearised state

variables are given by xl = xnl − xnl0 and the linearised

algebraic variables are given by y = ynl − y0. At this stage

(32) represents a linearisation of the entire simulated system.

The following paragraphs show how the state-space used for

control is extracted from this linearised semi-implicit model

of the system.

The MPC typically has access to the models and inputs of a

subset of devices for the purposes of control, and so these first

must be separated from the remaining elements in the system.

The dynamic states, the equations relevant to the MPC, and

the inputs are expressed separately from the remaining system

states, algebraic variables, and dynamic equations as follows:




T T xg 0 0

T rxd T rxg 0 0

R Rxg 0 0

Rrxd Rrxg 0 0









ẋd

ẋg

0

0



 =





fxd fxg fy fu

f rxd f rxg f ry f ru

gx gxg gy gu

grxd grxg gry gru









xd

xg

yr

u





(33)

Here xd denotes the dynamic states which the MPC has access

to for use in its model. The remaining states which are not

used by MPC are denoted by xg. The control inputs, u, used

for AGC are considered as algebraic variables. Thus, these are

separated from the remaining algebraic variables yr. The first

and third rows of (33) (the rows corresponding to T and R)

denote the rows of dynamic and algebraic equations which the

MPC has access to. The second and fourth rows of equations

are used in the simulation but are not known by the MPC. As

it is assumed that xg is unknown to the MPC, then the MPC

model ignores the effects of matrices fxg and gxg.

This leaves the following two equations which can be used

to form the state-space representation:

[
T 0

R 0

] [
ẋd

0

]

=

[
fx fu fy

gx gu gy

]




xd

u

yr



 (34)

By rearranging the second row of (34) to give yr in terms of

xd, u, and ẋd, and substituting this value of yr into the first

row of (34), the state-space representation ẋd = Adxd+Bdu

can be found where Ad = (T−fyg
−1
y Rx)

−1(fx−fyg
−1
y gx)

and Bd = (T − fyg
−1
y gx)

−1(fu − fyg
−1
y gu).
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Often the dynamics of certain states of the MPC state-

space model will occur on time-scales which are relatively

fast in comparison to the dynamics of the other states. By

considering these variables as algebraic in the MPC state-

space model, it allows larger sample times to be used for the

discretisation of the model. As a result the MPC can predict the

system response further into the future for the same prediction

horizon. This is conducted as follows. The dynamic states are

divided into those states whose dynamics are maintained, x,

and those whose time constants are to be set to zero x0.

Setting the time constants associated with x0 to zero gives

the following:

[
ẋ

0

]

=

Ad
︷ ︸︸ ︷
[
A11 A12

A21 A22

] [
x

x0

]

+

Bd
︷ ︸︸ ︷
[
B1

B2

]

u (35)

Then by expressing x0 in terms of x and u using the second

row of the (35) the state-space representation to be used for

the control of the system, ẋ(t) = Ax(t) + Bu(t) is found

where A = A11−A12A
−1
22 A21 and B = B1−A12A

−1
22 B2.

Having discussed how the MPC state-space is formed from the

nonlinear SIDAE, the constitution of the state-space model and

the construction of the MPC cost function and constraints are

now outlined.

B. MPC state-space description and design.

In this paper, all the dynamics associated with the syn-

chronous machines, the VSCs, and the various controllers

associated with these devices, as described in Section II

constitute the control model that the MPC has access to for

constructing the state-space model. Many of the dynamics of

the synchronous machines and VSCs occur on time scales

which are significantly faster than those of interest for the

MPC. Thus, it is desirable to set the time constants associated

with the following dynamic states to zero; with regard to

the synchronous machines the time constants associated with

the voltage and flux dynamics of variables e
′

d, e
′

q , Ψ
′

d, and

Ψ
′

q , and the time constants associated with the states of the

Automatic Voltage Regulators; with regard to the VSCs, the

time constants associated with the VSC inner loop current

dynamics, the inner loop current controller dynamics, and

those associated with the VSC ac voltage controller. Thus,

the dynamic state is given by x = [xT
v ,x

T
δ ,x

T
ω ,x

T
tg,x

T
vscf ]

T,

where xv = [xv1, . . . , xvnv
] = [vdc1 − vdc10, . . . , vdcnv

−

vdcnv0]
T, with nv representing the number of VSC connected

voltage nodes in the dc grid, xδ = [δ1−δ10, . . . , δng
−δng0]

T,

xω = [ω1 − ω10, . . . , ωng
− ωng0]

T, with ng representing

the number of synchronous generators in the system under

MPC control, and xtg and xvscf represent the deviation of

the states associated with the turbine governor and VSC

outer loop frequency controller from their linearisation points,

respectively. In all the above, and in the remainder of the

paper, the 0 subscript denotes the linearisation point of

that particular variable. The input vector to the system is

given by u = [ptgord1 − p
tg
ord10, . . . , p

tg
ordng

− p
tg
ordng0

, pvscord1 −

pvscord10, . . . , p
vsc
ordnv

−pvscordnv0
]T, where p

tg
ordi is the setpoint sent

to the ith turbine generator, and pvscordi is the setpoint sent to

the ith VSC primary frequency regulator.

It is necessary to design the MPC such that the setpoints

of the ac machines and VSCs are manipulated so as to

minimise predicted frequency deviations in the ac areas, while

minimising losses on the dc grid, and maintaining dc voltages

within desired bounds. Thus, the following quadratic equation

is proposed:

J(k) =x̃T
ωQωx̃+ x̃T

v G̃x̃v +∆ũTQu∆ũ (36)

where weighting matrices Qω = diag(qω, . . . , qω), Ql =
diag(ql, . . . , ql), and Qu = diag(qu, . . . , qu), determine the

relative importance of minimising the frequency error, the dc

power losses and the changes in inputs from sample to sample,

respectively, qω , ql, and qu are tuning constants for these

matrices, and the (k) the (k + 1) dependencies are dropped

from x̃ω(k+1), x̃v(k+1), and ∆u(k) for compactness. The

first cost term of (36) is related to the minimisation of the

frequency error. The final term of (36) is a stabilising term

which provides robustness against uncertainty by discouraging

changes in the input from sample to sample.

Losses in the DC grid are given as follows:

vTGv = Pdc1 + . . .+ Pnv

= vdc1

r1∑

i=1

R−1
dc1N1{i}

(vdc1 − vdcN1{i}) + . . .

+ vdcnv

rnv∑

i=1

R−1
dcnvNnv{i}

(vdcnv
− vdcNnv{i}

)

(37)

where the (k+ 1) dependency has been omitted from the vdc
and Pdc variables for compactness, and v = [vdc1, . . . , vdcnv

]T

[16]. Here, conductances are positioned in G such that the

equality in (37) holds, and G̃ = diag(G, . . . ,G). The cost,

x̃T
v G̃x̃v, in (37) does not explicitly minimise the total DC

losses, but does provide a quantity to the MPC that is repre-

sentative of the predicted losses on the DC network about the

linearisation point v0. It is noted that while the frequency/dc

losses trade-off is focused on in this paper, MPC can account

for a range of objectives with relation to dc networks. The

authors refer to [18] as an example.

It is desirable to regulate the dc voltages within bounds

using slack constraints in order to avoid the possibility of

infeasibility due to uncertainties related to the dc grid or

approximations in the MPC model due to linearisation of the

nonlinear system model. Thus the following slack inequality

constraint is applied:

[
IH

−IH

]

x̃vi ≤

[
xv,maxi

−xv,mini

]

+

[
1

1

]

ǫi, for i = 1, . . . ,nv,

(38)

where IH is a HxH identity matrix, xv,maxi =
[xv,maxi, . . . , xv,maxi]

T and xv,mini = [xv,mini, . . . , xv,mini]
T,

with xv,maxi and xv,mini denoting the desired upper and lower

bounds for xvi, respectively, and ǫi is the slack variable

associated with the ith dc voltage node. Having formulated

the cost function, as in (36), and the slack constraint as above,

the MPC problem can then be solved, as in (24).
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Fig. 6. Case study grid. For the deterministic case the wind power input is
zero.

Finally, it is necessary to use the Kalman filter in or-

der to estimate the state x(k). The following measure-

ment vector allows for estimation of this state, z =
[δ1, ω1, . . . , δng

, ωng
, vdc1, . . . , vdcnv

]. The Kalman filter can

then be used to estimate the system state, as in (27)-(30).

The authors note here that customised integrated functional-

ity has been constructed in the Dome [21] simulation system,

which automates the process of constructing the state-space,

MPC, and Kalman filter for the system. Once the user of the

software has initially specified the generators and VSCs to

be controlled using MPC, and the various tuning parameters

and constraints to be applied, the software automates the rest

of the process of constructing and applying the control. It is

hoped that this will help improve the efficiency with which

MPC can be applied to ac/dc based systems in future. In the

following section the MPC based AGC will be applied to a

MTDC testbed.

V. CASE STUDY

A. Simulation details

The authors considered an augmented version of the testbed

previously utilised in [2], as shown in Fig. 6, including both

extra loads and DFIG-based farms. Two cases are considered

for simulation. The first considers a deterministic case where

areas 2 and 3 consist of a synchronous generator which serves

a local load and sends energy through the VSCs to ac area 1. In

the second case, which considers stochastic power production,

areas 2 and 3 consist of 2 DFIG based wind farms that provide

900 MW and 300 MW to ac area 1, respectively.

The simulation was built using the Dome software package

[21]. The base power is given by Sbase = 100 MW, base

voltage Vbase = 470 kV, and base frequency fac = 50 Hz.

TABLE II
GENERATOR PARAMETERS

Generator 1 2 3 4 5 6

P 0
m (pu MW) 7.02 7.02 10.09 7.02 10.09 4.84

M (s) 13 13 12.35 12.35 12.35 12.35

R 0.05 0.05 0.05 0.05 0.05 0.05

TABLE III
VSC PARAMETERS

VSC 1 2 3 4

v0
dc

(pu kV) 1 0.986 0.988 1.09

βf (pu MW) 1 1 1 1

βP (s) 0.1 0.5 0.5 0.1

The generator values are given as in Table II, where P 0
m is

the initial power output in pu of generator j, and M gives

the inertia of each generator in s. VSC proportional gain

parameters and initial dc voltages at each of the VSCs v0dc are

given in Table III for the deterministic case. Each VSC uses

a value of Kp,dc = 1 and Ki,dc = 1. These proportional and

integral gains result in stable behaviour after a fault but also

result in an underdamped response. These gains are chosen to

highlight the ability of the various AGC strategies to improve

systemwide damping.

The HVDC lines are modelled as asymmetric monopolar

lines [2] with shunt capacitances Cdcj = 0.4 mF for j =
1 . . . nv , and the following dc resistance value on the dc lines:

R12 = 8 Ω, R24 = 70 Ω, R23 = 1.5 Ω, R34 = 45 Ω. Each

of the VSCs are equipped with a local voltage controller and

the outer frequency droop control loop shown in Fig. 5. For

the stochastic case the DFIGs provide the power from AC

areas 2 and 3 so as to contribute a significant stochastic power

contribution to the system.

In the stochastic case, the same parameters in Table III are

used except βf1 = 0, βf4 = 0, βP1 = 0.5, βP4 = 0.5, where βfi
and βPi denote the frequency and ac power regulation gains

associated with the primary controller of the VSC connected

to DC node i. In this scenario, it is assumed that the wind

farms provide power to serve the regulation of frequency in

ac area 1. Thus, the frequency gains are set to zero as VSCs 1

and 4 are not used for local frequency regulation. However, the

pord signals for the VSCs at DC nodes 1 and 4 are controlled

using AGC in order to help regulate ωcoi1.

The MPC and Kalman filter parameters used in simulations

are given in the following. A sample time of 0.1 s was used

for the discretisation and a prediction horizon of 2.5+dc s was

used, where dc constitutes the control communication delay

time in s. The weights used in the weighting matrices are

given by qω = 5, ql = 1, qu = 0.1, and the weight used for the

slack constraint ρ = 0.01. For the PI-based AGC controllers,

the integral gains for the synchronous generators and VSC

setpoint control loops are set to kI = 10. These controller

weights were chosen using trial and error in order to give a

stable and damped response. The tuning of these variables can

significantly impact the performance of the controller. The dc

voltages limits are given by vmaxi = v0dci+0.1 pu and vmini =
v0dci − 0.1 pu, for i = 1, . . . , 4. The Kalman filter was tuned

such that σv = 0.01 and σw = 0.001 which gave accurate

state tracking. The loss of the dc line between nodes 2 and
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Fig. 7. First 20 s of PI based simulation. Illustrates effect of dc line loss.

3 was considered in simulations. This results in a significant

disturbance for both the ac and dc systems and represents

considerable model uncertainty from the point of view of the

MPC controllers. The results will now be discussed.

B. Results

First, the simulations were run for the deterministic case,

where there is no contribution from the DFIGs. Two control

communication delays were considered, 3 s and 5 s, with 3

s representing a realistic communication delay between the

TSO and VSCs and generators, and 5 s included to illustrate

the effect of a longer delay time on the control performance.

The authors considered 4 different control scenarios for these

simulations; an unconstrained MPC that considers both fre-

quency error and dc loss minimisation (MPC LM), a MPC

that considers frequency error and dc loss minimisation and

uses slack variable to enforce soft dc voltage constraints

(MPC LMS), an MPC that only considers frequency error

minimisation but also uses slack variables to regulate the dc

node voltages (MPC Slack), and finally a PI controller that

provides integral gain based AGC control for the VSC and

generator setpoints to minimise frequency errors (PI).

The results for the 3 s delay scenario can be seen in Figs.

8-13, which show the frequency responses in each of the ac

areas, the dc voltage responses, and the overall dc power losses

in the grid, respectively. Figure 7 illustrates the initial impact

of the dc line loss on the AC areas for the PI case. It can be

seen in Figs. 8-13, that the MPC LM cases provide the best

frequency regulation and dc loss minimisation performance,

while providing significantly better damping than the other

algorithms. The MPC slack controller provides improved

frequency regulation versus the PI controller, while regulating

the dc voltage within bounds. However, it provides a very

poorly damped frequency response, as does the PI controller.

The authors note here issues regarding the use of slack

inequality constraints for the MPC LMS case. Figure 12 shows

how the need to satisfy the constraints on vdc3 at around

150 s induces a frequency deviation as it seeks to satisfy

the voltage constraints and minimise the dc power losses.
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Fig. 8. COI frequency in area 1 for 3 s delay. Deterministic case.
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Fig. 10. COI frequency in area 3 for 3 s delay. Deterministic case.

Comparing vdc3 for the MPC and LM cases, it can be seen,

that the MPC LMS reduces the voltage oscillations for the first

100 s in order to satisfy the slack voltage constraints. This,

however, results in a voltage drift towards the lower voltage

limit. Looking at Figs. 12 and 13, it can be seen that the

MPC LMS is capable of both returning vdc3 within the desired
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bounds and reducing the DC losses. The trade off, however,

is the introduction of frequency deviations in each of the AC

areas, as can be seen in Figs. 8-10. The MPC LMS is forced

into this situation, unlike the MPC LM, because it suppresses

some of the earlier voltage deviations. Thus, for practitioners

who may use this algorithm, careful consideration would need

to be given to the introduction of slack voltage constraints,

as it may result in undesirable frequency deviations, due to

voltage regulation issues on the DC grid. However, this is a

very nice illustration of how MPC is capable of handling the

various system objectives in an intelligent way. It is only at

the 150 s mark that, having damped much of the larger initial

frequency, that it then focuses its ‘attention’ on minimising

the DC grid losses, all the while maintaining the DC voltages

within bounds. With SISO PI control approaches, attaining this

level of coordination, while maintaining a high system-wide

performance, is certainly more difficult to achieve.

The results of the deterministic case with a 5 s commu-

nication delay can be seen in Figs. 14 and 15. The same

hierarchy of control performance as was seen for the 3 s case

occurs in this case too. However, it is observed that this longer

delay results in an increasingly underdamped response from

the MPC controllers, as can be seen in Fig. 14. This is likely

because of the disparity between the linear control model and

the nonlinear system when using a longer prediction horizon.

The linear and nonlinear models match closely up to about 3

s but begin to deviate for longer horizons, as can be seen for

the step test in Fig. 16. These disparities could thus result in

the MPC ‘seeing’ larger errors further into the future, and thus

increasing the suboptimality of the input applied to the system,

as opposed to the case for a shorter horizon. Therefore when

considering these linear MPC controllers, it is important to

consider the accuracy of predictions past a certain prediction

horizon.

The results from the stochastic case are given in Figs. 17-19.

Given the aforementioned issues as regards the MPC LMS al-

gorithm, the authors chose to compare the unconstrained MPC

LM algorithm against the PI controller for a communication

delay of 3 s. It can be seen in each case that the MPC is

robust to the extra noise uncertainty due to the wind, providing

reduced dc losses, improved frequency error minimisation and

better frequency damping than the PI case.

Finally, the effectiveness of the Kalman filter is evaluated

for this stochastic scenario. It should be noted that the noise

injected from the wind is based on a non-normal Weibull dis-

tribution. As Kalman filters assume normal noise distributions,

it is of interest to investigate the state estimation performance

under non-normal noise uncertainty, and parameter uncertainty

in the dc grid. Fig. 20 shows the state estimate of one of the

internal VSC voltage regulation loops. It can be seen here that

the Kalman filter provides a highly accurate state estimate here

of this unmeasured state, as it does for the other estimated state

variables.

C. Penalising DC setpoint deviations

Typically point-to-point HVDC controllers are designed so

as to regulate DC line voltages such that the scheduled DC

power is maintained. Thus it is of interest to investigate

the performance of the controllers when deviations from the

scheduled prefac values, prefac0, are penalised.
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The following local PI-based AGC is augmented to return

the dc power setpoint to its original value:

prefac (t) =

∫ t=∞

t=0

kIω(ωCOI(t)− ωs)− kIu(p
ref
ac (t)− prefac0) dt

(39)
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Fig. 17. COI frequency in area 1 for 3 s delay. Stochastic wind case.
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Fig. 18. DC grid voltages at dc node 2 with 3 s delay. Stochastic wind case.
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where prefac0 is the nominal VSC power setpoint, kIω and kIu are

the integral gains associated with deviations from the nominal

frequency and scheduled DC power, respectively.

An additional cost is added to the MPC cost function to

penalise deviations of the setpoints prefac from their nominal
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values. The new cost function incorporating VSC power

setpoint deviation penalties becomes:

J(k) =x̃T
ωQωx̃+ x̃T

v G̃x̃v +∆ũTQu∆ũ+ p̃TQpp̃,

(40)

where p = [(prefac1(k) − prefac01) . . . (p
ref
acnv

(k) − prefac0nv
)]T, and

weighting matrix Qp =diag(qp, . . . , qp).

Simulations are conducted using the wind-free scenario so

as to illustrate clearly the effects of penalising the setpoint

deviations. Here βp = 0.5, βf = 10, KP,dc = 3, and

KI,dc = 1.7, which ensure a significant primary and sec-

ondary response from the controllers. With regard to the PI

controllers kIω = 10 and kIu = 0.05. For the MPC controller

qp = 2 × 10−4, with the rest of the parameters tuned as in

the previous examples. Tuning here was based on trial and

error to give desirable system performance while maintaining

a stable and damped response. The simulations were carried

out for the same scenario as outlined previously, for the loss

of a DC line, and comparisons are made with the cases where

kIu = 0 for the PI-based control and qp = 0 for the MPC

based control.

The resultant frequency and DC power plots can be seen in

Figs. 21-25. A number of observations are made with relation

to the frequency responses. While the MPC initially results

in some larger frequency deviations than the PI within the

first 20 s, it quickly stabilises the system to provide a damped

frequency response. This larger initial frequency deviation is

explained by the MPC seeking to minimise the DC side losses

where as can be seen in Fig. 25.

The prefac deviation penalty is effective in regulating DC

powers in closer proximity to their original scheduled values,

as can be seen in Fig. 24. Additionally, for the MPC it

provides improved frequency regulation while maintaining the

DC power loss minimisation performance. Thus, if it is desired

to maintain the DC powers close to their scheduled values, the

use of the prefac deviation penalty provides several advantages.

However, it should be noted that one of the main motivating

factors behind the construction of MTDC grids is the ability

to exchange of large amounts of reserves over wide areas.
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Fig. 21. COI frequency in area 1 for 3 s delay. Penalising VSC setpoint
deviations example.
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Fig. 22. COI frequency in area 2 for 3 s delay. Penalising VSC setpoint
deviations example.
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Fig. 23. COI frequency in area 3 for 3 s delay. Penalising VSC setpoint
deviations example.

The use of the prefac deviation penalties limits the degree to

which an AC area will inject power into the DC grid. Thus, the

implementation of prefac deviation penalties gives practitioners a

degree of freedom with system design in terms of determining

to what degree DC powers can deviate from their original
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Fig. 24. AC power injected from VSC 2. Penalising VSC setpoint deviations
example.
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Fig. 25. Losses in DC grid. Penalising VSC setpoint deviations example.

scheduled setpoints.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a model predictive control (MPC) algorithm

was proposed for coordinating automatic generation control

(AGC) in ac systems connected to multi-terminal high voltage

dc (MTDC) grids. The MPC is designed to regulate frequency

errors and minimise dc power grid losses. The use of ‘soft’

constraints based on slack variables is also investigated as

a means of maintaining dc voltages within upper and lower

bounds. A Kalman filter is designed to provide state estimates

for the MPC from a subset of measurements. Finally, the effect

of limiting DC power setpoint deviations from their nominal

values was investigated. Custom software was developed in

the ’Dome’ simulation environment to allow this control to be

applied to arbitrary ac/dc grid configurations. It was found that

the MPC controllers provided significant improvements over

PI controllers in terms of frequency regulation and damping,

and dc grid power loss minimisation.

Future work will look at applying this technique for the

regulation of realistic models of large scale ac/dc grids, such

as the European Supergrid. Additionally, distributed MPC will

be evaluated as a means of applying this control in a non-

centralised fashion to coordinate the actions of Transmission

Systems Operators. While an unconstrained Kalman filter is

used in this paper, it would be of interest to investigate the

use of moving horizon estimation techniques to frame the

estimation problem as an optimisation problem that could

consider constraints on the estimated state.
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