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Multi-objective Optimization for Pricing System
Security in Electricity Markets
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Abstract— This paper proposes a novel technique for rep-
resenting system security in the operations of decentralized
electricity markets, with special emphasis on voltage sta-
bility. An Interior Point Method is used to solve the Op-
timal Power Flow problem with a multi-objective function
for maximizing both social benefit and the distance to max-
imum loading conditions. A 6-bus system with both sup-
ply and demand-side bidding is used to illustrate the pro-
posed technique for both elastic and inelastic demand, and
a 129-bus test system that models the Italian HV transmis-
sion network is used for testing the practical applicability
of the proposed method. The results obtained show that
the proposed technique is able to improve system security
while yielding better market conditions through increased
transaction levels and improved locational marginal prices
throughout the system.

Keywords—Electricity markets, locational marginal prices,
maximum loadability, security, multi-objective optimiza-
tion.

I. Introduction

IN recent years, the electricity industry has under-
gone drastic changes due to a world wide deregula-

tion/privatization process that has significantly affected en-
ergy markets. With past and current difficulties in build-
ing new transmission lines and the significant increase in
power transactions associated with competitive electricity
markets, maintaining system security is more than ever
one of the main concerns for market and system operators.
Hence, there is a need for pricing this security in a sim-
ple, unambiguous and transparent way, so that the “right”
market signals can be conveyed to all market participants.
However, pricing security is not an easy task, since it in-
volves a variety of assumptions as well as complex models
and simulations. In the three main market models that
have been proposed, i.e. centralized markets, standard auc-
tion markets and spot pricing or hybrid markets, how to
properly include system security is still an open question.
This paper mainly focuses on hybrid markets and on the
inclusion of proper security constraints through the use of
a multi-objective Optimal Power Flow (OPF) based ap-
proach, which is solved by means of a logarithmic barrier
Interior-Point Method (IPM).

In [1], several strategies were proposed for an OPF with
active power dispatching and voltage security (represented
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only by voltage limits) using an IPM that proved to be
robust, especially in large networks, as the number of it-
erations increase slightly with the number of constraints
and network size. The early implementations of IPM for
solving market problems, accounting somewhat for system
security, were limited to the use of linear programming [2].
In [3] and [4], the authors present a comprehensive inves-
tigation of the use of IPM for non-linear problems, and
describe the application of Merhotra’s predictor-corrector
to the OPF, which highly reduces the number of iterations
to obtain the final solution. Non-linear optimization tech-
niques have also been shown to be adequate for addressing
a variety of voltage stability issues, such as the maximiza-
tion of the loading parameter in voltage collapse studies, as
discussed in [5], [6], [7] and [8]. In [9] and [10], non-linear
IPM techniques are applied to the solution of diverse OPF
market problems. Finally, in [11], the authors proposed a
technique to account for system security through the use
of voltage stability based constraints in an OPF-IPM mar-
ket representation, so that security is not simply modeled
through the use of voltage and power transfer limits, typ-
ically determined off-line, but it is properly represented
in on-line market computations. In the current paper, a
multi-objective approach similar to the one proposed in [8]
is used in an OPF-IPM market model, so that the social
benefit and the distance to a maximum loading condition
are maximized at the same time. In this case, voltage sta-
bility concepts and techniques are used to improve the rep-
resentation of system security.

The paper is organized as follows: Section II presents
the basic concepts on which the proposed methodology is
based, discussing briefly how transmission system conges-
tion is represented in the proposed models; the use of Lo-
cational Marginal Prices (LMPs) to determine the cost of
system security is also discussed in this section. In Section
III, the use of the proposed technique is illustrated in a
6-bus test system with elastic and inelastic demand, and
in a realistic 129-bus test system based on a model of the
Italian HV transmission network assuming elastic demand
bidding. For both test systems, results are compared with
respect to solutions obtained with a standard OPF-based
market technique. Finally, Section IV discusses the main
contributions of this paper as well as possible future re-
search directions.

II. Multi-Objective OPF with Voltage Stability

Constraints

The OPF-based approach is basically a non-linear con-
strained optimization problem, and consists of a scalar ob-



jective function and a set of equality and inequality con-
straints. A typical OPF-based market model can be rep-
resented using the following security constrained optimiza-
tion problem (e.g. [12]):

Min. − (CT
DPD − CT

S PS) → Social benefit (1)
s.t. f(δ, V,QG, PS , PD) = 0 → PF equations

0 ≤ PS ≤ PSmax → Sup. bid blocks
0 ≤ PD ≤ PDmax → Dem. bid blocks
| Pij(δ, V ) |≤ Pijmax → Power transfer lim.
| Pji(δ, V ) |≤ Pjimax

Iij(δ, V ) ≤ Iijmax → Thermal limits
Iji(δ, V ) ≤ Ijimax

QGmin ≤ QG ≤ QGmax → Gen. Q lim.
Vmin ≤ V ≤ Vmax → V “security” lim.

where CS and CD are vectors of supply and demand bids in
$/MWh, respectively; QG stand for the generator reactive
powers; V and δ represent the bus phasor voltages; Pij and
Pji represent the power flowing through the lines in both di-
rections, and are used to model system security by limiting
the transmission line power flows, together with line cur-
rent Iij and Iji thermal limits and bus voltage limits; and
PS and PD represent bounded supply and demand power
bids in MW. In this model, which is typically referred to as
a security constrained OPF, Pij and Pji limits are obtained
by means of off-line angle and/or voltage stability studies.
In practice, these limits are usually determined based only
on power flow based voltage stability studies [13]. Hence,
these limits do not actually represent the actual stability
conditions of the resulting solution, which may lead in some
cases to insecure solutions and/or inadequate price signals,
as demonstrated in this paper.

A. Proposed OPF Market Model

In this paper, the following optimization problem is pro-
posed to represent an OPF market model, based on what
has been proposed in [7], [8], [11], so that system security
is better modeled through the use of voltage stability con-
ditions:

Min. G = − ω1(CT
DPD − CT

S PS) − ω2λc (2)
s.t. f(δ, V,QG, PS , PD) = 0 → PF equations

f(δc, Vc, QGc
, λc, PS , PD) = 0 → Max load PF eqs.

λcmin ≤ λc ≤ λcmax → loading margin
0 ≤ PS ≤ PSmax → Sup. bid blocks
0 ≤ PD ≤ PDmax → Dem. bid blocks
Iij(δ, V ) ≤ Iijmax → Thermal limits
Iji(δ, V ) ≤ Ijimax

Iij(δc, Vc) ≤ Iijmax

Iji(δc, Vc) ≤ Ijimax

QGmin ≤ QG ≤ QGmax → Gen. Q limits
QGmin ≤ QGc

≤ QGmax

Vmin ≤ V ≤ Vmax → V “security” lim.
Vmin ≤ Vc ≤ Vmax

In this case, a second set of power flow equations and con-
straints with a subscript c is introduced to represent the
system at the limit or “critical” conditions associated with
the maximum loading margin λc in p.u., where λ is the
parameter that drives the system to its maximum loading
condition. The maximum or critical loading point could
be either associated with a thermal or bus voltage limit
or a voltage stability limit (collapse point) corresponding
to a system singularity (saddle-node bifurcation) or sys-
tem controller limits like generator reactive power limits
(limit induced bifurcation) [14], [15]. Thus, for the current
and maximum loading conditions, the generator and load
powers are defined as follows:

PG = PG0 + PS (3)
PL = PL0 + PD

PGc
= (1 + λc + kGc

)PG

PLc
= (1 + λc)PL

where PG0 and PL0 stand for generator and load powers
which are not part of the market bidding (e.g. must-run
generators, inelastic loads), and kGc

represents a scalar
variable used to distribute the system losses associated only
with the solution of the critical power flow equations in
proportion to the power injections obtained in the solu-
tion process, i.e. a standard distributed slack bus model is
used. It is assumed that the losses corresponding to the
maximum loading level defined by λc in (2) are distributed
among all generators; other possible mechanisms to handle
increased losses could be implemented, but they are beyond
the main interest of the present paper.

In the proposed OPF-based approach, λc represents the
maximum loadability of the network and, hence, this value
can be viewed as a measure of the congestion of the net-
work, which is represented here using the following Maxi-
mum Loading Condition (MLC) definition:

MLC = (1 + λc)ΣPDi
(4)

In the computation of λc, contingencies are not consid-
ered. (Their inclusion is beyond the scope of this paper.
However, in the literature, a few approaches have been
proposed to include contingencies in voltage stability con-
strained OPF that could be considered in the OPF formu-
lation proposed in this paper; for example, the heuristic
method discussed in [16].)

In the multi-objective function G, two terms are present,
with their influence on the final solution being determined
by the value of the weighting factors ω1 and ω2 (ω1 > 0,
ω2 > 0). The first term represents the social benefit,
whereas the second term guarantees that the ”distance”
between the market solution and the critical point is max-
imized [7]. Observe that ω1 > 0, since for ω1 = 0 there
would be no representation of the market in the pro-
posed OPF formulation, rendering it useless. Furthermore,
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ω2 > 0, otherwise λc will not necessarily correspond to a
maximum loading condition of the system. Notice that the
two terms of the objective function are expressed in dif-
ferent units, since the social benefit would be typically in
$/h, whereas the “security” term would be in p.u., which
will basically affect the chosen values of ω1 and ω2 (typ-
ically, ω1 � ω2). However, it is possible to assume that
ω1 = (1 − ω) and ω2 = ω, with proper scaled values of ω
for each system under study (0 < ω < 1), as this simplifies
the optimization problem without losing generality.

Equations (2) and (3) are for elastic demand. In the
case of a pure inelastic demand, PD is known, and this
can be represented in these equations by setting CDi

= 0
and PDi

= PDimax
; hence the problem basically becomes

the same as the one analyzed in [11]. In this case, one
must be aware that the associated OPF problem may have
no solution, as the system may not be able to supply the
required demand.

Boundaries for the loading margin λc have been included
in (2) based on practical considerations. Thus, the mini-
mum limit λcmin is introduced in order to ensure a mini-
mum level of security in any operating condition and for
any value of ω, where the maximum value λcmax imposes a
maximum required security level. These conditions ensure
that the loading parameter remains within certain limits
to avoid solutions of (2) characterized by either low secu-
rity levels (λc < λcmin) or low supply and demand levels
(λc > λcmax), which would be unacceptable.

B. Locational Marginal Prices

It is widely recognized that spot pricing through
marginal costs can provide reliable pricing indicators [12].
OPF-based market models have the advantage of pro-
ducing not only the optimal operating point solutions,
but also a variety of sensitivity variables through the La-
grangian multipliers, which can be associated with Loca-
tional Marginal Prices (LMPs) at each node.

The Lagrangian multipliers associated with (2) corre-
spond to the standard definition of LMPs only when ω = 0,
i.e. for a pure market model. Lagrangian multipliers for
ω > 0 would lead to unrealistic results, since they decrease
almost linearly with respect to increases in ω. Hence, LMPs
which are not dependent of ω are needed.

Consider the following vector objective function:

G =
[−(CT

DPD − CT
S PS)

−λc

]
(5)

From a fundamental theorem of multi-objective optimiza-
tion [17], an optimal solution of (2) is also a Pareto opti-
mal point for the minimization problem constituted by the
objective function (5) plus the constraints defined in (2).
Thus, an optimal solution point of (2) has the property of
independently minimizing both terms of the objective func-
tion (5). Based on this premise, for a given value of the
weighting factor, say ω∗, an IPM is first used to minimize
the following Lagrangian function of (2):

Min. L = G − ρT f(δ, V,QG, PS , PD) (6)

− ρT
c f(δc, Vc, QGc

, λc, PS , PD)
− μλc max(λcmax − λc − sλc max)
− μλc min(λc − sλc min)

− μT
PS max

(PSmax − PS − sPS max)

− μT
PS min

(PS − sPS min)

− μT
PD max

(PDmax − PD − sPD max)

− μT
PD min

(PD − sPD min)

− μT
Iij max

(Imax − Iij − sIij max)

− μT
Iji max

(Imax − Iji − sIji max)

− μT
Iijc max

(Imax − Iijc − sIijc max)

− μT
Ijic max

(Imax − Ijic − sIjic max)

− μT
QG max

(QGmax − QG − sQG max)

− μT
QG min

(QG − QG min − sQG max)

− μT
QGc max

(QGmax − QGc
− sQGc max)

− μT
QGc min

(QGc
− QG min − sQGc max)

− μT
Vmax

(Vmax − V − sVmax)

− μT
Vmin

(V − Vmin − sVmin)

− μT
Vc max

(Vmax − Vc − sVc max)

− μT
Vc min

(Vc − Vmin − sVc min) − μs(
∑

i

ln si)

where μs ∈ �, μs > 0, is the barrier parameter, and ρ
and ρc ∈ �n, and all the other μ (μi > 0, ∀i) correspond
to the Lagrangian multipliers. The s variables form the
slack vector whose non-negativity condition (si > 0, ∀i) is
ensured by including the logarithmic barrier terms

∑
i ln si.

The solution of (6) provides the value of λ∗
c associated with

ω∗, along with all other system variables and market bids.
For the following OPF:

Min. Ĝ = −(CT
DPD − CT

S PS) (7)

with the same constraints as in (2), and loading parameter
fixed at λc = λ∗

c , the solution of (2) is also a solution of
(7), i.e. the vector of voltage phases and magnitudes (θ,
V , θc and Vc), generator reactive powers (QG and QGc

),
power bids (PS and PD), the loss distribution factor (kGc

)
and the loading parameter (λc) are identical for both (2)
and (7). Observe that the value of λc cannot be obtained
by the mere solution of (7), as its value is basically defined
by the value of ω in the multi-objective problem (2). As
a result, the weighting factor ω, although it affects the
solution and the dual variables of (7), it does not explicitly
appear in the equations; thus, the Lagrangian multipliers
of the power flow equations in (7) can be associated with
the system LMPs, and can be derived from applying the
corresponding KKT optimality conditions as follows:

∂L̂/∂PSi
= CSi

− ρPSi
+ μPSmaxi

− μPSmini
(8)

− ρcPSi
(1 + λ∗

c + k∗
Gc

) = 0

∂L̂/∂PDi
= −CDi

+ ρPDi
+ ρQDi

tan(φDi
)
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+ μPDmaxi
− μPDmini

+ ρcPDi
(1 + λ∗

c)

+ ρcQDi
(1 + λ∗

c) tan(φDi
) = 0

where L̂ is the Lagrangian of (7) and φDi
represents a con-

stant load power factor angle. Thus, the LMPs can be
defined as

LMPSi
= ρPSi

= CSi
+ μPSmaxi

− μPSmini
(9)

− ρcPSi
(1 + λ∗

c + k∗
Gc

)

LMPDi
= ρPDi

= CDi
+ μPDmini

− μPDmaxi

− ρcPDi
(1 + λ∗

c) − ρcQDi
(1 + λ∗

c) tan(φDi
)

− ρQDi
tan(φDi

)

From this definition, the LMPs are directly related to the
costs CS and CD, and do not directly depend on the weight-
ing factor ω. These LMPs have additional terms associated
with λ∗

c which represent the added value of the proposed
OPF technique. If a maximum value λcmax is imposed on
the loading parameter, when the weighting factor ω reaches
a value, say ω0, at which λc = λcmax , there is no need to
solve other OPFs for ω > ω0, since the security level cannot
increase any further.

Observe that the computation of these LMPs is quite in-
expensive, since the optimal point is already known from
the solution of (2), thus the determination of the La-
grangian multipliers ρ is basically reduced to solving a set
of linear equations.

III. Examples

In the following subsections, the OPF problem (2) and
the proposed technique for computing LMPs are applied
to a 6-bus test system and to a 129-bus model of the Ital-
ian HV transmission system. The results of optimization
technique (1) are also discussed to observe the effect of the
proposed method in the LMPs and system security, which
is represented here through the MLC. The power flow lim-
its needed in (1) were obtained “off-line” by means of a
continuation power flow technique [14]. For both test sys-
tems, bid load and generator powers were used as the di-
rection needed to obtain a maximum loading point and the
associated power flows in the lines, ignoring contingencies,
so that proper comparisons can be made. All the results
discussed here were obtained in Matlab using a primal-
dual IP method based on a Mehrotra’s predictor-corrector
technique [4].

For both test cases, the limits of the loading parameter
were assumed to be λcmin = 0.1 and λcmax = 0.8, i.e. for
any value of ω, it is assumed that the system can be se-
curely loaded to an MLC between 110% and 180% of the
total transaction level of the given solution. To allow for
adequate comparisons, the actual power flow limits used
in (1) were reduced by 10% with respect to the values ob-
tained from the off-line continuation power flow analysis to
emulate the λc = 0.1 limit.

Bus 3

(GENCO 2)
Bus 2 (GENCO 3)

(ESCO 3)

(ESCO 1)

(ESCO 2)

Bus 4

Bus 5

(GENCO 1)
Bus 1

Bus 6

Fig. 1. 6-bus test system.

A. 6-bus Test Case

Figure 1 depicts the 6-bus test case, which is extracted
from [18], representing three generation companies (GEN-
COs) and three energy supply companies (ESCOs) that
provide supply and demand bids, respectively. (The com-
plete data set for this system is provided in the Appendix,
so that the results discussed here may be readily repro-
duced.)

Results for the OPF formulation (1) are reported in Ta-
ble I; the MLC value in this table was computed off-line
using the generator voltages and load and generation power
directions obtained from the OPF solution. Table II, on the
other hand, shows the solution obtained for the proposed
multi-objective OPF (2) for ω = 10−3, which is referred to
here as VS-constrained OPF, since the distance to the max-
imum loading point is not being really “optimized”, with
mostly the social benefit being considered in the objective
function. For both solutions, generator voltages are at their
maximum limits, as expected, since this condition gener-
ally provides higher transactions levels. However, in com-
parison with the standard OPF approach based on “secu-
rity” limits determined off-line, the solution of the proposed
method provides better LMPs, a higher total transaction
level T (T = ΣiPLi

) and higher MLC, which demonstrates
that off-line power flow limits are not adequate constraints
for representing the actual system congestion. The im-
proved LMPs result also in a lower total price paid to the
Independent Market Operator (PayIMO), i.e. the network
congestion prices are lower, even though the system losses
are higher (which is to be expected, as T is higher).

Figure 2 shows the effect of the weighting factor ω in the
total transaction level T and the maximum loading margin
λc. Observe that, as expected, the more the weight of
security, the higher the security level λc, but, at the same
time, the lower the transaction level T . This is due to
the power bids being free to vary so that, as ω increases,
congestion is minimized (security is maximized) by both
increasing λc and reducing T .

Figure 3 depicts power bids and LMPs as ω varies, il-
lustrating the transition from an OPF market problem to
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TABLE I

6-bus Test System: OPF with Off-Line Power Flow Limits

Participant V ρ PBID P0 Pay
[p.u.] [$/MWh] [MW] [MW] [$/h]

GENCO 1 1.100 9.70 14.4 90 -1013
GENCO 2 1.100 8.80 2.4 140 -1253
GENCO 3 1.084 8.28 20.0 60 -663
ESCO 1 1.028 11.64 15.6 90 1229
ESCO 2 1.013 10.83 0.0 100 1083
ESCO 3 1.023 9.13 20.0 90 1005

TOTALS T = 315.6 MW
Losses = 11.2 MW

PayIMO = 388 $/h
MLC = 520 MW

TABLE II

6-bus Test System: VS-Constrained OPF

Participant V ρ PBID P0 Pay
[p.u.] [$/MWh] [MW] [MW] [$/h]

GENCO 1 1.100 8.94 0.0 90 -805
GENCO 2 1.100 8.91 25.0 140 -1470
GENCO 3 1.100 9.07 20.0 60 -726
ESCO 1 1.021 9.49 25.0 90 1091
ESCO 2 1.013 9.57 10.0 100 1053
ESCO 3 1.039 9.35 8.0 90 916

TOTALS T = 323 MW
Losses = 12.0 MW

PayIMO = 59 $/h
MLC = 539 MW

an OPF security problem as λc approaches its maximum
imposed value of λcmax = 0.8. Observe how the LPMs
in this example decrease as the security levels increase,
since the auction solutions move away from the security
limits, i.e. the system is less congested. Furthermore, even
though the LMPs and the overall total transaction level
decrease, local bids may increase or decrease, accordingly
to the power schedule which better matches the obtained
loading margin. For example, Fig. 4 depicts the LMP at
Bus 6 as a function of the power demand of ESCO 3 at
that bus with respect to the value of the weighting factor
ω, illustrating that the relationship between system secu-
rity and bids is not obvious and very much depends on
the chosen security limits; in other words, as ω increases,
i.e. as system security becomes more significant in the opti-
mization problem, the price-power pair does not show any
obvious relationship with respect to the system security
level.

When the loading parameter λc reaches its maximum
limit, which in Fig. 3 corresponds to ω > 0.85, LMPs
decrease below the minimum power supply price bid of 7
$/MWh (see Table V in the Appendix). The reason for
this behavior is that the OPF VS constraints force the sys-
tem to the power levels needed to maintain the required
maximum loading margin, regardless of the social benefit
(notice that only the cheapest supplier, i.e. GENCO 3,
provides for the required losses and power demands, as ex-
pected). Solutions characterized by λc = λcmax would likely
be unacceptable for the market participants, since the to-
tal transaction level as well as LMPs are too low. However,
not imposing any maximum limit on λc would lead to mar-
ket solutions with zero power bids (PS = PD = 0), which
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Fig. 2. Total transaction level T and loading margin λc for the 6-bus
test system with elastic demand.
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Fig. 3. Power bids PS and PD and LMPs ρ for the 6-bus test system
with elastic demand.

basically correspond to the base case operating condition
associated with the given fixed generation PG0 and load
PL0 . Observe that the proposed methodology is designed
to give operators and market participants a series of solu-
tions to allow them to analyze the effect of system security
on power bids and vice versa, so that proper operating and
bidding decisions can be made.

When the transaction level is fixed, as in the case of
inelastic demand, imposing a higher security level would
result in price increases [7]. This is illustrated in Figs. 5
and 6 for the 6-bus test system assuming inelastic loads;
load demands are assumed to have the same values as those
depicted in Table II, so that these figure can be compared
to the corresponding Figs. 2 and 3. Observe that as ω in-
creases, the security level λc and associated LMPs increase,
as expected, leading to higher congestion prices.
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Fig. 6. Power bids PS and PD and LMPs ρ for the 6-bus test system
with inelastic demand.

B. 129-bus Italian HV Transmission System

For the last three years, the Italian power system has
been subjected to a deregulation process, which has forced
ENEL, the main Italian electricity company, to be divided
in three independent companies (generation, transmission,
and distribution) and sell part of its generation plants to
private firms. In 1999, an Italian independent system op-
erator (Gestore Rete Trasmissione Nazionale, GRTN) was
created to coordinate a competitive electricity market and
ensure secure operation of the transmission grid. The Ital-
ian electricity market is expected to come on line in 2003
based on a zonal pricing model. The deregulation process
and the overall increase in the power consumption fore-
casted for the near future make the Italian system partic-
ularly interesting for market and security studies.

Figure 7 depicts the complete 129-bus Italian 400 kV
transmission grid. In the simulations presented here, it has
been assumed that 32 generators and 82 consumers partic-
ipate in the market auction. Usually, Italy imports about
the 10% of its power demand from France and Switzerland,
hence power supply bids were assumed at the interties. All
bids were based on prices around 30-40 US$/MWh, which
are the average prices over the last few years in other Eu-
ropean countries where electricity markets are currently
in operation, and considering the actual operating costs
of thermal plants (55% of the electrical energy produced in
Italy is thermal). Fixed generation PG0 and fixed loads PL0

were assumed to be about 80% of the average consump-
tion of a typical working day, since only 20% of ENEL’s
generation has been sold so far. Power bid levels were cho-
sen to be about 40% of the average consumption in order
to force system congestion. All system data and security
constraints, i.e. voltage limits, generation reactive power
limits and transmission line thermal limits, were provided
by CESI, the Italian electrical research center.

Tables III and IV show the results of both OPF solu-
tions (1) and (2) with ω = 10−3 (VS-constrained OPF) for
some market participants that are representative of all the
areas in which the Italian system is geographically subdi-
vided). As in the case of the 6-bus test system, the pro-
posed method provides a higher total transaction level T ,
a better distribution of LMPs, and a lower total payment
to the system operator (PayGRTN). Observe that the in-
creased transaction level results also on higher power im-
ports from the interties in Table III and IV (e.g. Villar-
odin and Lavorges), as expected, since neighboring coun-
tries typically generate electricity at lower prices (nuclear
plants).

Figure 8 shows the total transaction level T and the load-
ing margin λc as a function of the weighting factor ω. As
it can be observed, only for ω > 0.75, the security compo-
nent of the objective function has an influence in the OPF
solutions, due to the multi-objective function scaling. As
expected, the transaction level is higher for lower values of
security, and it decreases as ω increases to yield a larger
loading margin (reduce congestion).

Figures 9 and 10 depict some significant power supplies
and demands together with their corresponding LMPs,
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Fig. 7. 129-bus Italian 400 kV transmission system (most of this information is publicly available at the GRTN web site www.grtn.it).

TABLE III

Italian System Example: OPF with Off-Line Power Flow

Limits

Participant V ρ PBID P0 Pay
[p.u.] [$/MWh] [MW] [MW] [103$/h]

Trino 1.1316 33.6 221 266 -16.4
Tavazzano 1.1297 34.3 0 879 -30.1
Turbigo 1.1289 34.1 413 764 -40.1
Fusina 1.1316 34.6 756 77 -28.8
Villarodin 1.1316 32.0 127 541 -21.4
Lavorges 1.1316 32.0 133 451 -18.7
S. Sofia 1.0685 35.2 39 307 12.2
Galatina 1.1203 35.2 119 191 10.9
Colunga 1.1111 31.4 131 210 10.7
Roma O. 1.0839 34.8 207 330 18.7

TOTALS T = 24.8 GW
Losses = 135 MW

PayGRTN = 13.8 103$/h
MLC = 27.8 GW

TABLE IV

Italian System Example: VS-Constrained OPF

Participant V ρ PBID P0 Pay
[p.u.] [$/MWh] [MW] [MW] [103$/h]

Trino 1.1316 33.3 280 266 -18.2
Tavazzano 1.1316 34.5 0 879 -30.3
Turbigo 1.1316 34.2 753 764 -51.9
Fusina 1.1316 34.1 884 77 -32.8
Villarodin 1.1316 33.4 223 541 -25.5
Lavorges 1.1316 34.1 186 451 -21.7
S. Sofia 1.1005 35.1 192 307 17.5
Galatina 1.1268 34.2 83 191 93.7
Colunga 1.1096 34.7 132 210 11.9
Roma O. 1.1026 34.7 204 330 18.5

TOTALS T = 26.1 GW
Losses = 164 MW

PayGRTN = 13.2 103$/h
MLC = 28.7 GW
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Fig. 8. Total transaction level T and loading margin λc for the Italian
system example.
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Fig. 9. Most significant power supplies PS and their corresponding
LMPs for the Italian system example.

showing a similar behavior as in the case of the simple 6-
bus test system. Once again, increasing the security level
of the overall system does not necessarily imply that all
power bids decrease. In this example, the LMPs may also
increase for higher values of the weighting factor, confirm-
ing the results obtained for the 6-bus test system, as some
generators and/or loads may be penalized whereas others
may benefit as a result of increasing security levels (reduce
transmission congestion). Figure 11 depicts the behavior
of the LMP at the Galatina bus as a function of the cor-
respondent local power demand, showing once again the
unpredictable behavior of the quantity-price pair as the se-
curity level varies.

IV. Conclusions

In this paper, a multi-objective optimization for manag-
ing and pricing voltage stability is proposed and tested on
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Fig. 10. Most significant power demands PD and their corresponding
LMPs for the Italian system example.
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Fig. 11. LMP as a function of power demand PD at the Galatina
bus.

a simple test system as well as on a realistic network. The
results obtained with the proposed technique, when com-
pared to those obtained by means of a typical OPF-based
market model, show that proper representation of system
security actually results in more secure and overall better
transactions, since security margins and transaction levels
increase, while locational marginal prices improve.

The proposed multi-objective OPF method allows mar-
ket operators and participants to directly control the de-
sired level of system security by controlling the weighting
factors of the different objective functions, which is not
possible in typical security constrained OPF-based market
implementations.

Further research work will concentrate in modifying the
proposed OPF technique to directly include (N-1) contin-
gency computations in the OPF problem as well as to ac-
count for other system constraints, such as minimum up
and down times for generators.
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[15] W. Rosehart, C. A. Cañizares, , and V. H. Quintana, “Opti-
mal power flow incorporating voltage collapse constraints,” in
Proc. 1999 IEEE-PES Summer Meeting, Edmonton, Alberta,
July 1999.

[16] E. E. El-Araby, N. Yorino, H. Sasaki, and H. Sugihara, “A
hybrid genetic algorithm/SLP for voltage stability constrained
VAR planning problem,” in Proc. Bulk Power systems Dynamics
and Control-V, Onomichi, Japan, Sept. 2001.

[17] H. A. Eiselt, G. Pederzoli, and C.-L. Sandblom, Continuous
Optimization Models, de Grueter, New York, 1987.
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Appendix

This appendix depicts the complete data set for the 6-
bus test system of Fig. 1. Table V shows supply and
demand bids and the bus data for the market participants,
whereas Table VI shows the line data. Maximum active
power flow limits were computed off-line using a continua-
tion power flow with generation and load directions based
on the corresponding power bids, whereas thermal limits
were assumed to be twice the values of the line currents
at base load conditions for a 400 kV voltage rating. In

TABLE V

GENCO and ESCO Bids and Bus Data for the 6-Bus Test

System

Participant C Pbid
max PL0 QL0 PG0 QGlim

[$/MWh] [MW] [MW] [MVar] [MW] [MVar]

GENCO 1 9.7 20 0 0 90 ±150
GENCO 2 8.8 25 0 0 140 ±150
GENCO 3 7.0 20 0 0 60 ±150
ESCO 1 12.0 25 90 60 0 0
ESCO 2 10.5 10 100 70 0 0
ESCO 3 9.5 20 90 60 0 0

TABLE VI

Line Data for the 6-Bus Test System

Line Rij Xij Bi/2 Pmax Imax

i-j [p.u.] [p.u.] [p.u.] [MW] [A]

1-2 0.1 0.2 0.02 15.4 37
1-4 0.05 0.2 0.02 50.1 133
1-5 0.08 0.3 0.03 42.9 122
2-3 0.05 0.25 0.03 21.6 46
2-4 0.05 0.1 0.01 68.2 200
2-5 0.1 0.3 0.02 33.6 103
2-6 0.07 0.2 0.025 52.1 132
3-5 0.12 0.26 0.025 26.1 95
3-6 0.02 0.1 0.01 65.0 200
4-5 0.2 0.4 0.04 9.8 26
5-6 0.1 0.3 0.03 2.2 29

Table VI, it is assumed that Iijmax = Ijimax = Imax and
Pijmax = Pjimax = Pmax. Maximum and minimum voltage
limits are considered to be 1.1 p.u. and 0.9 p.u.
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