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Optimal Load Management with inclusion of

Electric Vehicles and Distributed Energy Resources
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Abstract— This paper presents an optimal load management
(OLM) strategy for distribution systems with high penetration
of electric vehicle chargers and distributed energy resources.
The paper describes two formulations of the OLM and practical
implementation issues aimed to improve OLM accuracy and to
reduce its computational burden. The proposed OLM formu-
lations are specifically designed to provide a good compromise
between computational burden and result accuracy. A radial sys-
tem with three-phase unbalanced section is used for illustrating
the proposed OLM technique.

Index Terms— Load Management, electric vehicle (EV), dis-
tributed energy resources (DER), real-time control.

I. INTRODUCTION

A. Motivation

IN recent years, the development and diffusion of elec-

tric vehicles as well as of distributed energy resources

has grown exponentially. The high penetration of these two

technologies forces to rethink how distribution systems are

handled. In particular, an open challenge is how to properly

feed electric vehicle chargers while maintaining security and

quality standards. This paper presents an optimal load man-

agement (OLM) strategy for distribution networks with high

penetration of electric vehicle (EV) chargers and distributed

energy resources (DERs). The design of the OLM has two

primary goals: accuracy and efficiency. Accuracy is needed

to properly decide whether a load request can be admitted

without leading to the violation of technical limits, such

as under-voltages and/or distribution line current limits. The

OLM must be able to properly and precisely compute and

recognize limit violations. Efficiency is needed to ensure that

load and DER requests are processed in real-time and that

loads are not queued unnecessarily.

B. Literature review

The literature on load management is vast and cover various

aspects from electricity pricing to on-line applications. For

example, [1] and [2] propose real-time load management

techniques that are able to minimize the total cost of energy

generation as well as network losses. In [3], the authors
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propose an optimization model to adjust the hourly load level

of a given consumer in response to hourly electricity prices.

In [4], an OPF problem based on smart metering is defined

to minimize load shedding while maintaining system security.

A load response and energy management based on agents is

proposed in [5]. Electric vehicles pose new challenges to the

operation of distribution systems. In [6], the author proposes

a charging method for plug-in hybrid electric vehicles with a

user demand regulation based on pricing information. In [7],

a unidirectional vehicle-to-grid optimal charging strategy is

proposed to maximize aggregated profits. References [8]–[11]

illustrate the impact of electric vehicles on distribution systems

with particular regard to their effect on system security.

Finally, the inclusion of distributed energy sources and their

impact on system security is another open question. Recent

works on this topic are, for examples, [12] and [13]. In partic-

ular, [12] presents a dynamic modeling and control strategy for

a sustainable micro-grid powered by wind and solar energy,

while [13] presents an impact analysis of distributed energy

resources integration on distribution systems, focusing mainly

on reliability aspects. In [14] the usage of electric vehicle as

distributed energy storage systems for system with high wind

power penetration is discussed.

In this paper, the load management is formulated as an on-

line software tool that recollects load and distributed energy

resources (DER) requests from the system and decides whether

a given request is acceptable for the system or not. If it is

acceptable, the OLM returns to the system proper signals

so that the load/DER is admitted, otherwise, the load/DER

remains in a queue, waiting for being admitted. The goal of the

OLM is to maximize the number of admitted power requests

(integer variables) subject to system power flow (nonlinear)

constraints and technical limits. Thus, the natural way to for-

mulate the OLM is as a mixed integer nonlinear programming

(MINLP) optimization problem. However, there is currently

no well-assessed, fast and robust algorithm able to solve

MINLP problems. Existing solvers have to be properly tuned

to provide a solution in a reasonable time and never guarantee

the global optimum (see for example the discussion in [15]).

The interested reader can find some of these techniques in

[16]–[18]. Unfortunately, the computational burden of MINLP

solvers precludes their usage for on-line applications. Hence,

the two proposed OLM formulations are based on a quadratic

programming optimization problem and heuristic rules char-

acterized by a reduced computational burden. The proposed

optimization problems basically implements a fair admission

rule (FAR) that is aimed to reschedule, in case of congestion,

existing electric vehicle power requests. An in-depth discus-

sion on theoretical and practical aspects of the implementation
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Fig. 1. Qualitative illustration of the OLM.

of the FAR is given in the paper.

C. Contributions

In summary, the contributions of this paper are twofold:

1) The formulation of two optimal power flow problems

to properly handle load and DER request queues while

respecting technical limits of the network and avoiding

congestion.

2) The proposal of a fair admission rule able to satisfy as

many load requests as possible while avoiding greedy

requests.

Both the optimal power flow problems and the fair ad-

mission rule show a light computational burden and are thus

suitable for on-line applications.

D. Paper Organization

The paper is organized as follows. Section II describes the

hypotheses, the structure and the organization of the proposed

optimal load management. Section III presents an in-depth

discussion of the proposed OLM routine based on a 50-bus

radial network. Section IV draws conclusions and indicates

future work directions.

II. PROPOSED OPTIMAL LOAD MANAGEMENT

The proposed OLM is an on-line software application that

decides whether a certain load request is acceptable or not.

If it is acceptable, the OLM sends the proper signal to the

system (e.g., to an EV charger) so that the load is fed,

otherwise, the load request remains in a queue, waiting for

being admitted. According to the previous description, the

OLM can be pictorially illustrated through the scheme shown

in Fig. 1.

In this context, the term acceptable means that the load

request, if admitted, does not lead to technical limit violations,

such as over or under voltages, and transmission line or

transformer overloads (i.e., over-currents). The power flow

analysis is the adequate tool to define whether a certain load

power consumption lead to limit violations or not. Observe

that, since the power flow problem requires the solution of a set

nonlinear equations, it is not possible to take advantage of the

superposition principle. In other words, the effect of adding a

new load power consumption at a certain bus cannot be known

without solving again the power flow problem for the whole

network. The non-linearity of the power flow problem is the

major issue of the OLM.

According to Fig. 1, the OLM interacts with the power

system by exchanging information. Let assume that such

information is not continuous, but updated at a certain sample

rate, e.g., 1 s or 5 s. During this time interval, the OLM

must process the input signals from the network (i.e., the load

requests), and decide which loads can be admitted and which

ones have to wait. Then, at the following update, the OLM has

to send the load admission signals to the system and receive

the new load requests.

The functioning of the communication system is out of the

scope of this paper. The hypothesis is that the communication

system works properly and that the assumed sample interval

is sufficient to send and receive all signals to and from the

OLM, respectively.

Let assume that at a given snapshot t, m power requests

reach the OLM. These requests can be either new or old ones

that were queued in a previous step. The OLM has also to

take into account that p active devices, i.e., loads or DERs

that are currently connected to the grid, are discontinued at

a given snapshot ti, i.e., when the supply period is over. Let

ma the number of loads that can be accepted at each time

t, with ma ≤ m. The objective of the OLM is to maximize

the number ma of load requests that are satisfied at a certain

snapshot t.
The proposed OLM algorithm flow is described below.

1) Assume a feasible initial operating point, i.e., a point for

which no technical limit is binding. This assumption is

reasonable, as if one assumes that the OLM is always in

service, no limit load request leading to a limit violation

can be admitted.

2) Collect new load requests and add them to the pending

load request queue. Moreover, discard previously admit-

ted loads that have completed their connection period

and pending load requests that have waited for a given

period.

3) Sort load requests based on load priority levels (see

definition below). In case of two load requests have same

priority level, they are sorted based on the time waited

to be served. Finally, in case also the waited time is

the same, priority is given to load requests with higher

energy demand.

4) Run one power flow per each load request in the order

defined by the sorting process of Step 3. If for a certain

load request, the power flow converges and no limit is

violated, then the load is admitted. Otherwise the routine

applies a Fair Admission Rule (FAR) that attempts

to reschedule load power consumption and connection

periods in order to accept the new load request. If all

previous attempts fail, the load request is put in the

queue of loads waiting for being supplied. This step is

illustrated in Figure 2.

5) Go back to step 2.

The priority level is a concept that we introduce to discrim-

inate among load requests. The priority level is basically an

index or a flag that is assigned to each load request. In our

vision, priority levels are based either on the price of charge



3

Fig. 2. Flowchart of the admission/rejection process of load requests.

Fig. 3. Illustration of the proposed fair admission rule. Assume that loads
1 and 2 are preexisting admitted loads. (a) Load 3 cannot be admitted not to
violate the maximum current limit. (b) Load 3 is admitted by reducing load
1 and 2 currents.

or on social considerations (e.g., a vehicle whose owner is a

doctor in service receives the highest priority). The priority

level is hence a signal associated to the load request. Of

course, other sorting criteria can be implemented or added to

the ones indicated in point 3 above (e.g., the charging modes

implemented by Nissan). However it is worth observing that

the general conclusions that can be drawn for the proposed

OLM procedure does not rely on the specific criterion used to

sort load requests.

As discussed above, the FAR is a procedure that attempts

to reschedule loads in order to allow all load requests to be

satisfied. The main idea is that all electric vehicles can be

supplied, even if at a lower current level than requested and,

thus, for a longer period than initially scheduled. The FAR is

illustrated in Fig. 3.

The problem to be solved by the FAR can be posed as

follows. Assume that a new power request pk raised by a

certain load k causes the violation of some technical limits

(either bus voltage or transmission line current limits). We are

interested in finding a “fair” rescheduling of all admitted loads

i = 1, . . . , n (including the new load request k) such that the

power flow solution does not show any congestion or limit

violation.

Observe that the FAR introduces a loop in the load request

process. The loop breaks only when the load rescheduling

leads to a power flow solution without limit violations and

congestion. The existence of such condition is always guar-

anteed since the load profile prior to the new load request

admission is feasible. Observe also that DER offers are treated

in a similar way as load requests.

A. Fair Admission Rule (FAR)

This section describes in detail theory, implementation and

practical aspects of the proposed FAR.

The conditions to take into account to properly reduce loads

are the following:

1) Loads with lower priority levels have to be rescheduled

before loads with higher priority levels. Only in case,

the rescheduling cannot be completed using low priority

loads, high priority loads can be rescheduled.

2) Loads that most “participate” to the congestion have to

be penalized more than loads that are not responsible of

the congestion. “Participation” is evaluated in terms of

sensibility coefficients, i.e., the derivative of the binding

limit with respect to load power consumption.

3) Loads cannot be reduced indefinitely. The threshold of

the maximum admissible reduction is fixed by the OLM

operator.

4) Finally, the goal of the FAR is to reduce the minimum

amount of load powers such that the new power request

can be satisfied.

The rules and conditions described above can be conve-

niently formulated as a quadratic programming optimization

problem as follows:

minimize
(∆p)

1

2

n
∑

i=1

wi∆p2i (1)

subject to ∆ptot =

n
∑

i=1

∆pi : λ

0 ≤ ∆pi ≤ ∆pmax
i : πmax

i , i = 1, . . . , n

where:

∆pi : power reduction of load i in kW.

∆ptot : total desired power reduction in kW.

wi : weighting factor for load i.
∆pmax

i : maximum allowed power reduction of load i in kW.

λ : Lagrangian multiplier of the equality constraint.

πmax
i : Lagrangian multiplier of inequality constraints.

Problem (1) can be solved using either quadratic program-

ming (QP) solvers (e.g., CPLEX, MOSEK, etc.) or cone

programming (CP) solvers (e.g., CVXOPT) being the main

computational burden due to the inequality constraints.

Since one of the main technical constraints of the OLM is to

be suitable for on-line applications, we propose an alternative

approximated and iterative formulation that can replace (1).
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The simplified QP problem is the following:

minimize
(∆p)

1

2

n
∑

i=1

wi∆p2i (2)

subject to ∆ptot =
n
∑

i=1

∆pi : λ

where inequalities have been removed. The main advantage of

(2) with respect to (1) is that the former has an explicit solu-

tion, which can be obtained imposing the Karush-Kuhn-Tucker

(KKT) optimality conditions to the Lagrangian function of (2).

The Lagrangian function is:

L =
1

2

n
∑

i=1

wi∆p2i − λ

(

n
∑

i=1

∆pi −∆ptot

)

(3)

Then the KKT conditions are:

0 =
∂L

∂∆pi
= wi∆pi − λ, i = 1, . . . , n (4)

0 =
∂L

∂λ
=

n
∑

i=1

∆pi −∆ptot (5)

Hence, the reduction in admitted power of load i is:

∆pi =
λ

wi

(6)

where the Lagrangian multiplier λ is:

λ =
∆ptot

∑n

i=1 1/wi

(7)

Observe that the explicit solution of (2) implicitly imposes that

∆pi ≥ 0 but, of course, it cannot guarantee that the conditions

∆pi ≤ ∆pmax
i are satisfied. Hence the FAR requires an

iterative solution of problem (2), as follows:

1) At each new snapshot, the weighting factors wi and the

total power to be shed ∆ptot are computed.

2) Then problem (2) is solved, thus obtaining load power

reductions ∆pi for each load i.
3) If all ∆pi ≤ ∆pmax

i , the FAR rule terminates. Oth-

erwise, we set ∆pi = ∆pmax
i to all loads for which

the condition ∆pi ≤ ∆pmax
i is not satisfied and the

associated weighting factor is set to wi = 0 (so that

those loads do not participate to the following power

rescheduling).

4) The routine continues at point 2 and iterates until either

the full amount ∆ptot is shed or all weighting factors

are wi = 0. In the latter case, all load powers are reset

to their initial values and the problem is considered

unfeasible. This mean that the current power request k
is rejected and queued.

The algorithm described above is illustrated in the flowchart

of Fig. 4. Observe that the solution obtained by the iterative

technique depicted in Fig. 4 is quasi-optimal as only problem

(1) provides optimal solutions. However, since in general

∆ptot ≪
∑n

i=0 pi, in most cases constraints ∆pi ≤ ∆pmax
i

are not binding and thus the solutions of (1) and (2) coincide.

Both (1) and (2) rely on some parameters that have to be

tuned by the operator and thus introduce a certain degree of

Fig. 4. Implementation of the FAR consisting in repeating iterative solution
of the quadratic programming problem (2).

arbitrariness into the power rescheduling. Parameters to be

carefully chosen are the weighting factors wi for each load

i, the maximum allowable power ∆pmax
i that can be shed for

each admitted load, and the total desired load shedding ∆ptot.
A discussion on how to chose each of these parameters is given

below.

Weighting factors wi :

Weighting factors have to be chosen so that the lower the

priority level of the load i and the bigger the sensitivity of

load i to the binding limit, i.e., the higher the sensitivity

of the binding limit with respect to the power pi, and the

higher the value of pi, the smaller the weighting factor

wi. Based on the considerations above, we propose the

following expression for wi:

wi =

(

1

σi · (ℓmax − ℓi) · (p0i /
∑n

j=1 p
0
j )

)2

(8)

where:

σi is the sensitivity of the binding limit with respect to

load power pi. Hence, one has:

σi =
∂ih
∂pi

(9)

or

σi =
∂vj
∂pi

(10)

which define the sensitivity of the current in transmis-

sion line with index h and of the voltage magnitude at

bus j, respectively, with respect to power pi.
ℓmax is the maximum priority level that can be assigned

to a load.
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ℓi is the priority level of load i.
p0i is the power currently admitted for load i. In case

i = k, p0i is the current power request of load k.

Substituting (8) in (6) leads to:

∆pi =

(

σi · (ℓ
max − ℓi) ·

p0i
∑n

j=1 p
0
j

)2

· λ (11)

which duly satisfies the properties of the expected solu-

tion.

The following are relevant remarks on the proposed

definition of the weighting factors wi.

• If p0i = 0, i.e., the load is currently not admitted,

then ∆pi = 0, as expected.

• If σi = 0, then ∆pi = 0, as expected, as the variation

of pi does not have any effect on the binding limit.

• If ℓi = ℓmax, the load i has maximum priority

and cannot be modified as ∆pi = 0. If one wants

to impose that all load can be rescheduled, then it

suffices that ℓi < ℓmax.

• The higher pi, the bigger ∆pi. This is also a desired

effect, as it is desirable that “greedy” loads are

penalized more than non-greedy ones.

• The higher σi or the lower ℓi, the bigger ∆pi, as

expected.

• If w1 = w2 = · · · = wn, then ∆pi = ∆ptot/n,

∀i = 1, . . . , n, as expected.

Observe that the square for the parameters used for

defining wi is used to “amplify” the effect of each

parameter. The rationale behind the square function is that

the relative difference between the weighting factors of

loads with different features has to be high. For example,

assuming same sensitivity σi and same admitted power

p0i , we want that if ℓi < ℓj , then wi ≪ wj , and hence,

load i is more likely to be rescheduled than load j.

Since the proposed technique is applied exclusively to

radial networks, there is no need to deal with the signs

of sensitivities σi. In radial distribution systems, current

flows can be only in one direction, i.e., towards the loads.

Hence, if there is a congestion on a certain branch, the

sign of all σi is always positive. The same rationale

applies to the sensitivities of DERs. The only condition

that can impose to reduce DERs power injections is

the case for which DER power productions are leading

to a over-current in the transmission line. Hence, if

DERs sensitivities are to be used, then they are certainly

negative. Moreover, since in (8) weighting factors are

computed through the square function, the effect of σi

is always the expected one.

Finally, observe that, in (8), the absolute values of the

factors σi and (ℓmax − ℓi) does not affect the solution

of the optimization problems (1) and (2). However, the

relative values of weighting factors do matter. In fact, two

loads having same sensitivities but different priority levels

are curtailed in such a way that the higher the priority

level ℓi, the lower ∆pi. In the same vein, two loads with

same priority levels but with different sensitivities will be

curtailed in such a way that the higher the sensitivity σi,

the lower ∆pi.
Maximum allowable power ∆pmax

i :

A simple but fair criterion is to define ∆pmax
i a limit

proportional to the currently admitted power:

∆pmax
i = γip

0
i (12)

where 0 < γi < 1 must hold. However, it appears

reasonable to assume 0.1 ≤ γi ≤ 0.25.

Total desired load shedding ∆ptot :

Similarly to the parameters ∆pmax
i , the total amount of

load to be shed is an arbitrary quantity. It can be defined

based on the amount of the power request pk that is

causing the congestion:

∆ptot = γtotpk (13)

where [0.1, 0.25] appears to be a reasonable range for

γtot.

Although the coefficients γi are not related to γtot, all

simulations discussed in the case study assume, without lack

of generality, γi = γtot = γ. The value of either γi or γtot
is based on heuristic considerations. The effect of different

values of γ is illustrated in Section III.

B. Remarks on Customer Convenience and Priority Levels

In this subsection we provide some remarks on priority

levels and show how these contribute to customer convenience.

• The priority level is selected by the customer and allows

discriminating among customers that accept to be cur-

tailed and thus accept a longer charging time, and cus-

tomers that are not willing to wait longer than indicated

at the connection time. If we assume that high priority

levels cost more than lower ones, the customer can choose

whether to pay more and wait less or to pay less and wait

more. This approach incentivizes to better distribute the

charging of electric vehicles during the day and, thus, to

reduce congestion.

• Load power variations determined by the OLM are

bounded to few percents of the original load request.

This means that load power reductions lead to a marginal

increase in the total charging time. In any case, as

indicated in the previous point, users with strict charging

time requirements can reduce or eliminate shedding by

requiring a higher priority charging.

• In case of network congestion, the OLM operates so

that the maximum number of customers can be served.

While some customers (and only those that have allowed

that) will have to wait for a slightly longer time than

anticipated, the number of customers that have to wait to

be served is minimized. Hence, the average convenience

of all customers is increased by the proposed OLM

technique.

• Finally, the proposed FAR allows connecting to the

network, even in case of peak load conditions, special

customers such as doctors’ vehicles or any other customer

that requires a special treatment.
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C. Remarks on Sensitivities

The computation of sensitivities is the most demanding

part of the FAR. There is no closed formula to compute the

sensitivity of a line current or a bus voltage magnitude with

respect to power consumption at buses. So the only way to

compute sensitivities is to use a numerical approximation.

Since the solution for the current operating point is known,

each sensitivity requires the solution of an additional power

flow. For each load variation and hence for each power flow

solution, one can obtain the transmission line current sensitivi-

ties, i.e., ∂ih/∂pi, and bus voltage sensitivities, i.e., ∂vk/∂pi,
with respect to load powers. However, all these sensitivities

are hardly needed all together as, typically, each new power

request leads to only a few limit violations (typically only

one).

Practical considerations allow simplifications in time and in

location, as discussed below.

1) Time reduction: One of the main assumption of the

whole OLM algorithm is that each new load request is

relatively small with respect to the current total power con-

sumption as well as with respect to the load consumption of

the network section where the new load request is located.

So, it is reasonable to assume that, even though power flow

equations are nonlinear, each new load request does not vary

“too much” the power flow solution and, hence sensitivities.

Thus, it appears reasonable to update sensitivities with a

lower rate than the OLM routine time step. The appropriate

frequency at which refreshing sensitivities is not known a

priori and has to be adjusted based on the knowledge of the

system.

However, a good index of the need to refresh sensitivities

can be the number of “events” (e.g., new load admissions) that

have occurred in the network since the last update. Clearly,

one has to expect that the less the sensitivities are updated,

the lower the accuracy of the FAR. Thus, there is a threshold

between accuracy and simulation speed up.

2) Location reduction: In several mathematical applica-

tions, it has to be expected that solving a single huge problem

with several variables is computationally more expensive than

solving several smaller problems with few variables. This is

certainly true if the computational complexity of the problem

to be solved is polynomial. Location reduction attempts to

decompose the QP problem solved for the full network into a

set a smaller problems for network sections.

The common sense indicates that power variations of loads

that are located far away (in an electrical sense) from a certain

transmission line or a certain bus bar, are very likely going

to show small or negligible sensitivities with respect to the

current in the transmission line and to the voltage magnitude

of the bus.

This intuitive notion of “electrical distance” can be easily

exploited in radial distribution networks as different branches

are likely quite decoupled from each other.

The concept of tree is introduced in the OLM routine to

reduce the number of sensitivities to be computed for each

limit violation, as follows. Network branches are grouped into

topological trees, which are defined based only on topological

Fig. 5. Pictorial representation of network trees. The assumption is that
load variations in Tree 1 do not affect currents and voltages of transmission
lines and voltages pertaining to Tree 1. Observe that this hypothesis is fully
satisfied only if the voltage at the feeder is constant.

considerations. Observe that the independence of tree sensi-

tivities is just an approximation and does not apply to meshed

network. Then, whenever the OLM routine identifies a limit

violation, the tree to which the binding constraint pertains

is detected and the FAR is applied only to the set of loads

that belongs to the tree (see Figure 5). This simplification is

justified by the fact that loads outside the tree are expected

to have very small sensitivities and thus, are not going to be

rescheduled by the solution of problem (1) or (2).

D. Modeling of Electric Vehicle Chargers

In the proposed optimization problems (1) and (2), only the

active power pi of loads has been considered. However, when

solving the power flow problem, a detailed steady state model

of all loads is used. In our formulation, we have used the

well-known Voltage Dependent Load (VDL) model, i.e., load

powers are monomial functions of the bus voltage magnitude,

as follows:

pi = p0i (vi/v
0
i )

αp,i (14)

qi = q0i (vi/v
0
i )

αq,i

where v0i is the rated voltage at the load bus. For example,

a constant shunt admittance can be modeled as a VDL for

which αp,i = αq,i = 2 and:

g0i =
p0i

(v0i )
2
, b0i =

q0i
(v0i )

2
(15)

The model of electric vehicles depends on the charger and

on the power electronic system. In our simulations we have

considered that for electric vehicle chargers, αp,i = 1, i.e., a

constant current model and q0i = 0, which leads to:

pi = p0i (vi/v
0
i ) (16)

qi = 0

E. Inclusion of Distributed Energy Resources

From the OLM viewpoint, DERs are similar to loads since

they can offer a certain amount of power during a certain

period. As said above, DER admissions undergo same rules

as loads, except for the FAR which does not apply to DER
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offers. However, the sudden outage of some DERs can cause

a blackout if the load shedding is not fast enough, especially

if the penetration of DERs in the grid is high.

Since an accurate contingency analysis cannot be solved

on-line, the OLM can only implement approximated security

analysis techniques. With this aim, security current limits imax
s

and security voltage limits vmax
s and v

min
s are imposed only to

define the admission of DER power offers and are computed

as follows:

i
max
s = (1− s) imax (17)

v
max
s = (1− s) vmax

v
min
s = (1 + s) vmin

where i
max, vmax and v

min are technical, thermal and voltage

limits and s is the “security margin”. The value of s depends

on the system operator and should be based on the knowledge

of the system. A reasonable range for s is [0.05, 0.2].

III. CASE STUDY

The simulation is obtained considering the 50-bus radial

network shown in Fig. 6 and a time horizon of 24 h, i.e.,

86400 s, with a step length of 10 s, which leads to a total

of 8640 steps. The network is modeled as a single-phase

equivalent and loads can be connected to any bus. Two sub-

networks modeled as radial unbalanced three-phase systems

are connected to buses 39 and 42. These sub-networks are not

represented in Fig. 6. The interface between the single-phase

equivalent and the three-phase system is modeled as proposed

in [19]. In this case study, line thermal limits are considered

“small” in order to force congestion and “stress” the OLM

routine with relatively big load requests queues.

Fig. 6. 50-bus radial system.

To compare different settings two indices are defined: (i)

the total supplied energy (TSE) in kWh of electric vehicle

chargers; and (ii) the cumulative number of supplied electric

vehicles (NSE). By definition, both TSE and NSE are zero

at the beginning of the simulation. The absolute values of

such indices is not relevant per se, rather their relative values

provide a quantitative indication of how efficient and how fair

a particular set of OLM setting parameters is in comparison

to another set.

TABLE I

PERFORMANCE OF THE FAR FOR THE 50-BUS RADIAL NETWORK.

Solver ttot [s] tmean [ms]

No FAR 15.56 1.80
FAR with (1) 50.57 5.85
FAR with (2) 17.96 2.08

The computational burden is defined in terms of the CPU

time required to complete a simulation. In the next sections,

ttot indicates the total time required to solve the OLM routine

for the simulated 24 h, whereas tmean indicates the average

time required for each snapshot, i.e., tmean = ttot/8640. It

has to be noted that the variance of the time needed to solve

each snapshot can highly vary since it depends on how many

new requests have to be handled, whether congestion occurs,

whether sensitivities has to be updated, etc.

Load requests are generated using a random number gen-

erator. To properly compare results, the seed that initializes

the random number generator is the same for all simulations.

However, depending on the settings of the OLM, the number

of calls to the random number generators can vary and, hence,

also the sequence of load requests can vary.

All simulations were solved on a 64-bit Linux operating

system running on an Intel i7 2.67 GHz processor with 8

GB of RAM. The OLM algorithms has been implemented in

Dome1 and the power flow is solved using a backward-forward

sweep method as described in [20].

A. Impact of the Fair Admission Rule

This section shows a comparison of the impact of the fair

admission rule on the performance indices TSE and NSE.

Three scenarios are considered: (i) no FAR enforced; (ii) FAR

based on the solution of the full QP problem (1); and (iii) FAR

based on the solution of the iterative approximated QP problem

(2). In this case study, sensitivities are computed for all loads

(i.e., without enforcing location reduction) and updated every

10 new admitted load requests.

Table I shows the CPU times for the three considered cases.

The main conclusions that can be drawn by these simulations

are twofold: (i) the computational burden of computing sensi-

tivities is relatively low; and (ii) the computational burden if

the solution of the full QP problem (1) is significantly higher

than that of the approximated iterative QP problem (2).

Figure 7 compares the TSE and NSE indices for the three

different FAR methods discussed above. As expected, the

poorest performance is given by the OLM without enforcing

the FAR. Then, the approximated QP problem (2) performs

worse than the full QP problem (1). This result was also

to be expected, as the optimization problem (1) provides an

optimal solution, while (1) only a sub-optimal one. However,

it has to be noted that (1) is intrinsically slower than (2), and

such difference increases more then linearly as the size of the

system increases. In fact, the computational complexity of (2)

is close to be linear, while the computational complexity of the

1Available at faraday1.ucd.ie/dome.html
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(1) is polynomial and similar to that of the LU factorization

algorithm (which is required to solve QP problems).
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FAR with (1)
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Fig. 7. Comparison of TSE and NSE indices for different fair admission
rule methods for the 50-bus radial system.

B. Impact of Power Reduction Threshold

This section shows a comparison of the impact of the power

reduction threshold γ on OLM performance and on indices

TSE and NSE. The considered values for the coefficient γ
are 5%, 10% 15%, 20%, and 25%. For these simulations,

FAR is solved using the iterative approximated QP problem

(2). Moreover, sensitivities are computed for all loads (i.e.,

without enforcing location reduction) and updated every 10
new admitted load requests.

Figure 8 shows the CPU times and the TSE and NSE indices

for the five considered values of γ. The main conclusions

that can be drawn by these simulations are threefold: (i)

the computational cost is not strictly related to the value of

γ, unless γ is very small (see the case γ = 5%); (ii) the

performance and thus TSE and NSE indices of the OLM

routine depends on the value of γ, however, it is not possible

a priori to define the optimal value of γ; and (iii) there is no

strict correspondence between the TSE and the NSE indices

as γ varies.

As it can be observed in Figure 8, the highest values of the

TSE index are obtained for γ = 15%, while the worst case is

obtained for γ = 20%. However, if observing the NSE index,

one can only say that γ = 10%, 15% or 25% are better choices

than γ = 5% or 20%. It has also to be noted that a value of

γ can be optimal for a certain system and for a certain set

of other OLM setting parameters, but less good for another

network or another set of parameters. Hence, the value of γ,

which is actually arbitrary, should be tuned based on historical

data of the network, or, using a trial-and-error approach. In

the remainder of this section, γ = 25% is assumed, since it

provides overall good results for all OLM parameter set.
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γ = 10%

γ = 15%
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Fig. 8. Comparison of TSE and NSE indices for different values of the
power reduction threshold γ for the 50-bus radial system.

TABLE II

PERFORMANCE OF THE OLM ROUTINE FOR DIFFERENT VALUES OF mnew

FOR THE 50-BUS RADIAL NETWORK.

mnew ttot [s] tmean [ms]

5 12.46 1.44
10 17.96 2.08
15 17.35 2.01
30 12.05 1.39

C. Effect of Sensitivity Time Reduction

This section discusses the effect of sensitivity time reduc-

tion on the performance of the OLM routine. As discussed

in Subsection II-C, time reduction consists in updating the

sensitivities not at each step of the OLM routine, but with a

lower frequency. With this aim, let mnew the threshold number

of new load admissions that have to occur before sensitivities

are updated. Table II and Figure 9 show the CPU times and

TSE ans NSE indices for four value of mnew, namely 5, 10,

15 and 30. The FAR used for these simulations is that based

on the solution of problem (2).

The calculation of sensitivities is not strictly related to the

computational burden and to OLM accuracy, at least for values

of mnew ≤ 15. In other words, the number of sensitivities

updates has generally little impact on the total simulation time.

On the other hand, if sensitivities are updated with a reasonable

frequency, the OLM performance measured in terms of TSE

and NSE indices is similar. This fact basically indicates that

sensitivities change little and that their impact on the solution

of problem (2) is not really crucial. In the remainder of this

section, mnew = 10 will be used.

D. Effect of Sensitivity Location Reduction

This section discusses the effect of sensitivity location re-

duction on the performance of the OLM routine. As discussed

in Subsection II-C, location reduction consists in defining

sections of the network, called trees, that are assumed to be
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Fig. 9. Comparison of TSE and NSE indices for different values of the
parameter mnew for the 50-bus radial system.

TABLE III

PERFORMANCE OF THE OLM ROUTINE WITH AND WITHOUT LOCATION

REDUCTION FOR THE 50-BUS RADIAL NETWORK.

Method FAR type ttot [s] tmean [ms]

Full network Problem (1) 50.57 5.85
Trees Problem (1) 147.87 17.11

Full network Problem (2) 17.96 2.08
Trees Problem (2) 13.90 1.61

decoupled in what concerns sensitivities. With this aim, 4 trees

are defined for the 50-bus system (see Fig. 6).

Table III and Figure 10 show the CPU times and TSE and

NSE indices for the 50-bus system with and without defining

trees. Both full QP problem (1) and approximated QP problem

(2) are compared.

Relevant remarks are the following.

1) Location reduction allows reducing the computational

burden if using the approximated QP problem (2). In

case of using trees with the full QP problem (1), the

simulation time increases drastically.

2) Reducing the computational burden can be obtained

at the cost of reducing the performance of the OLM

routine, e.g., reducing both TSE and NSE indices.

3) The differences between the OLM routine using the

full sensitivity set and the OLM routine using location

reduction is due to the fact that network branches are

actually not fully decoupled.

E. Effect of Automatic Load Rescheduling

So far, it has been assumed that the OLM routine can

reschedule power requests of EV chargers and that, once

rescheduled, EV chargers do not attempt to reformulate the

original power request. Actually, it is to be expected that EV

chargers continuously update their request based on the current

supplied power.

Table IV and Figure 11 show the CPU times and TSE and

NSE indices for the 50-bus system with and without load
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Fig. 10. Comparison of TSE and NSE indices for the OLM routine with
and without location reduction for the 50-bus radial system.

TABLE IV

PERFORMANCE OF THE OLM ROUTINE FOR WITH AND WITHOUT

UPDATING LOAD REQUESTS AND FOR THE 50-BUS RADIAL NETWORK.

Method ttot [s] tmean [ms]

No request update 17.96 2.08
Request update 71.40 8.26

request update. Simulations are solved using the approximated

QP problem (2). As it can be observed, updating load requests

drastically slows down the OLM routine because if forces

reconsidering the same load request several times until it is

either accepted at the original requested power or the total

request energy is supplied. On the other hand, updating load

requests allows supplying more power to admitted loads, even

if accepting a reduced number of new requests.

F. Effect of DERs and Security Limits

This section studies the effect of the security margin s on

the admission control of DERs. The 50-bus system is modified

to include 5 DER devices at buses 5, 22, 36, 41, and 45.

Different levels of security margins s are considered, namely

0, 5%, 10% and 20%. Refer to Subsection II-E for the details

on how the security margin modifies technical limits.

Figure 12 shows the CPU times and TSE and NSE indices

for the 50-bus system with inclusion of DERs and for different

values of the security margins. Simulations are solved using

the approximated QP problem (2). DER power offers are

generated randomly with a mechanism similar to load power

requests. The volatility of random generation power offers

is much higher than that that would happen in real-world

systems. However, this is done by purpose to force the OLM

algorithm to accommodate high volatility of both loads and

DERs. Table V shows that using a too conservative value for

s can lead to longer execution times. This result is due to the

fact that higher values of s lead to bigger queues. Figure 12

indicates that the higher the security margin s, the lower the

TSE and NSE indices. Again, this result was to be expected as
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Fig. 11. Comparison of TSE and NSE indices for the OLM routine with
and without updating load requests for the 50-bus radial system.

the higher the security margin s, the more likely DER power

offers are rejected and put in the queue.

TABLE V

PERFORMANCE OF THE OLM ROUTINE WITH DERS AND DIFFERENT

VALUES OF THE SECURITY MARGIN s FOR THE 50-BUS RADIAL NETWORK.

Security margin s ttot [s] tmean [ms]

0 22.25 2.58
5% 16.20 1.88
10% 20.08 2.32
20% 26.67 3.09

IV. CONCLUSIONS

This paper proposes two optimization problems for load

demand management aimed to increase served load while pre-

serving system security. The proposed methods can also handle

distributed energy resources. The version of the fair admission

rule based on a full quadratic programming optimization

problem provides performance indices about 50% higher than

those obtained with the admission control strategy version

based on an iterative approximated quadratic programming

problem. Since a higher accuracy is obtained at a cost of a

higher computational burden, the choice of the optimization

problem depends on the size of the problem.

Future work will focus on further reduce the computational

burden through adequate implementation of the proposed

technique. The authors are currently working on a production-

grade implementation of the proposed technique.
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