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Abstract— This paper proposes a delay-based method to reduce
the coupling of the equations of power system models for
transient stability analysis. The method consists in identifying
the variables that, when subjected to a delay equal to the time
step of the numerical integration (one-step delay), leave practi-
cally unchanged the system trajectories. Automatic selection of
the variables based on a geometric controllability/observability
approach and estimation of the maximum admissible delay are
duly discussed. Such a one-step-delay approximation increases
the sparsity of the system Jacobian matrices and can be used in
conjunction with state-of-the-art techniques for the integration
of differential-algebraic equations. The proposed approach is
evaluated in terms of accuracy, convergence and computational
burden, by means of the New England 39-bus system; a 21,177-
bus model of the ENTSO-E transmission system.

Index Terms— Time Domain Integration (TDI), Delay Differen-
tial Algebraic Equations (DDAEs), Small Signal Stability Analysis
(SSSA), geometric approach.

I. INTRODUCTION
A. Motivation

The power system model for rotor-angle and voltage stabil-
ity analysis is traditionally formulated as a set of Differential
Algebraic Equations (DAESs). These equations are mutually de-
pendent due to the meshed topology of transmission networks
and the action of secondary controllers. This paper focuses on
the inclusion of fictitious time delays that, while not altering
the overall dynamic response of the system, allows reducing
the coupling of the DAEs by removing off-diagonal elements
of the system Jacobian matrix.

B. Literature Review

Introducing time delays in a set of DAEs turns it into a
set of Functional DAEs (FDAEs), namely FDAEs of retarded
type, also known as Delay Differential Algebraic Equations
(DDAESs). DDAE:s are typically employed to model physical
time delays. These are inherent to many engineering appli-
cations, such as circuit and microwave theory [1], [2]. In
power systems, delays have been considered to study the
effect of long transmission lines [3] and, more recently, the
latency of communication networks, which affects wide area
measurement systems and controllers [4], [5]. Other studies
consider delays arising in the coordination of electric vehicles
that participate in load frequency control [6] and in phase-
locked loops for frequency estimation [7].

A property of constant delays is that the Jacobian elements
with respect to retarded variables are null. This feature has
been utilized for the simulation of Electro-Magnetic Transients
(EMTs) that include long transmission lines [8] or control
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Fig. 1: Types of Jacobian matrices: (a) block-diagonal matrix of a
fully decoupled system; (b) coupled system ordered to exploit the
BBD structure; and (c) coupled system with ordered BBD structure
and extra decoupling obtained through fictitious delays.

systems [9]. The sending- and receiving-end variables of long
overhead lines, in fact, are decoupled by the transmission
delay and, hence, sections of circuits connected through long
lines are naturally decoupled. In [9], on the other hand, the
control system is solved at the previous step of the EMT circuit
equations which, de facto, introduced a delay in the control
equations. This allows ordering the Jacobian matrix of the
DAEs with a block diagonal structure (see Fig. 1.a). Each
block can be handled separately at each time step — which is
of the same order of the delay, i.e. us — and allows exploiting
parallelization techniques.

The effort of developing parallel algorithms in EMT sim-
ulations stems from the fact that simulations of this type are
slow for large systems [10]. For systems with the same number
of buses, simulations based on quasi-steady state phasors and
electromechanical models are much faster. However, the Time
Domain Integration (TDI) of large power systems requires
iteratively solving stiff nonlinear hybrid DAEs, which is still
a time-consuming task to complete. The time required to
complete a [N —1 contingency analysis, in fact, can be a critical
constraint, e.g. for on-line dynamic security assessment (see,
for example, Chapter 15 of [11]).

The DAEs for transient stability analysis are naturally
coupled through the admittance matrix of the grid, which
is modeled with a set of algebraic equations, as well as
by secondary frequency controllers, and generally do not
include delays. This leads to a Bordered Block Diagonal
(BBD) structure of the Jacobian matrix (see Fig. 1.b) [12].
The BBD structure can be enforced in any set of DAEs
through diakoptics, i.e. by introducing additional algebraic
equations [13], [14]. Such equations increase the order of
the system but tend to increase sparsity and, in some cases,
may also speed up the factorization of the Jacobian matrix
of the system. A technique conceptually similar to diakoptics,
called MANA, namely Modified Augmented Nodal Analysis,



has been utilized in unbalanced power flow analysis [15]
and EMTs [16] but has no clear application for single-phase
equivalent phasor-based transient stability models.

The main idea of this paper is that, if one includes fictitious
delays in the power system transient stability model, the
Jacobian matrix can be further decoupled (see Fig. 1.c) without
increasing the system’s order, thus increasing sparsity and
reducing the computational burden of numerical methods. In
this vein, in [17], the authors proposed the use of the Center
of Inertia (COI) at the previous time step to decouple the
equations of the rotor angles of the synchronous machines. In
[17], the “slightly” delayed COI was tested on a 4-bus system
using the Implicit Trapezoidal Method (ITM) with time step
0.01 s and showed not to affect the system transient response.

To the best of our knowledge, there is no study that proposes
a systematic way to implement and evaluate the one-step delay
approximation for a DAE model for transient stability analysis.
This paper attempts to fill this gap by recognizing that the one-
step-delay approximation in a coupled system can be formally
studied as a set of DDAE:s.

C. Contributions
The contributions of this paper are as follows:

e A rigorous and systematic analysis of the impact of
the one-step delay approximation on the accuracy, con-
vergence and computational burden of the time domain
integration routine.

o A method to identify the elements of a power system
DAE model that can be delayed by one time step, as well
as a technique to estimate the maximum admissible delay,
so that the approximation is within a given tolerance. This
analysis has to be carried out only once per network.

D. Organization

The remainder of the paper is organized as follows. Section
Il recalls a conventional implicit TDI scheme for power
systems. Section III discusses the proposed approach to one-
step-delay approximation. Section IV discusses how to select
the variables of a DAE model to be delayed. Section V
provides a method to calculate the maximum admissible delay
for a given DDAE model. The case study is discussed in
Section VI. Conclusions are drawn and future work is outlined
in Section VIIL.

II. IMPLICIT INTEGRATION OF POWER SYSTEM

Power systems are conventionally modeled as a set of
explicit non-linear DAEs, as follows:

:b:.f(a"ay)
0=g(z,y),

where f (f : Rt™) 5 R™), g (g : R®+™) — R™), are
the differential, algebraic equations, respectively; x = x(t),
x € R™, are the state variables, y = y(¢), y € R™, are the
algebraic variables; and ¢ € [0, +00) is the simulation time.
In this formulation, discrete variables are modeled implic-
itly, i.e. each discontinuous change in the system leads to a
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new continuous set of equations in the form of (1). Equations
(1) are stiff, for two reasons: (i) the time constants of the
differential equations typically span multiple time scales; and
(ii) the algebraic equations can be viewed as infinitely fast
differential equations associated with zero time constants.

Explicit numerical methods are known to perform poorly
for stiff problems. Thus, a common approach to numerically
integrate (1) is to use an implicit method with a direct solver.
Employing an implicit method allows a simultaneous solution
of both state and algebraic variables [18], and requires the
solution of the following set of nonlinear equations:

0=r(z,y,h)

0 = s(w7 y? h) i (2)

where 7, (r : RO*t™) 5 R™) and s, (s : R+ — R™) are
nonlinear functions that depend on the differential and alge-
braic equations, respectively, as well as on the applied implicit
method. The update of the state and algebraic variables at each
time step can be expressed as follows:
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where h is the time step length; 2() (£4-1) denotes the vector x
at the i-th iteration of time ¢+ h. The increments Azx(*), Ay(*)
are obtained by employing the Newton method, as follows:
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where AV, AW ¢ Rv+m)x(ntm) s defined as:
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where rg), r?(f), sgf), s?(j) are the Jacobian matrices of r and
s at the i-th iteration of time ¢.

Among the various implicit numerical methods utilized
by power system software tools to define equations (2), for
simplicity but without lack of generality, we consider only
one, namely the ITM. The discussion below can be easily
applied to any other method. The ITM leads to the following
form of (2):

0=r"=2® —xt—h)— 0.5h(f(i) + f(t—h))

0= s = g ©
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where £ is the time step length; £ = f(z®, y®), g() =
g(z®,y") and f(t—h) = f(x(t—h),y(t—h)). The
Jacobian matrix (5) at the i-th iteration of time ¢ is defined as:

r) =1, —05hfP , v = —050f()

. , ‘ . (7
s{) =g, s =gl

where f(mi), fgj), g(mi), ggj) are the Jacobian matrices of the
DAEs; and I,, denotes the identity matrix of order n.



III. ONE-STEP-DELAY APPROXIMATION

Let us assume that some variables — we will discuss later
how to select such variables — of the DAE system (1) are
substituted with their values at the previous time step. Such
a system can be formally studied as a system of nonlinear
DDAEs with inclusion of a constant delay, as follows:

T = f(wa Y, Zq, yd)

0= g(ma Y, Ty, yd) )
where x4, x4 € R™, y,, y; € R™¢, are the delayed state
and algebraic variables, respectively, as follows:
Yya=y(t—h). 9)

Note that (8) is an approximation of (1). The delay h, in fact,
is fictitious as it does not model any physical phenomenon.

The numerical integration of (8) requires the solution of the
following set of nonlinear equations [19]:

®)

xg=x(t—h),

0= ’F(wavadvyd? h)

- (10)
0= S(:I:7 Y, Td,Yq, h) .

If at the ¢-th 1terat10n of time ¢, fm s f( ), ~§j), QL), are the

delay-free and fw " f( ? ~:(Z 0 §§}), are the Jacobian matrices
of the delayed Varlables of system (8), then the following

identities apply:

i (i) () i () ()
O =Ffo + Fayr £ =Fy + Fy,

9 =g +a%) . 9y =ay +ay) -

The main difference between (10) and (2) is that the Jacobian
matrices of (10) do not include the terms that depend on x4
and y,, as these variables are “constants” at time ¢. We have:

(1)
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The terms ffni), f?(j), §(mi), .'s'gi) are the delay-free Jacobian
matrices of #*) and 5. For a detailed description on the
modifications required by the I'TM in order to integrate a set
of DDAEs with inclusion of more general (time-varying and
state-dependent) delays, the interested reader may refer to [19].
Since matrix A, is composed only of the delay-free Jacobian
matrix elements of 7 and S, A, is sparser than A.. The scope
of this paper is to take advantage of the fact that approximating
(1) with (8) leads to a sparser Jacobian matrix.

IV. SELECTION OF VARIABLES TO BE DELAYED

Inclusion of fictitious time delays in a set of DAEs intro-
duces an inevitable approximation in its transient response. It
is thus crucial to identify the variables and the equations that,
if subject to a small variation, do not lead to a significant
change in the system trajectories. With this regard, delaying
variables that are slower than the dynamics of main interest,
causes a smaller variation in the system trajectories.

Another aspect is the position of the selected elements in
the Jacobian matrix. Removing elements that introduce dense
rows/columns in the Jacobian leads not only to a sparsity
increase, but also to decoupling of the system equations,
which in turn allows exploiting state-of-the-art algorithms that
parallelize the factorization. Such algorithms usually exploit
the specific formulation of current-injection power system
models and the admittance matrix to take advantage of the
BBD structure of the Jacobian matrix [20], [21]. Exploiting
parallelization, however, is out of the scope of this paper. Thus
we have adopted the general DAE model described by (1).

A. Systematic Selection of Variables

In this section, we provide a systematic small signal based
method to select the delayed variables x4 and y,; of a
model, based on the geometric approach discussed in [22].
The geometric approach has been widely employed in control
design to provide a measure for (i) the observability of a
dynamic mode from a signal; (ii) the controllability of a mode
from a control input placement. Combining the two provides
the joint controllability/observability index. The smaller this
index is, the less the examined mode is affected by the
specific signal-control input set. In the following, we utilize
the geometric approach to determine the sensitivity of system
modes to variations of all non-zero elements of the DAE
Jacobian matrices. Differentiating (1) around an equilibrium
point yields:

Az = f, Az + f, Ay

(14)
0=g,Az+g,Ay .

Elimination of Ay leads to A = AAx, where the matrix
A=f,— fy,9,'9, has n finite eigenvalues A1, Xz, ..., Ap.
Complex conjugate eigenvalues, say \; = o; £+ jw;, define
oscillatory modes with natural frequency f; = w;/2w. For
rotor angle stability studies, modes of interest are those with
fi € [0.1,2] Hz [23]. In the remainder of the paper, we refer
to such modes (and the respective eigenvalues) as relevant.
Let us now introduce a perturbation into (14), as follows:

Az = f Az + f,Ay + ByAuy

(15)
0=g,Az +g,Ay + BjAu, ,

where Auy € R", Auy, € R™ are the perturbation vectors of
the differential, algebraic equations, respectively; and B¢, B,
are the perturbation matrices associated with Auy and Auyg,
respectively. Eliminating Ay from (15) yields:

fyg?:lBgAug .

Considering zero perturbation matrices in (16), as discussed
in [22], we can define the output matrices of the state and
algebraic variable variations as C, = I,, Cy = = 1gm,
respectively. Let also J = {f,g} and z = {x,y}, so
that J, is a compact notation for any of the Jacobians
far fy» 9z and g, With J_(py,v.) we denote the ji;-
th row, v,-th column element of J,. Finally, let ¢, and
1, be the right and left eigenvectors associated with the
relevant eigenvalue \;, respectively. That said, the geometric

Ad = AAz + ByAu; — (16)



controllability/observability measures of A; from the Jacobian
matrix elements of the system are determined as follows:

- €2,y Pi%ibIb. |
bkl llez o 1 11ill 1ol 7

where ¢ ;,, is the p;-th row of the output matrix C; by,
is the v,-th column of the perturbation matrix B ; | - | and
[| - || denote the modulus and Euclidean norm, respectively.
Expression (17) allows selecting the elements of the Jaco-
bians of (14) that can be delayed and thus can be eliminated
from the matrices f,. f,. g, and g,,. Specifically, elements of
such matrices that have low gco values for all relevant modes
of the system, do not noticeably impact the dynamic behavior
of the system. Therefore, we select as a candidate to be delayed
any element whose gco value is below a given threshold
8COmax. Note that f,, f,. g, and g, are stored as sparse
matrices, hence only non-zero elements are considered for the
analysis above, which leads to an efficient implementation.

gCO(Jz(,U'Jsz)) (17)

B. Illustrative Examples

The criteria described above are further discussed through
some illustrative examples, which are based on well-known
devices and models utilized in transient stability analysis. In
particular, we consider devices and controllers that are slow
and/or couple several variables of the systems.

Center-of-Inertia: The algebraic variable of the COI speed
(wcor) is defined by the following algebraic equation:

K MZ
Y(weon) =0 =wcor — )  —wi , (18)
(wcor) ; My
where w;, ¢ = 1,2,...,k, is the state of the speed of the

i-th machine; M; is the mechanical starting time of the ¢-
th machine; and My = M; + Ms + ... + M,,. The COI
speed is used as a reference in the differential equations of
the generator rotor angles:

fey = d; = U (w; — weor) (19)

where (), is the angular frequency base. The COI provides the
“average” frequency trend of the system and thus represents a
relatively slow dynamic. Delaying the w;’s and wcor in (18),
(19), respectively, allows removing the elements 0g(..o,)/Owi
and Of ;. /Owcor, which constitute a dense row in g,, and a
dense column in f,, respectively.

Turbine Governor: The action of some Turbine Governors
(TGs) can be significantly slow, as compared to primary
damping and voltage controllers and hence, adding one-step
delays in some TG DAE models, e.g. the ones described in
[24], leads to increased sparsity without jeopardizing the TDI
accuracy. On the other hand, since TG variables typically
do not constitute dense segments in the Jacobian matrix, the
increased sparsity does not come with significant decoupling.

Automatic Generation Control: Automatic Generation Con-
trol (AGC) is used to provide secondary frequency regulation
to the power system. Consider a simplified continuous AGC
model that measures the COI frequency and produces a
dynamic active power command (ps) which is distributed to the
machine TGs proportionally to their droops [25]. The algebraic

variable of the power order received by the i-th TG is defined
by the following algebraic equation:

R;
- Ps (20)

Rr
where porq,; 1s the TG power order; R; is the droop constant;
and Ry = Ry + Ry + ... + R,. Delaying porq,; in (20)
removes 9g(p, ., ,)/Ops, which forms a dense column in g,,
while accuracy is not impacted, because of the AGC slow
action.

Secondary Voltage Regulation: The Secondary Voltage Reg-
ulation (SVR) model employed in this paper is based on the
scheme proposed in the grid code of the Italian system. For
a detailed description of this scheme, the interested reader
may refer to [26]. The SVR mainly consists of two control
levels. The external loop receives the voltage measurement
of a selected pilot bus and computes the vector g, that
represents reactive power limits for the participating to the
SVR generators. q,.; is compared with the actual reactive
power generation vector g and the error q, = g, — q is
further processed by a dynamic decoupling matrix D. The
produced vector is finally sent to the Generator Reactive Power
Regulators (GRPRs). Each GRPR is basically a PI control, the
output of which is considered as input to the voltage reference
of the generator’s Automatic Voltage Regulation (AVR). The
dynamic behavior of the the i-th GRPR state variable z, ; is
given by the PI differential equation:

i = KrD,q, ,

I(pora,i) = 0 = pord,i —

f(:z:,.,i) = (21)

where K is the integral gain of the GRPR; D is the i-th row
of D. Delaying q, in (21) allows eliminating 0f(,, ,)/0q,.,
which constitutes a dense block of columns and rows in f,,.
The accuracy of the integration is maintained, due to the
relatively slow time scale of the SVR action.

V. MAXIMUM DELAY / TIME STEP

We provide a technique based on SSSA (Small Signal
Stability Analysis), which for a selected set of x4 and y,,
estimates the maximum admissible delay h.,.x that allows
keeping the errors between the original DAEs and the modified
DDAEs below a threshold. To this aim, we first solve the
eigenvalue problem of the linearized delayed system. Lineariz-

ing (8) around a valid operating point yields:
Ak = f,Ax+ f Ay + fo,Azq+ f,, Ay, )
0=g,Ax+ QyAy + gachzcd + gydAyd .

Eliminating the algebraic variables from (22) is possible under
the assumption that g, is not singular, as follows:

Ai = AgAx + AjAxq + Y (Apz(t — kh)) |
k=2

(23)

where Ag is the delay-free system matrix; Ay, k > 2, are
the delayed system matrices. A rigorous proof of (23), as well
as the condition under which the series in (23) converges,
are provided in [27]. The series typically converges rapidly
as k increases and, thus, it is acceptable to assume a finite
maximum value for k, say p, in the summation of (23), and



hence, the characteristic matrix of (23) can be approximated
with the following pencil:

P

sI, —Ag— Z(e‘SkhAk) .
k=1

(24)

We are now ready to provide the following proposition on
the continuity of the eigenvalues of (24).

Proposition 1.

Let \ be an eigenvalue of (24) with multiplicity «. There
exists a constant € such that for all € > 0 satisfying € < ¢,
there is a number £ > 0 such that the pencil:

P
SIn - (1 + f) AO - Z 678k(1+£)hAk
k=1

(25)

where

¢heR, Gl <& h+E&h =0,
gAkGRnxn? |‘€Ak‘|2<§a kzoalw"apa

has exactly a eigenvalues in the disk: {s € C: |s — \| < €}.
The notation || - ||o implies the induced matrix 2-norm.

The proposition above states that the characteristic roots of a
delayed system behave continuously with respect to variations
of system matrices and delays [28].

In the proposed scheme, the modes of the time delay
system are viewed as approximations of the modes of the
delay-free system. Let \; and ;\i be the ¢-th rightmost, non-
null eigenvalues of the delay-free and the delayed system,
respectively. The associated relative error is:

i = Al
i = .
| Al
The limit case h = 0 leads to n; = 0, 0 < ¢ < n; and, for
h > 0, n; > 0. Assigning a maximum admissible error, say
Nmax, allows finding the delay upper bound A, .x, as follows:

|)‘i(hmaX) - )‘i|
|Ail ’

The calculation of hy .y requires to find the eigenvalues
of (24), which implies solving a non-linear, transcendental
characteristic equation. Transforming (24) into a linear pencil
is possible by using a partial differential equations represen-
tation of the system, which however, has infinite dimensions.
A reduced set of eigenvalues can be found by employing a
Chebyshev discretization scheme, which has been successfully
applied to power systems with inclusion of time-delays [19].

The following remarks are relevant.

1) Delay vs time step: In general, the time step of the
numerical integration is determined based on the fastest dy-
namics of the system, whereas the variables that are delayed
in this work are typically associated with slow dynamics. This
means that the time step is always smaller than the time
scale of delayed variables. Regarding the magnitude of the
time delay, if the delay is greater than the integration time
step, an extra, undesirable approximation is introduced into the
system, as Proposition 1 indicates that the difference between
the DAEs and DDAEs are the smaller, the smaller is the
delay. On the other hand, for delays smaller than the time

(26)

Vi=1,2,...,v, v<mn.

27)

max =

step, the numerical integration has to interpolate the delayed
values, which introduces an additional source of error in the
trajectories of the DDAEs. In general, handling delays smaller
than the step size is an open research topic, as it creates
difficulties even for special integration methods for stiff DDEs
[29]. For the reasons above, in the proposed formulation, the
delay is always equal to the time step.

2) Stiffness: Apart from the approximation introduced with
the delay, the maximum step hyax is also constrained by the
stiffness of the DDAEs and the numerical integration method.
In the following, we assume that the system is integrated
using the ITM, which is a well-known and widely utilized
A-stable integration scheme particularly adequate to handle
DAE stiffness.

3) Computational burden: The approach presented in Sec-
tion IV-A and Section V is based on SSSA, which is valid
around an equilibrium. SSSA based techniques in this paper
are used to capture a feature of the power system model that
is “robust”, i.e. does not substantially change by varying the
operating point. Hence, the analysis can be carried out only
once per network. Some references have addressed a similar
problem. For example, see the discussion on the participation
matrix and identification of relevant state variables in [23];
and the use of SSSA techniques for non-linear dynamic model
reduction in [30].

VI. CASE STUDY

We present simulation results in two power system models.
In particular, Section VI-A is based on the IEEE 39-bus
New England system and employs the discussions of Sections
IV and V for selection of variables and estimation of the
maximum admissible time step. Then, Section VI-B considers
a 21,177-bus model of the ENTSO-E transmission system.
This system is large enough to allow properly discussing the
impact of the proposed approach on the convergence and the
computational burden of the TDI. All simulations are carried
out using the power system analysis tool DOME [31].

A. 39-bus New England System

This section presents simulation results based on the New
England 39-bus system, detailed static and dynamic data of
which can be found in [32]. It consists of 10 synchronous
generators, all represented by 4-th order (two-axis) models
[24]; 34 transmission lines; 12 transformers; and 19 loads,
which are modeled as constant active and reactive power
consumption. Each generator is equipped with AVR, TG and
Power System Stabilizer (PSS). and thus provides primary
voltage, primary frequency and damping control, respectively,
to the system. In this paper, all generators are assumed to
participate to secondary frequency and voltage control through
AGC and SVR schemes, respectively. Note that the COI speed
is used as angular frequency reference of the generators. In
total, the system has 141 state variables and 253 algebraic
variables.

We apply the variables selection method described in Sec-
tion IV-A. The state matrix A has 141 finite eigenvalues, 48 of
which have natural frequencies that fall in the range [0.1,2] Hz



TABLE I: New England system: Relative errors of rightmost eigenvalues, gcomax = 10710,

Delay-free system h =0.01s [ h=02s [ h=0.24s
A A n; (%) A n; (%) A n; (%)
—0.00782 —0.00782 0.00 —0.00783 0.13 —0.00784 0.26
—0.01400 £ 50.03721 | —0.01400 £ j0.03720 0.03 —0.01399 + 50.03719 0.06 —0.01397 £ 50.03717 0.13
—0.02000 —0.02000 0.00 —0.02000 0.00 —0.02000 0.00
—0.02890 —0.02890 0.00 —0.02890 0.00 —0.02890 0.00
—0.02998 —0.02998 0.00 —0.02998 0.00 —0.02998 0.00
—0.04009 —0.04009 0.00 —0.04009 0.00 —0.04009 0.00
—0.04368 —0.04368 0.00 —0.04368 0.00 —0.04368 0.00
—0.05554 —0.05554 0.00 —0.05553 0.02 —0.05553 0.02
—0.05776 —0.05776 0.00 —0.05776 0.00 —0.05776 0.00
—0.06160 —0.06160 0.00 —0.06160 0.00 —0.06160 0.00
—0.06179 —0.06179 0.00 —0.06179 0.00 —0.06179 0.00
—0.06312 —0.06312 0.00 —0.06312 0.00 —0.06312 0.00
—0.08362 £ j0.02745 | —0.08364 £ j0.02748 0.04 —0.08388 £ j0.02770 0.41 —0.08426 £ j0.02804 0.99
—0.10001 —0.10001 0.00 —0.10001 0.00 —0.10001 0.00
—0.10002 —0.10002 0.00 —0.10002 0.00 —0.10002 0.00

and are thus considered relevant eigenvalues for the analysis
carried out below. Table II shows the number of non-zero
(NNZ) elements of the Jacobian matrix of the original system.
The full 394 x 394 Jacobian matrix A, has 1,704 non-zero
elements, which corresponds to density 1.098%. The effect of
the selected threshold gcomax on the density of the system
Jacobian matrices is shown in Fig. 2. As expected, the higher
gCOomax, the more elements are selected and the sparser the
delayed Jacobian matrices become.

TABLE II: New England system: NNZ Jacobian matrix elements of
the original DAE system.

fa
281

Total
1,704

Density (%)
1.098

fy  9a 9y
271 140 1,012

Matrix density [%)]

[| o—e Full N
0.0 L

p . . . .
~12 =TI ~10 9 -8 —7 ~6 5 1 =3
10g10(gCOmax)

Fig. 2: New England system: Density of Jacobians as gcomax varies.

For the sake of example, let us consider gcomax = 10710,
In this case, selected variables include variables of TGs; rotor
speeds that appear in the equation of the COI; variables
of the SVR. The method suggests first variables of slow
acting devices, which is also consistent to the discussion
of Section IV. The relative errors of the system for the
35 rightmost eigenvalues are calculated according to (26)
and results for different delays are presented in Table I. If
h = 0.01, all relative eigenvalue errors are below 0.05%. The

relative eigenvalue errors increase for larger delays. According
to the discussion of Section V, if the maximum relative error
iS Nmax = 1%, we find Ay = 0.24 s. Finally, as illustrated in
Fig. 2, constantly increasing gcomax leads to more and more
variables being selected, which gradually limits the value of
hmax- However, following from (17), variables that inherently
define relevant modes are consistently selected.

The geometric approach can always provide an insight
in the system structure in a systematic and model-agnostic
way, unlike for example, the methods proposed in [20] and
[21]. This feature is particularly important for modern power
systems where converter-interfaced devices can change, in a
future not too far away, the overall dynamic response of the
system. Still, it is common that variables of a conventional
power system DAE model are well-known. Then, x4, y, can
be selected based on the user’s experience, and thus without
applying a systematic method. The variables that if delayed, do
not change or change in a negligible way the overall dynamic
behavior of the system, are typically the ones with significantly
slower dynamic response as compared to the critical modes of
the system. Selected variables are thus naturally decoupled
by the critical dynamics of the system due to their different
time scale. With this regard, we have two comments. First,
for any set of selected elements, hp,,x is not known a priori,
so it can be still estimated according to the method described
in Section V. Second, while selecting x4, y,, the user should
take into account that, how slow a variable actually is depends
on the state matrix A and, in turn, on the parameters of the
examined system. For example, consider again the example of
the COI. Differentiation of (18) yields:

K Ml
: = Ji 28
weor ; Y (28)
where w; is given by the well-known swing equation:
1
w; = M(Tm,i — Te,i — Di(w; —wcor)) , (29)

where 7, ;, T.; are the mechanical and electrical torque,
respectively; D; is the damping coefficient of the i-th machine.



Substitution of (29) to (28) gives:

1

Wcor = E(Tm,T — Te,T — ;Di(wi —wcor)) ,  (30)

where 7,7 = Tm1 + Tm2 + ...+ Tk and o = Toq +
Te,2 + ...+ To . A characteristic of the 39-bus system is that
My > M;, i #1 (M; = 1000 MWs/MVA, while the second
larger mechanical starting time is Myg = 84 MWs/MVA).
In this case, the rate of change of wcor is still slow (see
Section IV-B), but as seen from (30) its rate of change is
comparable with that of w;.

As it can be observed, delayed variables are associated with
secondary controllers or “slow” variables such as the center
of inertia. The dynamic response of such variables cannot
change even for relatively big changes of the operating point
and topology of the system. As a matter of fact, one could
select a priori most of these variables. However, the eigenvalue
analysis
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Fig. 3: New England system: Transient following a three-phase fault.

We provide an example on the effect of the one-step delay
approximation in the transient response of the 39-bus system
by carrying non-linear time domain simulations. With this
aim and according to the discussion of Section IV-B, we
climinate the dense segments 0g(wcor)/Owi, 9fs,)/Owcor,
9 (pora.)/OPss Of(x,.)/0q,, that arise from (18)-(21). We
simulate the transient following a three-phase fault applied
at bus 6 at ¢ = 1 s. The fault is cleared after 80 ms by
tripping the transmission line that connects buses 5 and 6.
The system is numerically integrated using the ITM. Figure 3

shows the transient behavior of the rotor speed of generator 2
for integration step sizes h = 0.02 s and h = 0.1 s. As it can
be seen, the larger h is, the larger is the mismatch between
the two trajectories. In both plots though, the trajectory of
the DDAE system closely follows the original trajectory, as
expected.

We check the accuracy of the proposed one-step delay tech-
nique under different operating conditions and contingencies.
In addition to the operating condition considered above (from
here and on referred as the base case), we consider two more
operating conditions, namely, 10% and 20% increase in the
total power consumption of the system. For each operating
point, we examine the transient response of the system. We
consider two different disturbances: first, the three phase fault
applied at bus 6 described above; and second, the loss of
the load connected at bus 39 at t = 1 s, which leads to a
1.109 GW decrease in the power consumption of the system.
In all scenarios, the delayed variables do not change and are
the ones used to plot the base case in Fig. 3.

The response of the rotor speeds of the DAE system are
compared with the respective speed trajectories obtained by
integrating the DDAE system. Each system is simulated for
100 s and for two time step sizes, h = 0.02 s and h =
0.10 s. The maximum absolute rotor speed trajectory errors are
summarized in Table III. As expected, the proposed technique
shows high accuracy for all considered operating conditions
and disturbances.

TABLE III: New England system: Maximum absolute rotor speed
trajectory mismatches induced by the proposed method.

Operating Applied h=0.02s h=0.10s
condition disturbance — max. error  — max. error
Base case Fault at bus 6 6.0-10=6 8.3-107°
Bus 39 load trip | 9.0-107%  4.2.107°
+10% load  Fault at bus 6 6.0-107% 4.8.1074
Bus 39 load trip | 1.2-10%  5.7.107°
+20% load  Fault at bus 6 7.0-107% 58.1074
Bus 39 load trip | 1.7-107%  8.4-107°

B. 21,177-bus ENTSO-E System

This subsection presents simulation results on a dynamic
model of the ENTSO-E transmission system. The system
includes 21,177 buses (1,212 off-line); 30,968 transmission
lines and transformers (2, 352 off-line); 1, 144 zero-impedance
connections (420 off-line); 4, 828 power plants represented by
6-th order and 2-nd order synchronous machine models; and
15,756 loads (364 off-line), modeled as constant active and re-
active power consumption. Synchronous machines represented
by 6-th order models are also equipped with dynamic AVR
and TG models. Moreover, the system includes 364 PSSs. Fi-
nally, the system includes AGC and SVR mechanisms, which
provide secondary frequency and voltage control, respectively,
to different areas of the system. In total, the system has
49,930 state variables and 97,304 algebraic variables. The
full Jacobian matrix has dimensions 147,234 x 147,234 and



1,226,492 non-zero elements, which yields a density degree
of 0.0057 %.

We show the impact of the one-step delay approximation
on the accuracy, number of factorizations and computational
burden of the TDI. To this aim, the dense segments that arise
from (18)-(21) are eliminated, leading to a sparser and less
coupled model. The NNZ Jacobian elements of the original
and delayed system are summarized in Table IV.

TABLE IV: ENTSO-E system: NNZ Jacobian elements.

System NNZ Jacobian elements  Density (%)  Relative diff.
Original 1,226,492 0.0057
Delayed 936, 871 0.0043 —23.61 %

We consider a three-phase fault at bus 12,921, occuring
at t = 1 s. The fault is cleared after 100 ms. The response
of the rotor speed of the synchronous generator connected
at bus 2,292 during the first seconds following the fault, is
shown in Fig. 4 for two different time step sizes. As it can be
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Fig. 4: ENTSO-E system: Transient following a three-phase fault.

seen, the difference between the two trajectories is very small,
which indicates that accuracy is maintained. In particular, the
maximum absolute mismatch between the two trajectories for
the cases shown in Fig. 4 are: (a) 1.0- 1076, (b) 7.0 - 1076.
We examine the impact of the one-step delay approximation
on the number of factorizations of the TDI. Following a
disturbance, the system shows a transient and, provided that
the trajectory is stable, finally reaches a stationary point. While
in steady state, the ITM requires exactly one factorization
for each time step, both for the original and the delayed

system. Hence, any noticeable differences in the number of
factorizations required by the original and the delayed system
occur during the first seconds following the disturbance.

The number of factorizations required by the original and
the delayed system during the first seconds following the
three-phase fault, are shown in Fig. 5. Since the increments
of the variables at each time step are updated according to
the standard Newton method (see Section II), the number
of factorizations at each time step is equal to the number
of Newton iterations. As it can be seen, the original and
the delayed system in this case require the same number of
factorizations at each time step to converge, which indicates
that the approximation does not jeopardize the convergence.
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Fig. 5: ENTSO-E system: Number of Newton iterations.

We finally discuss the effect of the one-step delay ap-
proximation on the computational burden of the TDI. The
method reduces the coupling of the ENTSO-E system and
facilitates the potential application of techniques that factorize
decoupled blocks of the Jacobian matrix in parallel. In turn,
enabling parallelization leads to a significant speedup of the
simulation. However, as already discussed, the goal of this
paper is to provide a technique for decoupling and sparsity
increase rather than applying parallel techniques. Hence, we
provide a comparison of the original and delayed ENTSO-E
system in terms of computational effort required for a non-
parallel numerical integration.

The full Jacobian matrix without introducing delays requires
0.245 s per single factorization, in average, on a 8x 3.5 GHz
Intel Xeon CPU desktop computer, while the Jacobian matrix
of the delayed system requires 0.223 s, which corresponds to
a speedup of 9.04 %.



Apart from the factorization speed-up, one has also to
evaluate whether the delayed system requires more or less
iterations than the original system to solve the Newton method
for each point of the time domain integration. With this regard,
we have already shown an example in Fig. 5, where the two
systems require at each point the same number of iterations.
In addition, we have carried out several cases considering a
variety of contingencies and time steps and found out that the
proposed technique is able to reduce the simulation time in
range from 5 to 20%.

For the sake of example, consider the three-phase fault at
bus 2,292 discussed above. The system is integrated for 7 s.
With a time step i = 0.02 s, the original system completes the
numerical factorization in 298.63 s, while the delayed system
in 262.14 s, which corresponds to a speedup of 12.22 %.

The proposed one-step-delay technique is agnostic with
respect to the integration scheme utilized for the TDI. For
this reason, the proposed approach can be coupled with any
other numerical technique to speed up time domain simula-
tion software. Hence, even if the speed-up provided by the
proposed formulation per se is not huge, such a speed-up
can be combined with that of other techniques. Moreover,
reducing the computational burden is not the only benefit
of the proposed one-step delay technique. A relevant feature
is that it increases the decoupling of system variables. This
leads to a sparser and more decoupled system Jacobian matrix.
The latter is a feature that we expect to be beneficial to
further speed up the time domain analysis if combined with
parallelization techniques.

VII. CONCLUSIONS

The paper proposes a systematic approach to exploit delays
to reduce the coupling of the equations of conventional DAE
models of power systems for transient stability analysis. With
this aim, the paper discusses how to select the elements of a
power system DAE model that can be delayed and provides
an estimation of the maximum admissible time delay so
that simulation accuracy is maintained. Numerical simulations
provide a first, simplified evaluation of the proposed approach,
in terms of accuracy, convergence and computational burden.
Future work will focus on potential applications such as
embedding the proposed approach in algorithms that apply
state-of-the art parallelization techniques.
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