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Abstract

This paper proposes general sensitivity formulas for maximum loading

conditions of nonlinear power systems. The proposed formulas allow

computing the sensitivities of any system variable and, in particular,

of the maximum loading margin with respect to arbitrary parameters.

This approach extends previous results. The paper also shows that

the sensitivity formulas available in the literature for static saddle-

node and limit-induced bifurcation points are particular cases of the

proposed general formulas. Two benchmark systems, namely a 6-

bus system and the IEEE RTS-96 24-bus tests system, are used to

illustrate and test the proposed technique.
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List of symbols

The main notation used throughout the paper is stated below for quick ref-

erence. In the paper, vectors and matrices are in bold face, while scalar

variables are in italic font (e.g. v is the vector of voltage magnitudes vi at

each bus i). Other symbols are defined as required in the text.

Functions

f(·) The optimal power flow objective function.

h(·) Vector of equality constraints.

ĥ(·) Extended vector of equality constraints.

g(·) Vector of inequality constraints.

L(·) The Lagrangian function.

Variables

vi Voltage magnitude at bus i.

θi Voltage angle at bus i.

kG Variable used to distribute the system losses among generators.

qGi Generator reactive power at bus i.

ψk Current flow in transmission line k.
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Other Variables (“outside” the OPF Problem)

pλGi total generation power injected at bus i.

pλLi total load power consumed at bus i.

Multipliers

π Lagrangian multipliers of equalities h.

π̂ Lagrangian multipliers of equalities ĥ.

µ Lagrangian multipliers of inequalities g.

Constants

pGi Generated active power at bus i.

pLi Load active power at bus i.

qLi Load reactive power at bus i.

φLi Load power factor at bus i.

Sets

J Set of active inequality constraints.

Jd Set of degenerate inequality constraints.
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Numbers

n Number of power flow variables.

ℓ Number of equality constraints.

m Number of inequality constraints.

p Number of parameters.

mJ Cardinality of J , i.e., the number of active inequality constraints.

nB Number of buses.

nL Number of lines.

Indices

i, ι Indices for buses.

l Indices for equality constraints.

j Indices for active inequality constraints.

k Indices for lines.

1 Introduction

The maximum loading condition of a power system is of particular interest for

technical and economical reasons. As a consequence, a variety of techniques
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and studies have been proposed in order to compute the loading margin of

a system or the distance of an operating point to collapse [1–3]. This paper

focuses on collapse phenomena driven by static saddle-node and limit-induced

bifurcations [4–6].

One of the first techniques used to determine the maximum loading con-

dition of a power system was the continuation power flow (CPF) [7]. This

technique consists of computing a series of power flows while increasing the

overall loading level of the system. The CPF is shown to be robust even for

solutions close to the collapse point, which is typically a critical point from

both the physical (blackout) and numerical (singularity of equations) point

of view [3].

It can also be demonstrated that the CPF analysis, if used for determining

the maximum loading condition, is a gradient reduced method [8]. This

notable fact has been exploited to use optimization methods rather than

the CPF analysis. The first OPF problem for computing the reactive power

margin with respect to voltage collapse was formulated in [9]. A variety

of stability constrained OPF problems have been proposed in [10–12]. In

particular, [12] shows that the stability constrained OPF problem is also

suitable for studying the effect of the loadability of the network on the market

clearing procedure.

The computation of the maximum loading condition is only a part of the

information that can be useful to avoid instability. One can be interested in

determining how the parameters of the system affects the loading margins

[13]. This is useful both to determine the most critical parameters and to
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design an effective corrective action to avoid the collapse [14].

This information can be obtained by a sensitivity analysis at the max-

imum loading condition. All sensitivity methods for the maximum loading

condition problem that have been proposed in the literature are based on the

linearization of the system equations at the critical point [14, 15, 21], or on

CPF-based numerical analyses [16].

It has to be noted the relevance of the sensitivity analysis in several prac-

tical applications. For example, in [17], [18] and [19], a sensitivity analysis

is carried out to define the most critical contingency, while in [20] and [16],

to properly set up primary and secondary voltage regulation, respectively.

In [18], the sensitivities are used as economic signals for market participants.

In [21], the sensitivities are used to determine the most efficient remedial

actions for strengthening systems subjected to load increases and/or contin-

gencies. Finally sensitivities are effective tools for determining the reactive

power compensation and for sizing FACTS [22].

This paper provides generalized sensitivity expressions based on the solu-

tion of a voltage stability constrained OPF . These expressions use the dual

variables (Lagrangian multipliers) at the optimal solution and the properties

of the KKT optimality conditions [23–25]. In this paper, the theory that was

proposed in [24] is applied to the maximum loading condition problem. As a

byproduct, it can be demonstrated that the general sensitivity formulas that

are proposed in this paper can be reduced to the formulas for saddle-node

bifurcation and limit-induced bifurcation given in [20].
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In summary, the novel contributions of this paper are:

1. General expression of sensitivities of a generic OPF variable with re-

spect to a generic parameter.

2. Specific sensitivities of the loading margin at the maximum loading

condition with respect to arbitrary parameters.

3. Unique and close expressions of sensitivities at saddle-node and limit-

induced bifurcation points.

2 OPF-based Maximum Loading Condition

Problem

In this paper, the following general optimization problem is used to represent

a maximum loading condition problem, based on what has been proposed

in [13]:

Minimize
x, λ

z = f(x, λ,a) (1)

subject to

h(x, λ,a) = 0 : π (2)

g(x, λ,a) ≤ 0 : µ , (3)

where the vector x ∈ IRn and the loading margin λ ∈ IR are the variables, the

vector a ∈ IRp are the parameters, and h(x,a) = (h1(x,a), . . . , hℓ(x,a))T
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and g(x,a) = (g1(x,a),. . ., gm(x,a))T are the equality and inequality con-

straints, respectively. Vector x includes all optimization variables (e.g. bus

voltages), while π and µ are the Lagrange multiplier vectors for equality and

inequality constraints, respectively. The parameter vector a includes, for ex-

ample, generator and load powers (pG and pL, respectively), line resistances

(Riι), reactances (Xiι), and susceptances (Bi); load power factors; generator

reactive power limits; and voltage limits. The objective function and the

equality and inequality constraints in (1)-(3) are defined below.

2.1 Objective function

The objective function used in this paper is:

z = −λ . (4)

Minimizing −λ corresponds to find the maximum loading condition that can

be either associated with [3]:

1. voltage stability limit (collapse point) corresponding to a system sin-

gularity (saddle-node bifurcation);

2. system controller limits like generator reactive power limits (limit-

induced bifurcation).

3. thermal or bus voltage limit.

Observe that (4) is the simplest objective function that allows taking into

account voltage stability constraints. Other more sophisticated models have
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been proposed in [10] and [12]. Nevertheless, the main goal of this paper is to

formulate a general expression of sensitivity formulas of the loading margin

λ with respect to an arbitrary parameter. The conclusions to be drawn using

(4) can thus be easily extended to other objective functions and OPF models

of the form (1)-(3).

2.2 Equality constraints

The set h (h : IRn+m → IRℓ) represents the algebraic equations of the system.

According to typical assumptions in voltage stability studies [3], loads are

assumed to have constant power factor, thus:

qLi = tan(φLi)pLi ∀i = 1, . . . , nB . (5)

Furthermore, the loading margin λ increases generator and load powers as

follows:

pλGi = (λ+ kG) pGi ∀i = 1, . . . , nB

pλLi = λ pLi ∀i = 1, . . . , nB . (6)

The total power injections and consumptions pλG and pλL are not explicitly

defined in (1)-(3), thus they are not included in x. Note that variable kG

allows distributing losses corresponding to the loading level defined by λ

among all generators. Other possible mechanisms to handle increasing losses

could be implemented, but they are beyond the scope of this paper.
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2.3 Inequality constraints

In (1)-(3), the set of inequality constraints g represents the physical and

security limits of the system.

The physical and security limits considered in this paper are similar to

those proposed in [26], and take into account transmission line thermal limits:

ψk ≤ ψmax
k ∀k = 1, . . . , nL , (7)

generator reactive power limits:

qmin
Gi ≤ qGi ≤ qmax

Gi ∀i = 1, . . . , nB , (8)

and voltage magnitude limits:

vmin
i ≤ vi ≤ vmax

i ∀i = 1, . . . , nB . (9)

2.4 Non-degenerate and Degenerate Optimal Solution
Points

It is noteworthy to observe that problem (1)-(3) presents n+1 variables, i.e.

(x, λ), while the number of equality constraints h is ℓ. Thus, at the optimal

solution, only up to n+1−ℓ inequality constraints gj can be binding and non-

degenerate at a time.1 If more than n+1−ℓ inequality constraints are binding,

say mJ , mJd = (mJ − n − 1 + ℓ) constraints will be degenerate. However,

the case with degenerate constraints can be easily taken into account, as

explained in Section 3.1.

1A degenerate constraint is a binding inequality constraint with associated null multi-
plier. For a rigorous definition of degenerate inequality constraints please refer to [27].
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In the OPF notation, active inequality constraints can be expressed as

gj(x̃, λ̃,p) = 0 j = 1, . . . ,mJ . (10)

Since only n+1−ℓ of the mJ constraint is non-degenerate, there will be mJd

inequality constraints that are redundant and can be removed from problem

(1)-(3). This also implies that mJd dual variables associated to mJd active

inequality constraints will be equal to zero.

3 Sensitivity Analysis

In addition to the optimal operating point, the solution of the OPF-based

maximum loading condition problem (1)-(3) provides a set of relevant sensi-

tivities.

Section 3.1 provides general sensitivity expressions of a generic variable

with respect to an arbitrary parameter of the system. General formulas are

particularized for the case of the sensitivity of the loading margin λ with

respect to an arbitrary parameter in Section 3.2. Finally, in Section 3.3,

sensitivities at bifurcation points are developed.

3.1 General Sensitivity Expressions

Associated with problem (1)-(3) is the Lagrangian function

L = f(x, λ,a) + πTh(x, λ,a) + µTg(x, λ,a) . (11)

In the following it is assumed that problem (1)-(3) has an optimal solution
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x∗, λ∗, a, π∗, µ∗, z∗. To obtain sensitivity equations, the feasible solution is

perturbed in such a way that the KKT conditions still hold [24].

The expressions of the sensitivities of a generic variable with respect to the

parameters are as follows. Assuming that the problem (1)-(3) is regular (see

[27] or [28]) and using the results reported in [23–25], a feasible perturbation

leads to the following linear system of equations:





















Fx | F λ | Fa | 0 | 0 | −1

Fxx | Fxλ | Fxa |HT
x |GT

x | 0

F λx | F λλ | F λa | HT
λ | GT

λ | 0

Hx | Hλ | Ha | 0 | 0 | 0

Gx | Gλ | Ga | 0 | 0 | 0





































dx
dλ
da
dπ
dµ
dz

















= 0 , (12)

where all vectors and sub-matrices are defined in the Appendix. It is impor-

tant to note that sub-matricesGx, Gλ andGa are built by removing from g

all degenerate constraints. This operation does not imply additional compu-

tations, as degenerate constraints are active constraints with null Lagrangian

multipliers.

Observe that for problem (1)-(3), the number of equality constraints plus

the maximum number of inequalities constraints that can be active and non-

degenerate is equal to the dimension of (x, λ), i.e. ℓ + mJ = n + 1,2 as

discussed in Section 2.4. Observe that the sub-matrix, say Hx, obtained by

removing one row from the the matrix [HT
x,G

T
x]T , is square. This property

is important as in Subsection 3.2.2 we use the fact that Hx is invertible.

To compute sensitivities with respect to the components of the parameter

2Observe that ℓ+mJ = n, i.e. ℓ+mJ < n+ 1, in the case of SNB points.
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vector a, system (12) can be written as

U [ dx dλ dπ dµ dz ]T = S da , (13)

where the matrices U and S are respectively

U =





















Fx | F λ | 0 | 0 | −1

Fxx | Fxλ |H
T
x |GT

x | 0

F λx | F λλ | HT
λ | GT

λ | 0

Hx | Hλ | 0 | 0 | 0

Gx | Gλ | 0 | 0 | 0





















(14)

ST = − [ Fa Fxa F λa Ha Ga ] (15)

and therefore

[

dx dλ dπ dµ dz
]T

= U−1S da . (16)

Replacing da by the p-dimensional identity matrix I in (16) all the deriva-

tives are obtained. Thus, the matrix with all derivatives with respect to

parameters becomes
[

dx

da

dλ

da

dπ

da

dµ

da

dz

da

]T

= U−1S . (17)

Expression (17) allows deriving sensitivities of the variables, the multipli-

ers (dual variables) and the objective function with respect to all parameters.

Therefore, the sensitivities of the loading margin and other system variables

with respect to power supplies and demands are straightforwardly obtained

using expression (17).

The computational complexity of building and inverting matrices U and

S and evaluating expression (17) is moderate even for large scale electric

energy systems, as explained below.



Submitted to IET, February 5, 2007 14

1. The computation of the submatrices that form U is a required step

to solve the OPF problem, thus these matrices are available for the

sensitivity analysis. Finally, the computation of the inverse of U is not

particularly costly because U is typically highly sparse.

2. The computation and the time required for computing S depends on

the parameter vector a that has been selected for the sensitivity anal-

ysis. For example, in case a includes just load powers, S is a matrix

of zeros and ones.

It should be noted that matrix U is generally invertible because the so-

lution is regular and because all degenerate constraints (if any) have been

removed for building matrix (12). However, if it is not, alternative procedures

(more computationally involved) to obtain and/or analyze the sensitivities

are available [24].

3.2 Specific Sensitivity Expressions

This section focuses on a subset of the general formulas (17), namely the

sensitivities of the loading margin with respect to parameters a. These sen-

sitivities have a particular relevance in the literature [15], [21] and [20]. Sen-

sitivities of other variables obtained using (17) are illustrated in Section 4.

Equations (17) include dλ/da. However, for the sake of derivation, dλ/da

are derived in this section from applying the KKT conditions to (11), as

follows.
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The KKT conditions with respect to system variables x and λ are:

∇xL = Fx + [π∗]THx + [µ∗]TGx = 0 (18)

∇λL = F λ + [π∗]THλ + [µ∗]TGλ = 0 , (19)

where all Jacobian matrices with respect to x and λ are defined in the Ap-

pendix. By taking into account that f = −λ in problem (1)-(3), one can

rewrite (18) and (19) as follows:

0 = [π∗]THx + [µ∗]TGx (20)

1 = [π∗]THλ + [µ∗]TGλ . (21)

Furthermore, a feasible perturbation of equality and inequality constraints

at the optimal point leads to the following expressions:

Hxdx+Hλdλ+Hada = 0 (22)

Gxdx+Gλdλ+Gada = 0 , (23)

where Jacobian matrices with respect to a are also defined in the Appendix

and it is assumed that only non-degenerate binding constraints are considered

in (23). Then, multiplying (22) and (23) by [π∗]T and [µ∗]T , respectively,

gives:

[π∗]THxdx+ [π∗]THλdλ+ [π∗]THada = 0 (24)

[µ∗]TGxdx+ [µ∗]TGλdλ+ [µ∗]TGada = 0 , (25)

and adding (24) and (25) leads to:

([π∗]THx + [µ∗]TGx)dx + (26)

([π∗]THλ + [µ∗]TGλ)dλ +

([π∗]THa + [µ∗]TGa)da = 0 .
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Finally, substituting (20) and (21) in (26), one has:

dλ+ ([π∗]THa + [µ∗]TGa)da = 0 , (27)

and thus the sensitivities of the loading margin λ with respect to parameters

a are:

dλ

da
= −[π∗]THa − [µ∗]TGa . (28)

Note finally that (28) is a part of the general equations (17).

3.3 Sensitivity Formulas at Bifurcation Points

This section shows that general equations (28) are equivalent to the sensitiv-

ity formulas at the saddle-node bifurcation (SNB) and at the limit-induced

bifurcation (LIB) given in [15]. In the context of optimization problems,

SNBs and LIBs are regular optimal solutions. Thus a general expressions for

sensitivities has to be expected.

For the sake of derivation, let us define the extended vector of equality

constraints, say ĥ(x∗, λ∗,a), as the vector of equations that is built using

all equality constraints h and mJd binding non-degenerate inequality con-

straints. The Jacobian matrices of ĥ are as follows:

Hx = ∇xĥ(x∗, λ∗,a) (29)

Hλ = ∇λĥ(x∗, λ∗,a)

Ha = ∇aĥ(x∗, λ∗,a) .

Observe that, as discussed in Section 3.1, Hx is square.
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3.3.1 Saddle-Node Bifurcations

Saddle-node bifurcations (SNBs) are characterized by a pair of equilibrium

points coalescing and disappearing as the loading margin λ slowly changes.

From the mathematical point of view, the SNB point is an equilibrium point

(x̃, λ̃) with the following properties.

1. The Jacobian matrix Hx is singular and has a simple and unique zero

eigenvalue. Observe that even though Hx is singular, the whole matrix

U is non-singular, since the solution at the SNB is regular.

2. The right and left eigenvector ν and w, respectively, associated with

the zero-eigenvalue are unique (Hxν = HT
xw = 0).

3. The Jacobian matrix wTHλ 6= 0.

4. The last transversality condition is as follows: wT [(∇2
xĥ)v]v 6= 0.

A SNB point is a point for which the number of active non-degenerate in-

equalities is only n − ℓ, not n + 1 − ℓ. The maximum loading condition is

given by the power flow equations that typically show a convex shape [2].

By taking the derivatives of h at the SNB point, one has:

Hxdx+ Hλdλ+ Hada = 0 (30)

⇒ wTHxdx+wTHλdλ+wTHada = 0 .

From these equations and given that wTHx = 0 at the SNB point, one can

obtain the sensitivities of the loading margin λ with respect to the parameters
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a at the SNB point as proposed in [15]:

dλ

da
= −

wTHa
wTHλ

. (31)

Moreover, it can be demonstrated that the following relationship holds at

the SNB point [8]:

w = π̂∗ , (32)

i.e., the left eigenvector w at the SNB point is equal to the Lagrangian

multipliers π̂∗ of the power flow equations ĥ. These Lagrangian multipliers

include n − ℓ multipliers µ∗ associated with n − ℓ active non-degenerate

inequality constraints g at the optimal point. Furthermore, from (11), one

has that the derivatives of the Lagrangian function L with respect to the

loading margin λ at the optimal point (x∗, λ∗) are:

∇λL = −1 + [π̂∗]THλ = 0 , (33)

where it has been used the fact that F λ = −1 and Gλ = 0. Hence, one can

easily see that (31), (32) and (33) lead to:

dλ

da
= −

wTHa
wTHλ

= −[π̂∗]THa (34)

and, since Ha includes n − ℓ rows corresponding to active non-degenerate

inequality constraints g at the optimal point, one finally obtains (28), as

follows:

−[π̂∗]THa = −[π∗]THa − [µ∗]TGa . (35)

Observe that the SNB conditions ensure that π∗ is not zero even if no limit

is binding. However, (34) cannot take infinite values because of the transver-

sality conditions of the SNB.
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3.3.2 Limit-Induced Bifurcations

Limit-induced bifurcations (LIBs) are equilibrium points where a system con-

trol limit is reached. If the LIB implies a system collapse, it presents a pair

of equilibrium points coalescing and disappearing for slow changes of the

loading margin λ. However, as opposed to the SNB, at the LIB point the

system Jacobian Hx is not singular. In general, the LIB can be defined as

follows:

ĥ(x̃, λ̃,a) = 0 (36)

gi(x̃, λ̃,a) = 0 ,

where gi is the remaining scalar binding and non-degenerate inequality con-

straint. Without lack of generality, it is assumed that all degenerate inequal-

ity constraints has been removed. Note that detecting degenerate constraints

is straightforward as their associated dual variables are zero. The gradients

of (36) are:

Hxdx+ Hλdλ+ Hada = 0 (37)

Gi
xdx+Gi

λdλ+Gi
ada = 0 ,

where Gi
x, Gi

λ and Gi
a are the Jacobian matrices of gi with respect to x, λ

and a, respectively.

By eliminating dx from these equations, one has:

dλ

da
= −

Gi
a −Gi

x[Hx]−1Ha

Gi
λ −G

i
x[Hx]−1Hλ

. (38)

Furthermore the derivatives of the Lagrangian function L with respect to

dependent variables in x at the maximum loading condition (x∗, λ∗) are,
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from (11):

∇xL = [π̂∗]THx + [µ∗

i ]
T
Gi
x = 0 , (39)

where π̂∗ are the Lagrangian multipliers of power flow equations ĥ, and it

has been used the fact that Fx = 0, as it can be deduced from the objective

function of (1)-(3). Equation (39) leads to:

[π̂∗]T = −µ∗

iG
i
x[Hx]−1 , (40)

where [µ∗

i ]
T = µ∗

i . Equations (38) and (40) can be defined only if Hx is

non-singular, i.e. if the current solution point for the critical equations is not

a saddle-node bifurcation (SNB) point.

Observing that and Gi
λ = 0, using (33) and (40), and multiplying by µ∗

i

the upper and the lower terms of the fraction in (38), one obtains:

dλ

da
= −

µ∗

iG
i
a − µ∗

iG
i
x[Hx]−1Ha

−µ∗

iG
i
x[Hx]−1Hλ

= −µ∗

iG
i
a − [π̂∗]THa, (41)

and, using the definition of Ha, (41) can be rewritten as follows:

dλ

da
= −µ∗

iG
i
a − [π̂∗]THa = −[π∗]THa − [µ∗]TGa . (42)

The latter equation proves that (28) applies also in the case of LIBs.

4 Case Studies

In this section, the proposed technique for computing loading margin sensi-

tivities is applied to a 6-bus test system and to a 24-bus test system. OPF

results were obtained using MATLAB [29] and GAMS-CONOPT [30], which
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is a suitable solver for nonlinear programming problems and provides both

primal and dual solutions.

For the sake of comparison, for the 24-bus test case, the sensitivities are

also computed using a traditional numerical method as it is common practice

in the literature [16]. This method is based on the continuation power flow

(CPF) analysis. At this aim, UWPFLOW [31] was used.

4.1 6-bus Test Case

Figure 1 depicts the 6-bus test case that represents three generation compa-

nies (GENCOs) and three energy service companies (ESCOs). The complete

set of data for this system is provided in [12].

[Figure 1 about here.]

Equality constraints h are the power flow equations and the current flows

in transmission lines, as follows:

0 = pλGi − pλLi

−

nB
∑

ι=1

(vivιBiι sin(θi − θι) + vivιGiι cos(θi − θι))

i = 1, . . . , nB (43)

0 = qGi − pλLi tanφLi

−

nB
∑

ι=1

(vivιGiι sin(θi − θι) − vivιBiι cos(θi − θι))

i = 1, . . . , nB (44)

0 = ψk − |j
Bi

2
vie

jθi + (Giι + jBiι)(vie
jθi − vιe

jθι)|
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k = (i, ι) = 1, . . . , nL , (45)

where nB is the number of buses, nL is the number of lines, Giι + jBiι =

1/(Riι + jXiι) and Bi are the series admittances and shunt susceptances,

respectively, obtained from the π-model of transmission line (i, ι), the vari-

ables θ (θ ∈ IRnB−1) and v (v ∈ IRnB) are voltage angles and magnitudes,

qG (qG ∈ IRnB) are generator reactive powers,3 ψ (ψ ∈ IRnL) are current

flows in transmission lines, and kG (kG ∈ IR) is a scalar variable used to

distribute the system losses among generators. Thus x = (θ,v, kG, qG,ψ).

Finally, inequalities constraints are (7)-(9).

Assuming that a = p = (pG,pL), i.e. the parameters of the system are

generator and load powers and observing that in (1)-(3) g does not depend

on p, one has:

dλ/dp = −[π∗]THp , (46)

where

Hp(ℓ×p)
=

[

∇ph(x∗, λ∗,p)
]T

. (47)

Furthermore, from (6), one can rewrite (46) as follows [18]:

dλ/dpGi = −(λ∗ + k∗G)π∗

pi (48)

dλ/dpLi = λ∗π∗

pi + (λ∗ tanφLi)π
∗

qi , (49)

where π∗

pi and π∗

qi are the Lagrangian multipliers of (43) and (44), respectively.

Observe that the definition of these sensitivities is straightforward once the

optimal primal and dual solutions of (1)-(3) are known.

Three simulations have been run for this 6-bus test system:

3It is assumed that there is one qGi for each bus. If no generator is connected at the
bus i, then qmax

Gi = qmin

Gi = 0.
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1. Without generator reactive power limits at GENCO buses, without

minimum voltage limits at ESCO buses and without maximum cur-

rents in transmission lines. With these settings, the maximum loading

condition is obtained at a SNB point.

2. Without minimum voltage limits at ESCO buses and without maxi-

mum currents in transmission lines. With these settings, the maximum

loading condition is obtained at a LIB point.

3. With all limits included. In this case the maximum loading condition

is determined by the current flow limit ψmax
11 in the transmission line

from bus 5 to 6.

Table 1 gives the values of λ at the maximum loading condition for the cases

described above. As it was to be expected, the more the constraints that are

included in problem (1)-(3), the lower the value of λ∗.

Table 1 depicts also the values of the Lagrangian Multipliers µ∗ of in-

equality constraints that are binding at the maximum loading condition. At

the SNB condition, there are only nB = 6 binding inequality constraints.

Sensitivities with respect to inequality parameters (e.g. ψmax
k , qmax

Gi , and

vmax
i ) are straightforwardly obtained applying (28). In fact, since h does

not depend on inequality parameters, the sensitivities of λ with respect to a

generic parameter aj of the inequality gj is:

dλ/daj = −µ∗

j , (50)



Submitted to IET, February 5, 2007 24

where µj is the Lagrangian multiplier associated with the inequality gj. For

example, for the SNB point:

dλ/dvmax
1 = −µ∗

vmax 1
= 1.4297

that means that marginally increasing vmax
1 at bus 1 would lead to an increase

of the maximum loading margin λ∗. This results is reasonable, as, in general,

the higher the voltage at GENCO buses, the higher the loadability of the

system.

For the case that considers all limits, one has, for example:

dλ/dψmax
11 = −µ∗

ψmax 11
= 5.8466

that means that marginally increasing ψmax11 in line from bus 5 to 6 would

lead to an increase of the maximum loading margin λ∗. Once again, this

results is also expected, as, the higher the transmission line limits, the lower

the network congestion and, thus, the higher the loadability of the system.

[Table 1 about here.]

Tables 2 provides sensitivities dλ/dpGi and dλ/dpLi, which were obtained

using (48) and (49). Observe that a sensitivity can be defined even if the

power supply or demand at the bus is zero. If dλ/dpGi is positive, then

dλ/dpLi must be negative, since pGi is injected and pLi is consumed at the

same bus i.

Furthermore, |dλ/dpGi| 6= |dλ/dpLi| due to the way losses are handled

through the variable kG and due to the fact that loads are assumed to have

constant power factor (at this regard see (48) and (49)).
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Table 3 provides relevant sensitivities dvi/dpGi and dvi/dpLi, which were

obtained using (17). In particular, this table provides the sensitivities of all

bus voltages with respect to pG1 associated with GENCO 1 and pL4 associated

with ESCO 1 for the three cases, SNB, LIB and ψmax conditions. Observe

that the sensitivities with respect to the voltages that are at their limits are

zero, which means that those voltages stay at their limits after applying a

feasible perturbation.

Table 4 provides relevant sensitivities dψk/dpGi and dψk/dpLi, which were

obtained using (17). In particular, Table 4 provides the sensitivities of the

current flow ψ5 from bus 2 to 4 with respect to pGi and pLi at all buses.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

Table 5 illustrates the sensitivities of the loading margin λ with respect

to line parameters, i.e. series resistances Riι and reactances Xiι, and shunt

susceptances Bi. These sensitivities were obtained using (17). Observe that

for SNB and LIB points, the sensitivities with respect to Riι and Xiι are

generally negative, while the sensitivities with respect to Bi are generally

positive, hence decreasing series line parameters and increasing shunt line

parameters, respectively, allows increasing λ. In the case of ψmax condition,

some sensitivities have opposite signs, as a consequence of transmission line

congestion.
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From the values of sensitivities depicted in Tables 2, 3 and 4, one can

deduce that the weakest buses are likely buses 4 and 5 and that the power

demand pL4 and pL5 at those buses are the parameters that mostly affect

the maximum loading conditions. Observe also that the sensitivities of the

loading margin λ with respect to parameters typically do not take high val-

ues. This basically means that no marginal perturbation of any parameter

is able to greatly modify the loading margin of the network. Furthermore,

sensitivities of Table 5 can be used to define the worst contingency, the

weakest connections and/or the best locations for series and shunt compen-

sations [17], [18] and [32]. In particular this can be useful for placing FACTS

devices [16].

[Table 5 about here.]

4.2 24-bus Test Case

Figure 2 depicts the 24-bus test case, which is generally referred to as the

IEEE One Area RTS-96 and is fully described in [33]. This test case is used

to illustrate that the proposed technique can be easily applied to realistic

size networks and that, if compared with numerical sensitivity analysis, it

gives better results. At this aim, Figs. 3 and 4 illustrate respectively the

sensitivities of the loading margin λ with respect to two relevant parameters,

namely the power generation at bus 13 and load consumption at bus 18. In

these figures, the continuous lines were obtained by solving the problem (1)-

(3) several times while uniformly increasing each power supply and demand,

while the stars are for the sensitivities obtained using a numerical method. In
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particular a continuation power flow analysis has been used, as follows [16]:

1. The continuation power flow technique has been used for the base case

parameter set and base case maximum loading margin λ∗0 obtained.

2. One parameter a is varied of a small quantity, say ǫ, and the CPF

analysis is performed again. At the end of this step one has a new

value of the loading margin λ∗ǫ , and the sensitivity can be computed as

follows:

dλ

da
=
λ∗ǫ − λ∗0

ǫ
. (51)

3. The previous step must be repeated for each parameter under consid-

eration.

4. Step 1-3 must be repeated for each level of the total loading condition.

Observe that the technique proposed in this paper only needs one solution of

(1)-(3) to define the sensitivities of all variables with respect of all parameters.

As it was to be expected, the higher the loading condition, the higher

the absolute value of the sensitivities of the loading margin with respect to

network power supply and demand. Other possible simulations are certainly

possible but are beyond the aim of this paper.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]
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5 Conclusions

This paper discusses a technique to compute sensitivities of the loading mar-

gin with respect to arbitrary parameters. The proposed technique gener-

alizes and unifies the sensitivity formulas that have been proposed in the

literature. The maximum loading condition is obtained as the solution of a

OPF-problem. Hence the computation of sensitivities is accurate and com-

putationally efficient. The proposed sensitivity formulas are illustrated and

validated through two test cases.

Appendix

This appendix defines the vectors and the sub-matrices that appears in (12).

Dimensions are in parenthesis.

Fx(1×n) = [∇xf(x∗, λ∗,a)]T (52)

F λ(1×1) = [∇λf(x∗, λ∗,a)] (53)

Fa(1×p) = [∇af(x∗, λ∗,a)]T (54)

Fxx(n×n) = ∇xxf(x∗, λ∗,a)+

ℓ
∑

l=1

π∗

l∇xxhl(x
∗, λ∗,a)+

mJ
∑

j=1

µ∗

j∇xxgj(x
∗, λ∗,a) (55)

Fxλ(n×1) = ∇xλf(x∗, λ∗,a)+

ℓ
∑

l=1

π∗

l∇xλhl(x
∗, λ∗,a)+
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mJ
∑

j=1

µ∗

j∇xλgj(x
∗, λ∗,a) (56)

Fxa(n×p) = ∇xaf(x∗, λ∗,a)+

ℓ
∑

l=1

π∗

l∇xahl(x
∗, λ∗,a)+

mJ
∑

j=1

µ∗

j∇xagj(x
∗, λ∗,a) (57)

F λx(1×n) = ∇λxf(x∗, λ∗,a)+

ℓ
∑

l=1

π∗

l∇λxhl(x
∗, λ∗,a)+

mJ
∑

j=1

µ∗

j∇λxgj(x
∗, λ∗,a) (58)

F λλ(1×1) = ∇λλf(x∗, λ∗,a)+

ℓ
∑

l=1

π∗

l∇λλhl(x
∗, λ∗,a)+

mJ
∑

j=1

µ∗

j∇λλgj(x
∗, λ∗,a) (59)

F λa(1×p) = ∇λaf(x∗, λ∗,a)+

ℓ
∑

l=1

π∗

l∇λahl(x
∗, λ∗,a)+

mJ
∑

j=1

µ∗

j∇λagj(x
∗, λ∗,a) (60)

Hx(ℓ×n) = [∇xh(x∗, λ∗,a)]T (61)

Hλ(ℓ×1) = [∇λh(x∗, λ∗,a)]T (62)

Ha(ℓ×p) = [∇ah(x∗, λ∗,a)]T (63)

Gx(mJ×n) = [∇xg(x
∗, λ∗,a)]T (64)

Gλ(mJ×1) = [∇λg(x
∗, λ∗,a)]T (65)

Ga(mJ×p) = [∇ag(x
∗, λ∗,a)]T . (66)



Submitted to IET, February 5, 2007 30

References

[1] Chiang, H.- D., Dobson, I, Thomas, R. J., Thorp, J. S., and Fekih-Ahmed, L.:
‘On Voltage Collapse in Electric Power System,’ IEEE Transactions on Power
Systems, 1990, 5, pp. 601-611.

[2] Van Cutsem, T., and Vournas, C. Voltage Stability of Electric Power Systems.
Boston: Kluwer International Series in Engineering & Computer Science,
1998.
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[8] Cañizares, C. A.: ‘Applications of Optimization to Voltage Collapse Analysis,’
in IEEE-PES Summer Meeting, 1998, (San Diego, USA).

[9] Van Cutsem, T.: ‘A Method to compute Reactive Power Margins with respect
to Voltage Collapse,’ in IEEE Transactions on Power Systems, 1991, 6, pp.
145-156.
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[31] Cañizares, C. A. et al.:, ’UWPFLOW Program’, 2000, (University of Water-
loo), available at http://www.power.uwaterloo.ca.

[32] Capitanescu, F., and Van Cutsem, T.: ‘Preventive Control of Voltage Secu-
rity Margins: A Multicontingency Sensitivity-based Approach,’ IEEE Trans-
actions on Power Systems, 2002, 17, (2), pp. 358-364.

[33] Reliability Test System Task Force of the Application of Probability Methods
subcommittee:,’The IEEE Reliability Test System - 1996,’ PES, 1999, 14, (3),
pp. 1010-1020.



Submitted to IET, February 5, 2007 33

List of Figures

1 6-bus test system. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 24-bus test system (IEEE One Area RTS-96 [33]). . . . . . . . 35

3 Sensitivity dλ/dPG at bus 13 for the 24-bus test system. . . . 36

4 Sensitivity dλ/dPL at bus 18 for the 24-bus test system. . . . 37



FIGURES 34

Bus 3

(GENCO 2)
Bus 2 (GENCO 3)

(ESCO 3)

(ESCO 1)

(ESCO 2)

Bus 4

Bus 5

(GENCO 1)
Bus 1

Bus 6

Figure 1: 6-bus test system.



FIGURES 35

10

18

21

22

17

23

19 2016

14

24

13

11

3 9

6

8
5

4

721

12

15

132 kV

230 kV

Figure 2: 24-bus test system (IEEE One Area RTS-96 [33]).



FIGURES 36

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2
−9

−8

−7

−6

−5

−4

−3
x 10

−3

P
G13

 [p.u.]

dλ
/d

P
G

13

OPF sensitivity
Numerical sensitivity

Figure 3: Sensitivity dλ/dPG at bus 13 for the 24-bus test system.



FIGURES 37

2.7 2.8 2.9 3 3.1 3.2
3.5

4

4.5

5

5.5

6

6.5

7
x 10

−3

P
L18

 [p.u.]

dλ
c/d

P
L1

8

OPF sensitivity
Numerical sensitivity

Figure 4: Sensitivity dλ/dPL at bus 18 for the 24-bus test system.



FIGURES 38

List of Tables

1 Lagrangian Multipliers µ∗ at Different Maximum Loading Con-
ditions for the 6-bus test system. . . . . . . . . . . . . . . . . 39

2 Sensitivities dλ/dpGj
and dλ/dpLj

for the 6-bus test system. . 40

3 Relevant sensitivities dvi/dpGi
and dvi/dpLi

for the 6-bus test
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Relevant sensitivities dψk/dpGj
and dψk/dpLj

for the 6-bus
test system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Sensitivities dλ/dRiι, dλ/dXiι and dλ/dBi for the 6-bus test
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



TABLES 39

Table 1: Lagrangian Multipliers µ∗ at Different Maximum Loading Condi-
tions for the 6-bus test system.

SNB LIB ψmax

λ∗ = 2.7509 λ∗ = 1.7557 λ∗ = 1.3711

µ∗j Active gj µ∗j Active gj µ∗j Active gj

-1.4297 vmax

1
-1.4424 vmax

1
3.9339 vmin

5

-2.1552 vmax

2
-0.1519 qmax

G1
-3.2094 vmax

1

-1.6549 vmax

3
-0.2529 qmax

G2
-2.3286 vmax

2

-0.1139 qmax

G4
-0.2608 qmax

G3
0.2970 qmin

G6

-0.4482 qmax

G5
-0.3079 qmax

G4
-0.1280 qmax

G4

-0.0724 qmax

G6
-0.3480 qmax

G5
-0.8252 qmax

G5

- - -0.3087 qmax

G6
-5.8466 ψmax

11
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Table 2: Sensitivities dλ/dpGj
and dλ/dpLj

for the 6-bus test system.

Bus SNB LIB ψmax

i dλ
dpGi

dλ
dpLi

dλ
dpGi

dλ
dpLi

dλ
dpGi

dλ
dpLi

1 -0.0242 0.0187 -0.0655 0.0599 0.0042 -0.0039

2 -0.0114 0.0089 -0.0004 0.0004 0.0031 -0.0030

3 0.0508 -0.0393 0.0745 -0.0682 -0.0112 0.0105

4 0.2697 -0.4175 0.1652 -0.5116 0.0792 -0.1916

5 1.2487 -1.8289 0.2671 -0.6721 0.5088 -1.2711

6 0.2186 -0.2355 0.2278 -0.3891 -0.0948 0.2250
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Table 3: Relevant sensitivities dvi/dpGi
and dvi/dpLi

for the 6-bus test sys-
tem.

Bus SNB LIB ψmax

i dvi

dpG1

dvi

dpL4

dvi

dpG1

dvi

dpL4

dvi

dpG1

dvi

dpL4

1 0 0 0 0 0 0

2 0 0 -0.0370 0.0176 0 0

3 0 0 -0.0377 0.0767 -0.0020 -0.0147

4 0.0235 -0.5344 -0.0166 -0.0828 0.0044 -0.0937

5 0.0029 -0.0044 -0.0256 0.1007 0 0

6 0.0005 0.0374 -0.0368 0.1001 -0.0020 0.0013
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Table 4: Relevant sensitivities dψk/dpGj
and dψk/dpLj

for the 6-bus test
system.

Bus SNB LIB ψmax

i dψ11

dpGi

dψ11

dpLi

dψ11

dpGi

dψ11

dpLi

dψ11

dpGi

dψ11

dpLi

1 -0.5411 0.4168 -0.3596 0.3290 -0.2012 0.1894

2 0.1952 -0.1518 0.1410 -0.1290 0.1022 -0.0962

3 0.2061 -0.1558 0.1137 -0.1040 0.0155 -0.0146

4 -3.9624 5.0434 -1.0240 0.9958 -0.7429 0.9555

5 3.1995 -4.6362 0.1195 -0.5509 0.4206 -1.1872

6 0.6392 -0.6363 0.2997 -0.4902 -0.0606 0.1883
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Table 5: Sensitivities dλ/dRiι, dλ/dXiι and dλ/dBi for the 6-bus test system.
SNB λ∗ = 2.7509

Line k from - to i-ι dλ/dRiι dλ/dXiι dλ/dBi

1 1-2 -0.0053 -0.0052 0

2 1-4 -0.5405 -0.8568 0.0243

3 1-5 -1.2488 -1.5071 0.0611

4 2-3 -0.0155 -0.0335 0

5 2-4 -2.3442 -2.1009 0.0243

6 2-6 -0.5493 -0.3639 0.0238

7 2-5 -1.1183 -1.3871 0.0611

8 3-5 -1.3456 -1.4712 0.0611

9 3-6 -1.1838 -1.6511 0.0238

10 4-5 -0.1462 -0.0872 0.0854

11 5-6 -0.1201 -0.6340 0.0849

LIB λ∗ = 1.7557

Line k from - to i-ι dλ/dRiι dλ/dXiι dλ/dBi

1 1-2 -0.0750 -0.0222 0.2153

2 1-4 -0.3084 -0.6687 0.1958

3 1-5 -0.2700 -0.4369 0.2036

4 2-3 -0.0221 -0.0150 0.2693

5 2-4 -0.0957 -0.6986 0.2436

6 2-6 -0.1850 -0.2492 0.2614

7 2-5 -0.0604 -0.1872 0.2515

8 3-5 -0.0462 -0.1389 0.2576

9 3-6 -0.0774 -0.6610 0.2676

10 4-5 -0.0107 -0.0023 0.2319

11 5-6 0.0022 -0.0076 0.2498

ψmax λ∗ = 1.3711

Line k from - to i-ι dλ/dRiι dλ/dXiι dλ/dBi

1 1-2 0.0003 0.0003 0

2 1-4 -0.3657 -0.3221 0.0547

3 1-5 -1.3891 -0.9993 0.3342

4 2-3 -0.0019 0.0071 0

5 2-4 -1.3654 -0.6394 0.0547

6 2-6 0.9754 0.1581 -0.1354

7 2-5 -1.2424 -0.8746 0.3342

8 3-5 -1.2444 -0.6814 0.3342

9 3-6 2.6654 1.2152 -0.1354

10 4-5 -0.1468 -0.0063 0.3889

11 5-6 0.2990 0.6228 -0.8207


