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Abstract— PV curves are generally obtained by considering 

lumped models of transmission lines. This approximated model 
can yield an inaccurate estimation of the maximum loading 
condition of the system. This letter shows that accuracy can be 
improved by considering line models with uniformly distributed 
parameters. Analytical evaluations of the PV curve and of the 
voltage collapse point of a two-bus system are obtained by 
applying the Ossanna’s theorem. Then the impact of different line 
models on large-scale systems is evaluated through a continuation 
power flow analysis of a real-world model of the Sicilian 
transmission system including the Sicily-Malta 120 km cable 
connection.  

Index Terms—Ossanna’s theorem, transmission line modelling, 
PV curves, voltage collapse, continuation power flow.   

I.  NOMENCLATURE 
A.  Variable and Parameters 
R Longitudinal lumped resistance 
X Longitudinal lumped reactance 
Z Complex impedance 
S Complex power  
U Voltage phasor  
I Current phasor  
P Active power 
Q Reactive power 
d Line length 
φ Load angle 
M Transmission matrix 
ξoss 1st Ossanna’s parameter 
uy 2nd Ossanna’s parameter 
χ 3rd Ossanna’s parameter 
B.  Subscripts  
S Sending-end terminal 
R Receiving-end terminal 
0 No-load 

II.  INTRODUCTION 
HE maximum loading condition and voltage stability 
assessment of a power system can be conveniently 

represented through bifurcation diagrams, which are often 
called PV or nose curves [1]-[4]. The study of the maximum 
loading condition flourished by the end of 1980s. However,  the 
nonlinear nature of the network voltage collapse phenomenon 
and the increasing complexity of power systems, make this field 
of research an evergreen, e.g., [1]-[9]. Recent works, e.g. [10]-
[12], all stress the importance for modern power systems with 
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high shares of renewable and large sets of measurements of 
having accurate evaluations of the voltage collapse point. Our 
work precisely addresses this issue. The accurate determination 
of the PV curve and of the voltage collapse point, in fact, is 
crucial in power systems security analysis. In fact, even the 
dynamics of the voltage collapse physical phenomenon can be 
assessed accurately by considering the static behavior of the 
voltage as a function of the power [3]. The analytical expression 
of the PV curves is not possible in general. For radial two-bus 
systems, analytic expressions have been obtained by 
considering simplified electrical line models. For example, in 
[4], [6], [13] only the longitudinal inductive reactance X is taken 
into account, whereas in [1], [7] the impedance Z = R+jX is 
considered. Moreover, in the models available in the literature, 
the shunt admittances are generally neglected. The objectives 
of this letter are twofold. First, an analytic expression of the PV 
curve is determined for a two-bus system that considers a line 
model with uniformly distributed parameters. Then it is shown 
that detailed models of the transmission lines may have a 
significant impact on the estimation of maximum loading 
condition. In fact, the conventional lumped models utilized in 
voltage stability studies are unrealistic for long transmission 
lines (especially for cables) and distribution lines (high r/x 
ratios) [14]. The analytic formulation of the PV curves for the 
distributed parameter modelling is based on the Ossanna’s 
theorem [5], [15]-[17]. The formulation is accurate and, we 
believe, also simple and elegant.  

III.  CLASSICAL PV CURVE FORMULATIONS  
In this section, we present two conventional analytic 

expressions of the PV curves for the two-bus system operating 
under balanced three-phase, steady-state sinusoidal conditions 
(see Fig. 1). These expressions serve for the comparison with 
the novel formulation based on the Ossanna’s theorem, which 
is duly presented in Section IV.  
A.  Lossless Lumped Line Model 

Due to the predominantly inductive behavior, electrical lines 
can be modelled as pure longitudinal reactive links, where the 
value of the lumped reactance is , with x the kilometric 
reactance and d the line length. Considering a two-bus system, 
the relation between the active power and the voltage at the 
receiving terminal can be formulated as in [6]:  
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Hereinafter, the lossless lumped formulation is indicated as 
"X" method. 

B.  Lossy Lumped Line Model 
If the line resistance is not neglected, the electrical line can 

be modelled as a lumped longitudinal impedance, Z =z d = 
R+jX, where z= r+jx is the p.u. longitudinal kilometric 
impedance of the line, and d is the line length. The lossy lumped 
line model is currently utilized to make model-based voltage 
stability evaluations on power systems [1]. By considering a 
two-bus system, the relation between the active power and 
voltage can be formulated as it follows [7]:  

 (2) 

Hereinafter, the lossy lumped formulation is indicated as 
"RX" method. We note that the inclusion of the shunt elements 
(π-model), for the formulation of the PV curve is generally not 
considered in the literature. Its formulation is not reported here 
since it is conceptually similar to (2).  

IV.  TWO-BUS SYSTEM COLLAPSE POINT AND PV CURVE 
ANALYTICAL DETERMINATION BY THE OSSANNA'S THEOREM 

The Ossanna’s theorem states that the balanced, fundamental 
frequency steady-state operating conditions of any line 
supplying a load absorbing a complex power SR can be 
determined analytically. The theorem can be demonstrated by 
combining the pu formulation and the Thevenin theorem [5]. 
Hence, an accurate curve formulation addressing the uniformly 
distributed resistive, inductive, capacitive, and conductive 
behavior is considered [5].  

With this aim, let us consider a transmission line with 
uniformly distributed parameters (see Fig. 1). The line can be 
modelled by its Thevenin equivalent circuit as seen from the 
receiving-end [5], where its no-load voltage generator and 
impedance depend on the transmission matrix coefficients as in 
the following:  
 

 (3) 

 
Fig. 1 Uniformly distributed parameter model of the line. 
where M is the transmission matrix, i.e., 

 
. (4) 

By means of the Ossanna’s theorem, the upper u1 and the 
lower u2 PV curves have the following expressions: 

 u1 = [(1/2) + ξoss] – juy 
u2 = [(1/2) – ξoss] – juy (5) 

where the expressions of ξoss and uy are defined as follows [5]: 

 

  

Hereinafter, the uniformly distributed formulation in (5) is 
indicated as "BG" method. It is worth reminding that 
is the condition describing the line physical feasibility 
condition, i.e., 

  (6) 
In this letter we are also interested in the analytical 

determination of the voltage-collapse point. With this aim, by 
imposing ξoss = 0, that is the condition for which the expression 
of u1 and u2 are equal (see (5)), it yields: 

 . (7) 

Assuming a constant power factor (φ=const.) and the 
following writing for the complex power: sR = pR+jpR·tan(φ), 
(7) can be written as a second-order function of p: 

 (8) 

which admits the following two solutions: 

 (9) 

From the identity cos2χ+sin2χ=1, considering only the positive 
solution of (9), and collecting the term the 
maximum loading condition at the voltage collapse point is 
obtained as: 

 
 (10) 

Then, from pmax the voltage collapse value can be computed 
by means of (5) (u1 or u2 can be used since ξoss=0). If the slack 
generator reactive power limit qmax is considered, when qS < 
qmax, the system is always described by means of the upper 
expression u1 of (5). However, when it reaches the reactive 
power limit qS = qmax, the slack generator model changes to a 
QV model, where Q = qmax [6]. Therefore, the PV curve that 
considers the generator reactive power limits can be 
analytically determined:   
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As it is well-known and shown in Section V, generator reactive 
power limits can reduce the loading margin of the system 
(critical limit-induced bifurcations). 

V.  CASE STUDY 
This section illustrates the effect of the line models on the 

determination of the PV curves of power systems. To illustrate 
the analytic expression discussed in the previous sections, first 
a two-bus connection is considered. Fig. 2 shows the PV curves 
(pf=0.9 lagging) for the long overhead line (OHL) (see Fig. 2a) 
and the Sicily-Malta interconnection cable (IC) (see Fig. 2b) 
respectively using the X, BG, and RX models. The differences 
among the BG, X, and RX methods are synthesized in Fig. 2, 
which shows the different shapes of the PV curves. If one 
assumes that the Ossanna’s model is the reference, Fig. 2a 
shows that the X model underestimates the voltage collapse 
point by 11.74%, whereas the RX one underestimates the 
voltage collapse point by 3.52%. For the long IC, on the other 
hand, Fig. 2b shows that the X model overestimates the voltage 
collapse point by 16.5%, whereas the RX underestimates the 
voltage collapse point by 6.4%. For a unitary power factor, this 
error reaches 57%. Results in Fig. 2 also indicate that the BG 
method PV curves correctly explains the voltage rise at the end 
of the line when it transmits small active power (near to the no-
load condition i.e., P = 0). This behavior cannot be observed 
with the X and RX methods. Finally, the results show that the 
different voltage collapse points of the three models depend on 
the line typology (i.e., OHL, IC or low/medium voltage lines), 
and its length. 

TABLE I 
KILOMETRIC PARAMETERS OF THREE REAL TRANSMISSION LINES BELONGING 
TO THE SICILIAN NETWORK (OHL: OVERHEAD LINE, IC: INSULATED CABLE) 

Typology r [W/km] ! [mH/km] g [nS/km] c [nF/km] d [km] 

(b) Long OHL  0.021 0.86 0 13.41 218.5 
(c) Long IC  0.077 0.46 52 164 120 

 
Fig. 2.  PV curve (power factor=0.9) comparisons among BG, X and RX for a) 
a 218.5 km OHL Italian line, and b) the 120 km Sicily-Malta cable. 

 
Fig. 3.  PV curve (power factor=0.9) considering generator reactive power limit 
(Qmax = 1000 Mvar) for the 120 km Sicily-Malta cable.  

For example, a parametric analysis confirms that by varying the 
line lengths, for the IC the X model always overestimates the 
voltage collapse point, due to the cable high capacitive nature, 
which is properly and fully considered only by the BG model. 

Fig. 3 shows the PV curve (BG method) by considering the 
reactive power limit (fixed to 1000 Mvar) for the generator 
supplying the Sicily-Malta cable. The consideration of the 
reactive power limit brings to a reduction of the maximum 
transmittable active power p'max. 

For completeness, Fig. 4 shows the results of the continuation 
power flow (CPF) analysis for the real-world model of the 
Sicily-Malta system. This model includes 102 buses, 75 lines, 
59 transformers and 14 generators. The CPF analysis has been 
carried using the Python-based software tool Dome [18]. 

The continuation power flow analysis is a homotopy 
technique that parametrizes the power flow problem with a 
scalar loading level [19]. The loading level scales both active 
and reactive powers of all loads as well as the active power of 
all generators. A distributed slack variable is utilized to share 
loss increments among all generators. Note that, in Fig. 4, the 
loading level normalized with respect to the initial loading 
condition, i.e., the loading level is 1 at the initial operating 
point. Finally, the PV curves shown in Fig. 4 are obtained 
considering the reactive power limits of the generators as well 
as the three models discussed in this letter, namely RX, X and 
BG. The maximum loading conditions correspond to a saddle-
node bifurcation and are 2.643, 2.688 and 2.625 times the base-
case operating point for the RX, X and BG models, 
respectively. The BG model is the one that leads to the lowest 
loading margin, thus indicating that the conventional lumped 
model of the transmission lines might not lead to conservative 
results. 

VI.  CONCLUSIONS 
The letter discusses the effect of line modelling on the 

maximum loading conditions of power systems. Results show 
that considering accurate models of the lines does not always 
have the same impact, i.e., it is not always conservative. The 
letter also proposes an analytical formulation of PV curves for 
two bus-systems based on the Ossanna’s theorem and the 
steady-state model of transmission lines with uniformly 
distributed parameter one. A numerical appraisal between the 
Ossanna’s curve (BG curve taken as the reference) and the ones 
found in the technical literature (X and RX curves) are 
performed, underlining that different line models can lead to 
significantly different maximum loading conditions. Finally, 
the impact of the BG line model is compared with the X and 
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RX models for a real-world model of the meshed Sicilian 
network, which confirms that importance of an accurate 
modelling of transmission lines, especially for long cables such 
as the Sicily-Malta connection. 

 

 
Fig. 4.  PV curve obtained with the detailed model of the Italy-Malta power 
system. Bus 46 is the receiving-end bus of the Sicily-Malta connection. 
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