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1 Introduction

We consider the following singular system of differential equations:

E ẋ(t) = Ax(t) + ω(t) . (1)

The elements of the matrix coefficients in this system are assumed constant,
and E,A ∈ Cr×m, r > m. In addition x : [0,+∞] 7→ Cm×1, and ω :
[0,+∞] 7→ Cr×1.

If we apply the Laplace L transform, we get:

EL
{
ẋ(t)

}
= AL{x(t)}+ L{ω(t)} ,

or, equivalently,
E(sX(s)− xo) = AX(s) + Ω(s) ,

or, equivalently,
(sE−A)X(s) = Exo + Ω(s) .

With X(s), Ω(s) we denote the functions after L is applied into x(t), ω(t)
respectively, and xo = x(0). From the above equation, it is obvious that the
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polynomial matrix sE −A is essential in studying (1). This polynomial is
defined as the pencil of (1), see [16].

Singular systems of differential equations, see [2, 6, 8, 13, 15, 17], and
difference equations, see [9, 18] have attracted the interest of several re-
searchers in the last few decades. Some interesting results have also been
obtained for singular systems of equations evolving fractional operators, see
[1, 7, 12, 14, 24]. This type of systems appear in control theory, see [5, 11, 23],
and in several applications in electrical engineering such as the modeling of
electrical circuits, see [17], and power system dynamics, see [19, 20, 22].

Despite several studies, most articles deal with singular systems that
have regular pencils. The regularity of the pencil means that the matrices
are square r = m, while the pencil formed has a determinant not identically
equal to zero. Focus is then given in studying the solutions and stability of
such a system through the eigenvalues of this pencil.

Singular systems with singular pencils are usually avoided. There are
two types of singular pencils. A first case is the matrix coefficients of the
system to be square but with a pencil that has a determinant identically
zero. Meaning that the pencil is not invertible, something that is crucial
for the existence of solutions of the system that appears in the frequency
domain after the Laplace transform is applied to the system in the time
domain. The other type of singular pencil is the matrix coefficients to be
non-square. In this case the determinant of the pencil can not be defined.

In this article we study singular over–determined systems of linear differ-
ential equations. The pencil of this type of systems is singular. Unlike the
regular pencil which may have finite eigenvalues & an infinite eigenvalue, a
singular pencil has additional invariants the minimal column and row min-
imal indices. This type of invariants for such a pencil are not always easy
to be obtained. It becomes even more complicated when dealing with large
scale systems. Another important characteristic of this case considered is
that existence of solutions for a system with a singular pencil is not auto-
matically satisfied. This is very important for many applications for which
the model is significant only for certain range of its parameters. In these
cases a careful interpretation of results or even a redesign of the system
maybe needed. In this paper we propose a method that analyses this type
of singular pencils, and derives explicit and easily testable conditions for
which the system has a solution.

After using this result based on our proposed method in which we can
identify existence of solutions for these systems, we use the spectrum of the
pencil to prove a result for uniqueness of solutions.

To sum up, this article is organized as follows. In Section 2, we will
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firstly study the existence, and uniqueness of solutions of system (1). In the
same section, we will also extend the results to higher order systems. Then
in Section 3, we will construct examples of electrical power system modelling
and we will close the article by providing numerical examples in Section 4.

2 Existence, Uniqueness of solutions, and Formu-
las

As seen in the previous section, after applying L into (1), by assuming that
xo is unknown, and setting xo = C ∈ Cm×1, we arrive at:

(sE−A)X(s) = EC + Ω(s) . (2)

When the algebraic system is over–determined, r > m, see [10], a matrix
function P̂ (s), P̂ : C 7→ Rr×r (which can be computed via the Gauss-
Jordan Elimination Method, see [21]), can be defined in such a way that if
it is multiplied to the pencil sE−A it provides the following results:

P̂ (s)(sE−A) =

[
Â(s)
0r1,m

]
, with P̂ (s) =

[
P̂ 1(s)

P̂ 2(s)

]
, (3)

where Â : C 7→ Rm1×m, with m1 + r1 = r, is a matrix such that if
[âij(s)]

1≤j≤m
1≤i≤m1

are its elements, for i = j all elements are non-zero and for

i 6= j all elements are zero and P̂ 1(s) ∈ Rm1×r, P̂ 2(s) ∈ Rr1×r. Hence by
multiplying P̂ (s) to (2) we get

P̂ (s)(sE−A)X(s) = P̂ (s)[EC + Ω(s)] ,

or, equivalently, by using (3):[
Â(s)
0r1,m

]
X(s) =

[
P̂ 1(s)

P̂ 2(s)

]
[EC + Ω(s)] ,

from where we get two subsystems:

1. Â(s)X(s) = P̂ 1(s)[EC + Ω(s)];

2. 0r1,mX(s) = P̂ 2(s)[EC + Ω(s)],

with solution:
X(s) = [Â(s)]−1P̂ 1(s)[EC + Ω(s)] ,
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if both
m1 = m and P̂ 2(s)[EC + Ω(s)] = 0r1,m (4)

hold. Hence, under the condition (4), the over–determined system (1) has
solutions defined as:

x(t) = L−1{[Â(s)]−1P̂ 1(s)[EC + Ω(s)]} .

We will refer to (1) with r > m as singular over–determined linear systems
of differential equations.

Staying in this case, i.e. r > m with (4) to hold, as mentioned above,
the solution of (1) is given by

x(t) = L−1{[Â(s)]−1P̂ 1(s)E}C + L−1{[Â(s)]−1P̂ 1(s)Ω(s)} .

All elements of the matrix [Â(s)]−1P̂ 1(s)E are fractions of polynomials

of the form Π(s)
Θ(s) with deg{Π(s)} < deg{Θ(s)}, with deg being order of a

polynomial. Hence it is easy to conclude that the inverse of L in the first
term always exists. Hence, if we set Ψ0(t) = L−1{[Â(s)]−1P̂ 1(s)E}, and
Ψ1(t) = L−1{[Â(s)]−1P̂ 1(s)}, we get:

x(t) = Ψ0(t)C +

∫ ∞
0

Ψ1(t− τ)ω(τ)dτ . (5)

To conclude we can state the following Theorem:

Theorem 1 (Existence of the solution). We assume system (1) with r > m.
Then there exist solutions for (1) given by (5) if and only if (3) holds.

In Theorem 1 we didn’t refer to uniqueness of solutions. This is not
always guaranteed for this type of systems, and could be studied easier by
using the spectrum of this pencil. For the case that r > m the invariants
of sE−A can be finite eigenvalues, an infinite eigenvalue, and row minimal
indices, see [10, 16]. Let Nl(sE − A) be the set of rational vector spaces
with t=dimNl(sE−A), and as such they are spanned by minimal polynomial
bases of minimal degrees (set of row minimal indices):

ζ1 = ζ2 = · · · = ζh = 0 < ζh+1 ≤ · · · ≤ ζh+k=β .

β − h = k is the number of the indices that we are interested for. From
the Kronecker theory, see [10, 16], the regular matrices P, P ∈ Cr×r, and
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Q, Q ∈ Cm×m, can be defined in such a way that if tha have the following
impact to the pencil sE−A, and the matrices E, A:

PEQ = EK = Ip ⊕Hq ⊕Eζ ,

PAQ = AK = Jp ⊕ Iq ⊕Aζ ,
(6)

where Jp is the Jordan matrix for the finite eigenvalues, Hq a nilpotent ma-
trix with index q∗ which is actually the Jordan matrix of the zero eigenvalue
of the pencil sA−E. The matrices Eζ , Aζ are defined as

Eζ =

[
Iζh+1

01,ζh+1

]
⊕
[

Iζh+2

01,ζh+2

]
⊕ · · · ⊕

[
Iζh+k

01,ζh+k

]
,

Aζ =

[
01,ζh+1

Iζh+1

]
⊕
[

01,ζh+2

Iζh+2

]
⊕ · · · ⊕

[
01,ζh+k

Iζh+k

]
,

with p+ q +
∑k

i=1[ζh+i] + k = r, p+ q +
∑k

i=1[ζh+i] = m. In addition, let:

P =

 P1

P2

P3

 , Q =
[

Qp Qq Qζ

]
,

with P1 ∈ Cp×r, P2 ∈ Cq×r, P3 ∈ Cζ1×r, ζ1 = k +
∑k

i=1[ζh+i] and Qp ∈
Cm×p, Qq ∈ Cm×q, Qζ ∈ Cm×ζ2 and ζ2 =

∑k
i=1[ζh+i]. Let x(t) = Qz(t),

then:
EQ ż(t) = AQ z(t) + ω(t) ,

or, equivalently,
PEQ ż(t) = PAQ z(t) + Pω(t) ,

or, equivalently,
żp(t) = Jpzp(t) + P1ω(t) ,

Hq żq(t) = zq(t) + P2ω(t) ,

and
Eζ żζ(t) = Aζzζ(t) + P3ω(t) .

Where z(t) =

 zp(t)
zq(t)
zζ(t)

, zp(t) ∈ Cp×1, zp(t) ∈ Cq×1 and zζ(t) ∈ Cζ2×1.

These systems have the following solutions:

zp(t) = eJptC +

∫ ∞
0

eJp(t−τ)ω(τ)dτ ,
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and

zq(t) = −
q∗−1∑
i=0

Hi
qP2

di

dti
ω(t) .

For the third subsystem let

zζ(t) =


zζh+1

(t)
zζh+2

(t)
...

zζh+k
(t)

 , zζh+i
(t) ∈ C(ζh+i)×1, i = 1, 2, . . . , k , (7)

with

zζh+i
(t) =


zζh+i,1(t)
zζh+i,2(t)

...
zζh+i,ζh+i

(t)

 ,
and

P3ω(t) =


Ω1(t)
Ω2(t)

...
Ωk(t)

 , Ωi(t) ∈ C(ζh+i+1)×1, i = 1, 2, . . . , k ,

with

Ωi(t) =


ui0
ui1
ui2
...

uiζh+i

 , i = 1, 2, . . . , k .

By replacing and using these relations we get[
Iζh+i

01,ζh+i

]
żζh+i

(t) =

[
01,ζh+i

Iζh+i

]
zζh+i

(t) + Ωi(t) ,
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or, equivalently, by using the above expressions
1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1
0 0 . . . 0




żζh+i,1(t)
żζh+i,2(t)

...
żζh+i,ζh+i

(t)

 =


0 0 . . . 0
1 0 . . . 0
...

... . . .
...

0 0 . . . 0
0 0 . . . 1




zζh+i,1(t)
zζh+i,2(t)

...
zζh+i,ζh+i

(t)

+


ui0
ui1
ui2
...

uiζh+i

 ,

or, equivalently,

żζh+i,1(t) = ui0 ,
żζh+i,2(t) = zζh+i,1(t) + ui1 ,

...
żζh+i,ζh+i

(t) = zζh+i,ζh+i−1(t) + ui(ζh+i−1) ,

0 = zζh+i,ζh+i
(t) + uiζh+i

.

.

We have a system of ζh+i+1 differential equations and ζh+i unknown func-
tions. If we denote the n-th order derivative with dn

dtn , for n ≥ 4, we get:

zζh+i,ζh+i
(t) = −uiζh+i

,
zζh+i,ζh+i−1(t) = −ui(ζh+i−1) − u̇iζh+i

,

zζh+i,ζh+i−2(t) = −ui(ζh+i−2) − u̇i(ζh+i−1) −
d2

dt2
uiζh+i

,

...

zζh+i,1(t) = −ui1 − u̇i2 − . . .−
dζh+i−1

dtζh+i−1
uiζh+i

.

.

In order to solve the system we used the last ζj equations. By applying
these results in the first equation we get

ui0 = −u̇i1 −
d2

dt2
ui2 − . . .−

dζh+i

dtζh+i
uiζh+i

,

or, equivalently,
ζh+i∑
ρ=0

dρ

dtρ
uiρ = 0 ,
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which is the condition for the over–determined system (1) to have solutions
given by

x(t) = Qz(t) =
[

Qp Qq Qζ

]  eJptC +
∫∞

0 eJp(t−τ)ω(τ)dτ

−
∑q∗−1

i=0 Hi
qP2

di

dti
ω(t)

zζ

 ,
or, equivalently,

x(t) = Qp

[
eJptC +

∫ ∞
0

eJp(t−τ)ω(τ)dτ

]
−Qq

q∗−1∑
i=0

Hi
qP2

di

dti
ω(t) + Qζzζ .

We state the theorem:

Theorem 2 (Existence of the solution). There exist solutions for the overde-
termined system (1) if and only if (4) holds. Then the general solution is
given by

x(t) = Qp

[
eJptC +

∫ ∞
0

eJp(t−τ)ω(τ)dτ

]
−Qq

q∗−1∑
i=0

Hi
qP2

di

dti
ω(t) + Qζzζ ,

(8)
where Qp, Jp, Qq, Hq, P2, Qζ are defined in (6), and zζ is given by (7).

Theorem 2 provides an alternative closed formula of solutions for (1)
under the assumption that there exist solutions. This Theorem will also
help us identify under which condition the solution of (1) can be unique.
Initial conditions of the system which lead to a unique solution will be
referred as consistent, while initial conditions of the system which lead to
infinite solutions will be referred as non-consistent.

Corollary 1 (Uniqueness of the solution). Assume that system (1) has
solutions given by (8). Then if x(to) = xo is given, the solution is unique if
and only if:

xo ∈ colspanQp −Qq

q∗−1∑
i=0

Hi
qP2

di

dti
ω(0) + Qζzζ .

In this case the initial conditions will be consistent. Otherwise, the initial
conditions will be non-consistent and system (1) will have infinite many so-
lutions. Finally, for given consistent initial conditions, the constant column
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C (that appears in the general solution of (1)) is the unique solution of the
linear system

QpC =

[
xo + Qq

q∗−1∑
i=0

Hi
qP2

di

dti
ω(0) + Qζzζ

]
.

Proof. For t = 0 in (8) of theorem 2 we have:

x(0) = QpC −Qq

q∗−1∑
i=0

Hi
qP2

di

dti
ω(0) + Qζzζ ,

and from here we arrive easily at the desired condition. The proof is com-
pleted.

Higher order System

In this subsection we consider the following system of differential equations
of higher order:

An
dn

dtn
x(t) + An−1

dn−1

dtn−1
x(t) + · · ·+ A1 ẋ(t) + A0 x(t) = Ω(t) , (9)

where Ai ∈ Cr×m, r > m, i = 0, 1, . . . , n, are non-square matrices, and
x̂ ∈ Cm×1, Ω ∈ Cr×1. In this case the matrix pencil snAn + sn−1An−1 +
· · ·+sA1 +A0 is called singular since r > m. In the next lemma we will use
the following notation. Let [Iij ]

j=1,2,...,m
i=1,2,...,r be an element of the matrix Ir,m in

the i-th row, j-th column, with Iij = 1 for i = j, and Iij = 0 for i 6= j.

Lemma 3 (Formulation of differential equations). System (9) can be refor-
mulated in the following generalized system of differential equations of first
order:

E ẋ(t) = Ax(t) + ω(t) , (10)

where

E =


Ir,m 0r,m . . . 0r,m 0r,m
0r,m Ir,m . . . 0r,m 0r,m

...
...

. . .
...

...
0r,m 0r,m . . . Ir,m 0r,m
0r,m 0r,m . . . 0r,m An

 ∈ Cnr×nm ,
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and

A =


0r,m Ir,m . . . 0r,m 0r,m
0r,m 0r,m . . . 0r,m 0r,m

...
...

. . .
...

...
0r,m 0r,m . . . 0r,m Ir,m
−A0 −A1 . . . −An−2 −An−1

 ∈ Cnr×nm.

Furthermore where

x(t) =


x1

x2
...

xn−1

xn

 ∈ Cnm×1, ω(t) =


0r,1
0r,1

...
0r,1
Ω(t)

 ∈ Cnr×1, and x1(t) = x̂(t) .

Proof. Firstly we set:
x1 = x ,

x2 = ẋ ,

...

xn−1 =
dn−2

dtn−2
x ,

xn =
dn−1

dtn−1
x ,

whereby taking the derivatives we get

ẋ1 = ẋ ,

ẋ2 =
d2

dt2
x ,

...

ẋn−1 =
dn−1

dtn−1
x ,

An ẋn = An
dn

dtn
x ,

.
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or, equivalently,

ẋ1 = x2(t) ,

ẋ2 = x3(t) ,

...

ẋn−1 = xn(t) ,

Anẋn = −An−1 xn − · · · −A0 x1 + Ω .

.

The above equations can then be written in the matrix form (10). The proof
is completed.

Theorem 4 (Equivalence between polynomial and linear pencils). The pen-
cils snAn + sn−1An−1 + · · · + sA1 + A0, sE −A of systems (9), (10) re-
spectively, have exactly the same finite eigenvalues.

Proof. We will prove this theorem for a regular pencil. For a singular pencil
the proof will be similar since the finite eigenvalues are obtained from similar
sub-determinants to the regular pencil. Note that if M is a square matrix,
and Mi, i = 1, 2, 3, 4 are matrices (not necessary square) such that M can
be written in the form

M =

[
M1 M2

M3 M4

]
,

then, see [16], if M1 is square and invertible

det(M) = det(M1)det(M4 −M3M
−1
1 M2) .

For r = m the pencil sE−A is equal to

sE−A =


sIm −Im . . . 0m,m 0m,m
0m,m sIm . . . 0m,m 0m,m

...
...

. . .
...

...
0m,m 0m,m . . . sIm −Im
A0 A1 . . . An−2 sAn + An−1

 .

Hence if we set M(s) := sE−A, the pencil can be written in the form:

sE−A =

[
M1(s) M2

M3 M4(s)

]
,
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where

M1(s) =


sIm −Im . . . 0m,m
0m,m sIm . . . 0m,m

...
...

. . .
...

0m,m 0m,m . . . sIm

 ∈ R(n−1)m×(n−1)m ,

M2 =


0m,m
0m,m

...
−Im

 ∈ R(n−1)m×m ,

and

M3 =
[

A0 A1 . . . An−2

]
∈ Cm×(n−1)m, M4(s) = sAn+An−1 ∈ Cm×m .

Then since

M−1
1 (s) =


s−1Im s−2Im . . . s−(n−1)Im
0m,m s−1Im . . . s−(n−2)Im

...
...

. . .
...

0m,m 0m,m . . . s−1Im

 ∈ R(n−1)m×(n−1)m ,

and

M−1
1 (s)M2 =


−s−(n−1)Im
−s−(n−2)Im

...
−s−1Im

 ∈ R(n−1)m×m ,

we have

M3M
−1
1 (s)M2 =

[
A0 A1 . . . An−2

]

−s−(n−1)Im
−s−(n−2)Im

...
−s−1Im

 ,
or, equivalently,

M3M
−1
1 (s)M2 = −s−(n−1)A0 − s−(n−2)A1 − . . .− s−1An−2 .

In addition:

M4(s)−M3M
−1
1 (s)M2 = sAn+An−1+s−1An−2+. . .+s−(n−2)A1+s−(n−1)A0 .
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Hence,

det(sE−A) = det(M1(s))det(M4(s)−M3M
−1
1 (s)M2) ,

or, equivalently,

det(sE−A) = det(sn−1Im)det(sAn+An−1+s−1An−2+. . .+s−(n−2)A1+s−(n−1)A0) ,

or, equivalently,

det(sE−A) = det(snAn + sn−1An−1 + · · ·+ sA1 + A0) .

The proof is completed.

Remark 5. In lemma 3 we proved that system (9) can be reformulated into
system (10), and in theorem 4 we proved that the pencil of (9) has the same
finite eigenvalues with the pencil of (10). Consequently there exist solutions
for system (9) if and only if there exist solutions for (10). Hence there exist
solutions for (9) if for system (10), the condition (4) holds, see theorem 1.

We consider now the matrices P, Q as defined for the singular pencil
sE −A with r > m in (6). Then we can define the matrices Q1, Q1

p, and

Q1
ζ as

Q =

[
Q1

Q2

]
∈ Cnm×nm ,

Qp =

[
Q1
p

Q2
p

]
∈ Cnm×p ,

Qζ =

[
Q1
ζ

Q2
ζ

]
∈ Cnm×ζ2 ,

(11)

where Q1 ∈ Cm×nm, Q1
p ∈ Cm×p, and Q1

ζ ∈ Cm×ζ2 .

Theorem 6 (Existence of the solution). Consider system (9). Then there
always exists a solution for (9) if for the pencil sE−A of system (10) the
condition (4) holds. In this case the solution is given by

x(t) = Q1
p eJp(t)C + Q1K(t) + Q1

ζzζ , (12)

where K(t) =

[ ∫ t
0 eJp(t−s)P1 U(s)ds

−
∑q∗−1

i=0 Hi
qP2

di

dti
U(t)

]
, C ∈ Cp×1 is constant vector, and

Jp ∈ Cp×p, Hq ∈ Cq×q are the Jordan matrices related to the finite, infinite
eigenvalues respectively. The matrices P, Q are defined for the singular
pencil sE−A with r > m in (6). The matrices Q1, Q1

p, and Q1
ζ are defined

in (11).
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Proof. From Theorem 1, there always exist a solution for the over-determined
system (10) if (4) holds. In this case its solution is given by (8):

x(t) = Qp eJp(t)C + QK(t) + Qζzζ .

By using lemma 3, if for system (9) r > m, and (4) holds for the pencil
sE−A of (10), then the solution of (9) is given by:

x(t) = Q1
p eJp(t)C + Q1K(t) + Q1

ζzζ .

The proof is completed.

Remark 7. Let

x(0), ẋ(0), . . . ,
dn−1

dtn−1
x(0) (13)

be the initial conditions of (9). We set

x(0) =



x(0)

ẋ(0)
...

dn−2

dtn−2
x(0)

dn−1

dtn−1
x(0)


∈ Cnm×1.

If r > m, and (4) holds, by using corollary 1 the solution of (9) is unique
if and only if:

x(0) ∈ colspanQp + QK(0) + Qζzζ .

Then in the general solution (12) of (9), C is the unique solution of the
linear system

QpC = [x(0)−QK(0)−Qζzζ ] .

Remark 8. Let H(t) be the Heaviside function and

κ1(t) = H(t)−H(−t) =

{
1 , t > 0
0 , t = 0

}
,

κ2(t) = H(−t) =

{
1 , t = 0
0 , t 6= 0

}
.

14



Then, if the initial conditions (13) are non-consistent, i.e. the conditions
for consistency in remark 7 do not hold, then system (10) can be written as

κ1(t) (E ẋ(t)− ω(t)) = Ax(t)− κ2(t) Ax(0) , t ≥ 0 .

This is a generalized linear matrix differential equation of first order, and
although the initial conditions are given due to their inconsistency the so-
lution of this system is not unique. If r > m, and (4) holds its solution is
given by:

x(t) = κ1(t) [Qp eJp(t)C + QK(t) + Qζzζ ] + κ2(t)x(0) , t ≥ 0 .

In both cases where C =
[
c1 c2 . . . cp

]T
is constant vector, it can not

be defined, and hence the dimension of the solution vector space is p. In
addition, we can rewrite system (9) in the following form:

n∑
i=0

Ai
di

dti
x(t) = Ω(t), t > 0 .

For t ≥ 0 system (9) can take the following form:

A0 x(t) + κ1(t)

[
n∑
i=1

Ai
di

dti
x(t)−Ω(t)

]
= κ2(t) A0

n−1∑
i=0

ti

i!

di

dti
x(0) .

Combining the results of the above discussion, if r > m, and (4) holds its
solution is given by:

x(t) = κ1(t)[Q1
p eJp(t)C +Q1K(t) + Q1

ζzζ ] + κ2(t)
n−1∑
i=0

(t)i

i!

di

dti
x(0), t ≥ 0 .

The dimension of the solution vector space is p.

3 Over–determined electrical machine model

A model commonly utilized in the stability analysis of electric energy sys-
tems is the so-called classical electromechanical synchronous machine model.
The classical machine model assumes that (i) all stator and rotor dynamics
as well as stator losses are null; and (ii) the mechanical and electrical torque
can be approximated with the mechanical and electrical power, respectively,
as the variations of the rotor angular speed are small. We provide here
two possible formulations of the classical machine model as over-determined
dynamical system.
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Example 1. These assumptions lead to describing the mechanical (swing)
equations as:

ω−1
o δ̇ = ω − 1 , (14)

Mω̇ = Pm − Pe −D(ω − 1) , (15)

where δ, ω, are the rotor’s angular position and speed, respectively; ωo is
the synchronous angular speed; M is the mechanical starting time; D is the
damping coefficient. Pm is the mechanical power; and Pe is the electrical
power injected by the machine into the grid. In the dq-axis reference frame,
the components of the stator current ıd, ıq are described as:

0 = vq − e′q +X ′d ıd , (16)

0 = vd −X ′d ıq , (17)

where X ′d is the d-axis transient reactance; e′q is the electromotive force
“behind the reactance”; vd, vq, are the d-axis and q-axis components of the
machine terminal voltage, respectively. These components can be defined as
follows:

0 = vd − v sin(δ − θh) , (18)

0 = vq − v cos(δ − θh) , (19)

where v, θ are the voltage magnitude and angle, respectively, at the machine
terminal bus; The electrical active and reactive power of the machine can be
expressed in the dq-axis reference frame as follows:

0 = vdid + vqiq − Pe , (20)

0 = vdid − vqiq −Qe . (21)

In this model, the mechanical power Pm and the electromotive force e′q are
considered to be constant. Moreover, the machine is assumed to be connected
to a bus with constant voltage and frequency (often called an “infinite” bus),
and hence, vh and θh are also constant. Finally, substituting (20) in (14)
and assuming that the reactive power injection Qe is an input to the system,
the vector of the system variables is defined as:

x = [δ ω vd vq ıd ıq]T . (22)

The system of (14)-(21) can be linearized around a valid equilibrium x∗.
Then, the linearized system can be written in the form of (1) as:

E ∆ẋ(t) = A ∆x(t) + ω(t) , (23)
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where ∆x = x− x∗;

E =

[
Ê

01,6

]
, Ê = diag(ω−1

o , M, 0, 0, 0, 0) ,

A =



0 1 0 0 0 0
0 −D −ı∗d −ı∗q −v∗d −v∗q

−v cos(δ∗ − θ) 0 1 0 0 0
−v sin(δ∗ − θ) 0 0 1 0 0

0 0 0 1 X ′d 0
0 0 1 0 0 −X ′d
0 0 ı∗d −ı∗q v∗d −v∗q


,

and
ω(t) = [0 0 0 0 0 0 ∆Qe]

T .

Notice that system (23) is over-determined, since A,E ∈ R8×7.
For illustrative purposes, we consider a specific numerical example. To

this aim, we assume ωo = 100π rad/s (50 Hz system), M = 14 s, D = 3 pu1,
X ′d = 0.6 pu(Ω). Moreover, v = 1 pu(kV), θ = 0 rad, e′q = 1.2 pu(kV),
Pm = 1 pu(MW). Then, the equilibrium of the system is:

x∗ = [0.524 1 0.5 0.866 0.557 0.833]T . (24)

The matrices that describe the system are as follows:

E =



0.003 0 0 0 0 0
0 14 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

A =



0 1 0 0 0 0
0 −3 −0.557 −0.833 −0.5 −0.866

−1.155 0 1 0 0 0
−2 0 0 1 0 0
0 0 0 1.0 0.6 0
0 0 1 0 0 −0.6
0 0 0.557 −0.833 0.5 −0.87


.

1per unit system (pu); in power engineering, quantities are often expressed as fractions
of defined base units.
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The pencil of the system will then be

sE−A = s



0.003 0 0 0 0 0
0 14 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


−



0 1 0 0 0 0
0 −3 −0.557 −0.833 −0.5 −0.866

−1.155 0 1 0 0 0
−2 0 0 1 0 0
0 0 0 1 0.6 0
0 0 1 0 0 −0.6
0 0 0.557 −0.833 0.5 −0.87


,

or, equivalently,

sE−A =



0.003s 0 0 0 0 0
0 14s+ 3 0.557 0.833 0.5 0.866

1.155 0 −1 0 0 0
2 0 0 −1 0 0
0 0 0 −1 −0.6 0
0 0 −1 0 0 0.6
0 0 −0.557 0.833 −0.5 0.87


,

The pencil has the finite eigenvalues λ1 = −0.107143i + 7.39935, λ2 =
−0.107143i−7.39935, and infinite eigenvalue of algebraic multiplicity 4 and
row minimal index ζ1 = 0.

Example 2. Consider the swing equations (14)-(15) of the classical syn-
chronous machine model introduced in example 1. We assume that the ma-
chine is connected to a bus h with constant voltage v̄h = vh∠θh = 1 pu∠0 rad.
Considering zero damping (D = 0) as well as constant EMF e′r,q, the swing
equations (1.113) can be rewritten as follows:

ω−1
o δ̇ = ω − 1 , (25)

Mω̇ = Pm − Pmax
e sin δ , (26)

where Pmax
e =

e′r,q
X′d

. These two equations now describe a non-dissipative

non-linear model which, if perturbed should oscillate forever with oscilla-
tions of constant amplitude. However, numerical integration of these equa-
tions leads to slightly increasing or decreasing oscillations when solved with
certain methods, including the forward and backward Euler methods. This
numerical issue can be successfully addressed if the set of differential equa-
tions is augmented with a constraint that imposes that the variation of the
total free energy (kinetic + potential) of the machine model is zero. Then,
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the numerical integration shows stationary oscillations, as expected. That
said, equation (26) can be alternatively expressed as:

Mω̇ = −∂V
∂δ

, (27)

where −∂V
∂δ is the negative gradient of the potential energy function:

V = −Pmδ − Pmax
e cos δ . (28)

Then, the following constraint ensures that the there is no variation of the
total free energy of system (25)-(26):

1

2
Mω2 + V = c , (29)

where c is a constant. Substitution of (28) in the last equation yields:

1

2
Mω2 − Pmδ − Pmax

e cos δ = c . (30)

The state vector of the system of differential-algebraic equations defined
by (25), (26) and (30) is:

x = [δ, ω]T . (31)

Assuming that the mechanical power Pm is an input, linearization of the
system around an equilibrium point (x∗,V ∗), gives:

ω−1
o ∆δ̇ = ∆ω ,

M∆ω̇ = ∆Pm − Pmax
e cos δ∗∆δ ,

0 = Mωo∆ω −∆δ − δr,o∆Pm + Pmax
e sin δ∗∆δ .

(32)

In matrix form, system (32) reads:

E ∆ẋ(t) = A ∆x(t) + ω(t) , (33)

where

E =

ω−1
o 0
0 M
0 0

 , A =

 0 1
−Pmax

e cos δ∗ 0
−Pm,o + Pmax

e sin δ∗ Mω∗

 ,

ω(t) =

 0
∆Pm

−δ∗∆Pm

 .
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Model (33) is over-determined, since A,E ∈ R3×2.
We consider a numerical example. In particular, we assume ωo = 100π rad/s

(50 Hz system), M = 14 s, Pmax
e = 2 pu(MW), Pm = 1 pu(MW), Then, the

equilibrium of the system state is:

xo =
[π

6
, 1

]T
. (34)

The matrices that describe the system become:

E =

 1
100π 0

0 14
0 0

 , A =

 0 1

−
√

3 0
0 14

 , ω(t) =

 0
∆Pm

−δ∗∆Pm

 .
The pencil of the system will then be

sE−A = s

 1
100π 0

0 14
0 0

 −
 0 1

−
√

3 0
0 14

 ,
or, equivalently,

sE−A =

 1
100πs −1√

3 14s
0 −14

 ,
The pencil has the finite eigenvalues λ1 = i

√√
3π

14 , λ2 = −i
√√

3π
14 , and row

minimal index ζ1 = 0.

4 Illustrative examples

Example 3 (Singular pencil with no solution). We consider system (1) with
ω(t) = 04,1 and

E =


1 1 1
0 1 1
1 1 1
0 1 1

 , A =


1 2 2
0 2 2
1 2 2
0 2 3

 .
Obviously the system is over–determined, and it’s pencil

sE−A =


s− 1 s− 2 s− 2

0 s− 2 s− 2
s− 1 s− 2 s− 2

0 s− 2 s− 3


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is singular. There exists the matrix

P̂ (s) =


1 −1 0 0
0 3− s 0 −s+ 2
0 1 0 −1
0 0 1 0

 ,
such that

P̂ (s)(sE−A) =

[
Â(s)
01,1

]
,

where

Â(s) =

 s− 1 0 0
0 s− 2 0
0 0 1

 .
Furthermore, for

P̂ (s) =

[
P̂ 1(s)

P̂ 2(s)

]
,

with

P̂ 1(s) =

 1 −1 0 0
0 3− s 0 −s+ 2
0 1 0 −1

 , P̂ 2(s) =
[

0 0 1 0
]
,

we have
P̂ 2(s)E =

[
1 1 1

]
6= 01,3 .

Hence, (4) does not hold and (1) has no solutions.

Example 4 (Singular pencil with solutions). Let

E =

 1 1
0 1
1 1

 , A =

 1 2
0 2
1 2

 , ω(t) = 03,1 .

The pencil of the over–dermined system is equal to

sE−A =

 s− 1 s− 2
0 s− 2

s− 1 s− 2

 .
Then

P̂ (s) =

 1 −1 0
0 1 0
−1 0 1

 ,
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such that

P̂ (s)(sE−A) =

[
Â(s)
01,2

]
.

where

Â(s) =

[
s− 1 0

0 s− 2

]
.

In addition, for

P̂ (s) =

[
P̂ 1(s)

P̂ 2(s)

]
,

with

P̂ 1(s) =

[
1 −1 0
0 1 0

]
, P̂ 2(s) =

[
−1 0 1

]
,

we have
P̂ 2(s)E = 01,2 .

Hence, (4) holds and from (5):

Ψ0(t) = L−1{A−1P̂ 1(s)E} = L−1{
[ 1

s−1 0

0 1
s−2

]
} ,

or, equivalently,

Ψ0(t) =

[
et 0
0 e2t

]
.

Then for C =
[
c1 c2

]T
we have:

x(t) =

[
etc1

e2tc2

]
.

Example 5 (Singular pencil with solutions). We consider now system (1)
with ω(t) = 05,1 and

E =


0 1 1 0
0 0 0 −1
1 1 0 0
1 1 1 1
0 0 0 0

 , A =


0 2 0 1
0 0 0 0
1 1 −1 0
1 1 0 1
0 0 1 0

 .
In this example we will use the spectrum of the pencil sE−A to investigate
the solutions of the system. The pencil has the finite eigenvalues λ1 = 1,
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λ2 = 2, and the row minimal indices ζ1 = 0, ζ2 = 2. Then since

Jp =

[
1 0
0 2

]
, Qp =


1 1
0 1
0 0
0 0

 ,
by using theorem 2 the solution of (1) is given by:

x(t) = Qp eJptC =


1 1
0 1
0 0
0 0

[ et 0
0 e2t

] [
c1

c2

]
,

or, equivalently,

x(t) =


c1 et + c2 e2t

c2 e2t

0
0

 .
We may now use Corollary 1 to study the uniqueness of solutions of this
system. We define the column vector space:

colspanQp =<


1
0
0
0

 ,


1
1
0
0

 >
Since there exist solutions for the system, as proved the uniqueness depends
on the initial conditions. Let

x(0) =


2
1
0
0


be the initial conditions of the system. We observe that

x(0) ∈ colspanQp.

Hence from corollary 1 the initial conditions are consistent and the unique
solution of (1) is:

x(t) =


et + e2t

e2t

0
0

 .
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It is worth noting that the uniqueness is not guaranteed. Had we chosen for
example the initial condition:

x(0) =


1
1
1
1


we would have

x(0) /∈ colspanQp.

Hence from corollary 1 the initial conditions would be non-consistent and
the solution of (1) would be:

x(t) = κ1(t)


c1 et + c2 e2t

c2 e2t

0
0

+ κ2(t)


1
1
1
1

 , t ≥ 0 .

Where κ1(t), κ2(t) defined in remark 8. The dimension of the solution vector
space is 2.

5 Concluding remarks

The solutions of overdetermined systems in the form of (1) where strictly
studied including existence, uniqueness and the formula of its solutions.
Results were also extended for higher order systems in the form of (9). We
provided several examples and used this type of systems for electrical power
system modeling. As a further extension of this article we aim to study
the perturbation methods and construct optimization techniques in order
to obtain optimal solutions for the case of existence but not uniqueness of
solutions for the system.
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