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Abstract 

This paper proposes a novel method based on arbitrary Polynomial Chaos (aPC) to evaluate how parameter and variable uncertainty 
impacts on the dynamic response of power systems. The method defines a set of orthogonal polynomials that approximate the 
relationship between the sources of uncertainties, such as the power generation of renewable energy resources, and the system 
dynamic response. Measurement data can be directly utilized to construct the aPC model without any prior knowledge of the 
probability distribution of the uncertainty. A whitening transformation method is also integrated to decouple correlated data sets 
and thus avoid errors caused by distribution fitting. Finally, to avoid numerical issues common to polynomial chaos methods, the 
k-means++ clustering is embedded in the aPC. The accuracy and computational efficiency of the proposed method are validated 
through the WECC 3-machine 9-bus system and the NE 16-machine 68-bus system. 
©	2017	Elsevier	Inc.	All	rights	reserved.	
Keywords: Uncertainty quantification; power system dynamics; renewable energy sources; arbitrary polynomial chaos; whitening transformation; 
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1. Introduction 

1.1. Motivations 

The penetration of renewable energy sources (RES) has introduced a considerable level of uncertainty into power 
systems, which may negatively impact on their operation and security as well as complicate their steady-state and 
dynamic analyses [1-4]. In this paper, we focus on the study of the propagation of uncertainty caused by RES in the 
short-term dynamic response of power systems. 

1.2. Literature Review 

Several works have been presented in the literature to quantify the effect of uncertainty on power system dynamics. 
These fall into the following four main categories: (i) sampling methods, (ii) perturbation methods, (iii) optimization 
methods, and (iv) surrogate model methods.  

Typical sampling methods that consider uncertainty in the initial value and in the parameters include Monte Carlo 
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simulation (MCS). Another class of works that falls in the category of MCS methods considers time-varying stochastic 
noise modelled through stochastic processes and stochastic differential equations. Relevant works in this fields are, 
for example, [5, 6]. MCS are widely used as benchmarks due to their high accuracy. Nevertheless, the excessive 
computational burden of solving a huge number of simulations hinders their application in practical system analysis, 
especially for online simulations. To alleviate the above limitation from the perspective of sampling method, some 
advanced sampling methods are proposed and an important branch of which is variance reduction technique. Variance 
reduction techniques endeavor to devise an estimator that is asymptotically unbiased and exhibits smaller variance 
compared to MCS. The primary objective is to attain a specified level of precision by utilizing fewer samples, thereby 
enhancing the efficiency of the estimation process. Importance sampling, stratified sampling, and quasi-Monte Carlo 
are three common variance reduction techniques. Importance sampling determines an alternative and proper 
probability density function, also known as importance sampling density, and samples from it to reduce the estimator 
variance. It is efficient when direct sampling from the original distribution is challenging. In [7], an improved 
sequential importance sampling method is proposed to accelerate the computation of power system reliability 
assessment. Stratified sampling divides the variable space into non-overlapping strata and then samples are drawn 
from each stratum separately. Latin hypercube sampling [8] and Latin supercube sampling [9], which are typical 
stratified sampling techniques, are implemented to solve probabilistic load flow problems. In quasi-Monte Carlo 
method, samples are drawn by using deterministic, low-discrepancy sequences instead of random samples as MCS. 
In [10], Sobol sequence is employed to reduce computational burden of solving probabilistic optimal power flow 
problems. 

Perturbation methods have a smaller computational burden than MCS and consist in observing the uncertain 
response under small perturbations around the equilibrium point based on simplified models, e.g., linearized models 
[11, 12]. However, a major limitation of perturbation methods is that their accuracy deteriorates when the system 
trajectories deviate significantly from the initial point due to the nonlinearity of the DAEs.  

Optimization methods evaluate the systems security assessment under uncertainties with respect to given constraints 
by constructing uncertain optimization mathematical model [13, 14]. Nevertheless, the application in large scale 
systems is limited due to the excessive computational burden. Improvement of the methods or application of faster 
solution methods are to be further researched. 

To deal with the issues above, surrogate-model methods build the nonlinear relationship between state response 
and uncertainties in specific forms. In [15], the state trajectories are constructed by a second-order Taylor-series 
approximation of the uncertain inputs. In [16], a third-order normal forms approximation is used to quantify inherent 
interactions of the system. However, the higher-order approximation and the higher the number of uncertain inputs, 
the higher computational burden of these trajectory-sensitive analysis methods. In [17], Kriging method is exploited 
to reduce the computational burden of optimal power flow. Nevertheless, Kriging is sensitive to outliers in the data, 
which may lead to biased predictions. In [18], Koopman operator-based surrogate model is built to capture the power 
system dynamic response under parameter uncertainty. But the performance of higher-order moments requires further 
research. Similarly, machine learning (ML) methods require a large amount of data [19], and the training process to 
construct the surrogate model is generally highly time-consuming.  

Polynomial chaos expansion (PCE), which is a method for approximating the uncertain behavior of a complex 
system through a polynomial expansion of the input variables, is another subclass of surrogate model methods. PCE 
is popular in both mathematic and engineering fields [20-22]. The most significant advantage of PCE with respect to 
ML is that the former does not require an offline training procedure. Also, PCE adapts better to multidimensional 
random variables than trajectory-sensitive analysis methods. PCE can accurately and efficiently quantify the RES 
uncertainties by analytically constructing the relationship between random inputs and corresponding outputs using a 
set of orthogonal polynomials.  

A commonly used PCE method is stochastic Galerkin method (SGM). It can achieve high accuracy because it 
ensures that the residue of the uncertain DAEs is orthogonal to the linear space spanned by the polynomial basis [23]. 
In [24], SGM is implemented to power system transient analysis and obtain high accuracy results due to the 
mathematically rigorous Galerkin projection process. However, new power system models based on Galerkin 
projection need to be derived mathematically and thus it requires to rewrite the code of original models, which is hard 
to be implemented in commercial software. Moreover, the number of equations after the projection increases 
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significantly with the number of random inputs and the state variables, and so does the computational burden. 
An alternative class of PCE methods, namely probabilistic collocation method (PCM), only requires the input and 

output information of the power system and hence can be directly utilized in the mature simulation platform. PCM 
starts by generating a set of representative collocation points and then solve the polynomial coefficients using several 
methods, such as the regression method [25], interpolation method [6], and pseudo-spectral method [26]. In [27], roots 
of one higher-order univariate polynomial are used as interpolation points and the performance of PCM with its variant 
in short- and long-term dynamic simulation is discussed. In [28, 29], correlations of uncertain inputs are taken into 
consideration and Copula-based methods are utilized to eliminate their dependence.  

Most PCM techniques require the knowledge of the distribution of random variables, to either modeling the 
uncertainties [27, 28], or the decorrelation process [29]. However, a precise knowledge of the distribution may not be 
realistic in practice. Hence, system operators and market participants often use probabilistic forecast techniques to 
obtain the distribution of stochastic processes, e.g., the output power of a wind power plant, in the future. These 
estimated distributions are then utilized, for example, for system dynamic security assessment (DSA) [30], storage 
system arrangement [31], and bidding strategy selection [32]. However, this approach has several limitations. First, if 
the size of available data is limited, especially for online DSA, the estimation of the distribution and probability density 
can be affected by large errors. Then, in practice the parameters of the distribution can change for different time scales 
[33]. For example, the Cauchy distribution is usually assumed for ultra-short-term (1min ~ 60min) [34] whereas Beta 
or Gaussian distributions usually fit better short-term (1h ~ 48h) forecasts [35]. Finally, analytical distribution 
functions not always fit well available data [36]. On the other hand, the proposed method relies on data and is thus 
exempt from the parameter forecast issues discussed above. 

Admittedly, some non-parametric distribution fitting techniques, such as the kernel density estimation, that can be 
applied to obtain relatively accurate distribution information from measurement data. But these techniques generally 
constitute a numerical challenge for the construction of the orthogonal bases and cannot be effectively applied with 
limited raw data. Moreover, if a correlation exists among the raw data, it is difficult to find the appropriate joint 
probability density function which can precisely express the inherent correlation. And, even if known, the correlation 
can change depending on the time, day, season, and other exogenous factors. 

1.3. Contributions 

We propose a method to quantify the effect of uncertainty on the dynamic response of power systems based on the 
aPC structure. Specific contributions are as follows. 
• The proposed algorithm directly utilizes raw data without any assumptions on the data distribution. This avoids 

errors given raise by casting samples into probability density functions and allows exploiting parallel computing 
to construct the polynomial basis. 

• Whitening transformation is integrated with the aPC-based structure as preprocessing to tackle the correlation of 
uncertainties. 

• K-means++ clustering method is adopted to find the collocation points. This avoids the problem of matrix 
singularity when attempting different combinations of roots.  

1.4. Organization 

The remainder of the paper is organized as follows. Section II describes the theoretical background of the 
polynomial chaos expansion and its coefficients calculation methods. Section III describes the proposed aPC-based 
uncertainty quantification framework in power system dynamics. Section IV discusses two case studies that verify the 
accuracy and efficiency of the proposed method. Finally, conclusions are drawn in Section V. 
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2. Theoretical Background 

2.1. Surrogate Model Based on Polynomial Chaos Expansion 

Let a vector of system response x be an implicit function f(x) of multi-dimensional random variables x with 
cumulative distribution function Γ(x) and space Ω: 

        (1) 

The advantage of the polynomial chaos expansion (PCE) method is that only a small number of simulations are 
required to extract the probability features of system outputs x. The outputs x are represented by a series of orthogonal 
polynomials and coefficients as follows [26]: 

        (2) 

where x is a system output, such as a state variable of a generator or a bus voltage magnitude or angle; xÎℝN is a 
vector of multi-dimensional random inputs; ai is the ith polynomial coefficient; φi is the ith term polynomial basis; 
Np=(N+d)!/(N!d!)-1; d is the maximum order of univariate polynomial basis. The total number of simulations required 
is (Np+1) which is the same as the number of polynomial coefficients to be determined. The basis {φj(x)} for the multi-
dimensional variables is constructed as: 

      (3) 

where φji(xi) denotes the jith order polynomial basis of the ith random variable. Taking the second-order expansion of 
two random variables as an example (N=2, d=2), the basis (3) is {1, φ1(x1), φ1(x2), φ2(x1), φ2(x2), φ1(x1)φ1(x2)} and the 
size is (Np+1)=6. 

Random variables with different distributions have unique optimal polynomials which significantly affect the 
approximation accuracy of the surrogate model (2). If the random variables follow standard distributions, we can refer 
to the Wiener-Askey scheme to find the corresponding optimal orthogonal polynomials, such as for standard uniform 
and Gaussian distribution, the optimal polynomials are the Legendre and Hermite polynomials respectively. As for 
non-standard distribution, the Gram-Schmidt orthogonalization [37] or the Stieltjes procedure [27] can be applied to 
generate orthogonal polynomials. Both are based on the probability density function (PDF). This class of PCE that is 
based on the explicit forms of PDF is known as generalized polynomial chaos (gPC) [26]. 

2.2. Probabilistic collocation method 

After optimal orthogonal polynomials are generated, either PCM or SGM can be applied to calculate the 
coefficients {ai} in (2). PCM is nonintrusive which means it can be implemented directly in commercial software, 
while SGM is intrusive that the built-in models need to be modified according to different simulation scenarios. Since 
the nonintrusive method has the advantages of easier application and more reliable performance, PCM is used in this 
paper. 

Collocation points xc are a set of samples of the random input variables. Traditionally, the combinations of roots 
of one higher-order univariate polynomial are usually chosen as collocation points, which is also known as the root 
method [26]. The number of collocation points exactly equals the number of multi-dimensional bases (Np+1) and the 
corresponding response {xc} of collocation points is simulated. Then, the coefficients {ai} can be computed by solving 
the linear equation below: 
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      (4) 

Or in vector form: 

       (5) 

It indicates that the surrogate model (2) only requires the form of orthogonal polynomials, the pre-selected 
collocation points, and the corresponding response of the given model in advance. 

2.3. Post-Processing for statistical characteristics 

Orthogonality is an important property that polynomials must satisfy which provides convenience in extracting 
the probabilistic features of the system outputs. Orthogonality of two polynomials φk1(xi) and φk2(xi) is defined as 
below: 

      (6) 

where 〈×,×〉 is the inner product; k1,k2={0,1,…,d}; G(xi) is the cumulative distribution function of the ith random 
input xi; ||×||2 is the 2-norm; dk1k2 is the Kronecker delta function. 

Based on the orthogonality, we can directly obtain the expectation and variance of the output x in (2) according to 
the coefficients {ai} as: 

      (7) 

The analytical expressions of high-order moments, such as skewness and kurtosis, can also be derived based on 
the coefficients {ai} and (7).  

Thus, by only performing (Np+1) simulations, moments of outputs are easily obtained from the coefficients. Note 
that since the PCE model is analytical at every moment, the statistical information, e.g., mean, variance, and 
probability distribution, can also be cheaply obtained by MCS. 

3. Proposed Arbitrary Polynomial Chaos Framework in Power System Dynamics 

3.1. Modeling Parametric Uncertainties in Power System Dynamics 

Traditionally, the uncertainties of the RES in dynamic power systems are not considered, which means they are 
treated as constants instead of variables. The dynamic model of power systems with uncertain inputs can be expressed 
by the following DAE: 
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       (8) 

where xÎℝn is the vector of state variables, such as rotor angles and rotor speeds; yÎℝm is the vector of algebraic 
variables, such as bus voltage magnitudes and angles; xÎℝN is the vector of uncertain variables we are interested in, 
such as power injections of RES; f(×): ℝn´ℝm´ℝN®ℝn and g(×): ℝn´ℝm´ℝN®ℝm are the nonlinear implicit differential 
and algebraic equations, respectively. Note that, in this model, uncertainty is assumed to exist only at the beginning 
of the simulation and remains unchanged after the initial point. 

3.2. Constructing Polynomial Basis of aPC 

Unlike gPC, which requires to use detailed and explicit PDF, aPC directly utilizes the moments of raw data to 
build polynomial basis. We take one-dimensional random variable case as an example, the kth order polynomial basis 
jk(xi) for the ith random variable xiÎx is defined as below [38]: 

       (9) 

where k={0,1,…,d} is the degree of polynomial basis; {cl(k)} are the unknown coefficients in jk(xi). 
To more intuitively carry out further derivation, (6) can be represented as: 

      (10) 

Besides, we assume the leading coefficients of all polynomials to be 1:  

       (11) 

It is worth mentioning that (11) is not strictly necessary because there is always a set of following coefficients {cl(k)} 
where l={0,1,…,k-1} that makes the orthogonality of the whole set of polynomial bases satisfied. The condition (11) 
serves only to simplify the notation of following derivations.  

If k=0, we can obtain directly from (11) that j0=c(0) 
0 =1. Then, the following relation of coefficients based on (10) 

can be obtained:  

      (12) 

The orthogonality of the polynomial of degree k is presented by (12). Then we substitute (11) to the first equation of 
(12), we have: 
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Next, we substitute (11) and (13) to the second equation of (12), we obtain: 

       (14) 

If we continue this procedure to the rest equations in (12), we can finally re-write (12) with the assumption (11) as 
follows: 

      (15) 

Note that for different degrees k, the corresponding set of orthogonal polynomials are independent to others, which 
means we can improve the computing speed by applying parallel computing techniques.  

Then, to further simplify (15), we introduce the k-th raw moment µk of xi which is defined as: 

       (16) 

So the sets of equations in (15) can be presented by the raw moments µk in the matrix form: 

      (17) 

where the nth raw moment µn of xi, n={1,2,…,2k-1} can be obtained from either the data set or PDF of xi by: 

       (18) 

where Nd is the size of the data set; xi,j  is the jth sample point of xi; r(xi) is the PDF of xi.  
As a result, all coefficients c(k) 
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in (17) is not singular. This condition is equivalent to two constraints: the number of data with unique values Nu is 
larger than k, and the moments up to (2k-1)th order exists and is finite (see proof in Appendix A). For the former 
constraint, Nu discussed in this paper, such as the measurement of power injections of RES, is usually at least more 
than dozens, while the maximum polynomial order d of the proposed method is generally within 5. For the latter one, 
all moments are always existed and finite if every sample in data sets is finite. Hence for a limited order d, the 
measurement data set of xi always satisfies the conditions above. Note that (12) is an intermediate process needed to 
calculate the coefficients of the univariate polynomials and it is finally transformed into (17) which is the actual 
equation that we use to derive the polynomial coefficients. The number of random variables does not affect the 
complexity of process when constructing the basis, since we construct the optimal orthogonal polynomial basis for a 
single random variable and repeat this process to all random variables.  

To utilize the important property of PCE (7), we further transform one-dimensional form of (7) into a moment-
based form by combining (10) and PDF form of (18): 

      (19) 

where E[×]is the expectation operator. From (17) to (19), it is observed that for a certain expansion order d, only the 
first 2d moments of xi are required to construct the polynomial basis and obtain the mean and variance of the state 
variables. Also, if the first 2d-1 order moments of two different random variables are the same, they will share the 
same first d order polynomial basis. Furthermore, higher-order moments of x can be obtained using more moments of 
xi, such as first 3d and 4d moments are required for skewness and kurtosis respectively. Multi-dimensional polynomial 
basis can be determined after the one-dimensional basis of each xi is constructed as in (3). The corresponding multi-
dimensional statistical results can be obtained similarly as in (19). 

The biggest difference between aPC and gPC is that the input xi of aPC can have an arbitrary form (including raw 
data), distribution or even only moments, whereas gPC requires the analytic form of PDF. This specific feature makes 
aPC particularly suited for engineering applications. Besides, to perform basis truncation and adaptation handling 
high-dimensional uncertainties in systems with strong nonlinearity, existing techniques, such as the Smolyak adaptive 
sparse algorithm [39], can be conveniently combined with the proposed aPC method. Since the proposed method aims 
to build the polynomial basis in a more precise way and it does not affect the adaptive process to incrementally add 
higher-order terms. 

 

3.3. Selection of Collocation Points  

Compared to MCS, only a small number of simulations are needed by aPC. But, to this aim, the selected collocation 
points should be representative. If the collocation points fail to describe the probabilistic characteristics of xi, the final 
approximation results can be inaccurate. To find representative collocation points, the root method is usually 
implemented in PCM [26]. However, we found in the simulation cases of multi-dimensional random variables, 
although higher-order roots are representative theoretically, the polynomial matrix Hj in (5) might be singular due to 
an invalid combination of roots. This makes (5) unsolvable and requires randomly retrying different root 
combinations. Therefore, it is of great significance to determine suitable collocation samples in the first place.  

The k-means++ clustering method is implemented in the aPC structure to find representative collocation points 
(cluster centroids). In [40], the results of the effect of skewed data distribution on k-means clustering are provided and 
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the intrinsic characterization of the relationships between data distribution and k-means clustering is studied. This 
work helps to build the connection between the centroids of clusters and the data distribution. It is a typical partitional 
clustering technique that is widely implemented in solving multidimensional data sets problems. It attempts to find k 
nonoverlapping clusters and corresponding centroids which are chosen as collocation points in this paper.  

In the k-means++ clustering method, after the first initial centroid is determined randomly from the data set, the 
following initial centroids will be chosen one by one according to the probability P(xi): 

      (20) 

where xiÎℝN is the ith group of samples of all random variables; d(×) is the distance from the sample to the existing 
closest centroid; n is the size of the data sets.  

Then in the following iterations, it aims to minimize the sum of Euclidean distance between each sample and their 
closest cluster centroid: 

       (21) 

where xÎℝN´n is the input data sets of k-means++ clustering method; Tl=SxÎCl(x/nl) is the centroid of the l-th cluster 
Cl; nl is the number of samples in Cl; k is the number of clusters. 

The overall clustering procedure of k-means++ is as follows. First, k, which is predetermined, initial centroids are 
selected according to (20) except for the first one that is chosen randomly. Then all points are assigned to the clusters 
with a minimum distance to the centroid and the collection of points to the same centroid forms a cluster. The centroids 
are updated after every assignment. This procedure is repeated until no point is reassigned. 

After the iteration converges, k cluster centroids are determined. The distribution of data points has a relationship 
with the corresponding centroids which represent the interior characteristics of clusters. So, by setting collocation 
points to cluster centroids, we can avoid the problem of matrix singularity. 

3.4. Decorrelation of Uncertain Inputs 

PCE-based time-domain simulation methods assume that the uncertain input variables are mutually independent. 
The main reason is that in the process of deriving (7) and (19), the joint probability density of multidimensional 
random variables can be decomposed directly to corresponding marginal PDF only when variables are independent. 
A considerable error could be introduced if there are correlations between the inputs. However, the truth is correlations 
are identified in practical engineering, such as power generation of neighboring solar or wind farms and load demands 
in the same region. Thus, this motivates us to conduct research on decorrelation methods. 

There are mainly two ways to solve the problem above, which are both based on joint and marginal probability 
density. The first is to calculate the integral in (7) directly according to the fitted joint probability density. The second 
uses the Copula theory which is an effective approach to transforming correlated uncertain variables into an 
independent space. However, if the form of inputs is data set, the probability density fitting error may negatively 
impact the accuracy, especially when the historical dataset is small. To avoid this problem, we apply the whitening 
transformation technique to directly obtain the decorrelated data from the raw data. 

Whitening transformation is utilized to handle dependent random variables, such as in [41]. It is used as a 
preprocessing step in the proposed aPC structure for its data-driven feature. Assume zÎ ℝN ´Nd is the dataset of random 
variables that has been centered. The covariance matrix S is defined as: 

       (22) 
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We exploit the transposition of the lower triangular matrix LT as a whitening matrix: 

       (23) 

where zd are the decorrelated datasets; L is the lower triangular matrix in the Cholesky decomposition of S-1. 
One of the advantages of combining the whitening transformation technique with the proposed aPC-based structure 

is that the form of whitening transformation results is data set, which can be directly utilized in the following aPC 
process. Besides, instead of explicitly using PDF, whitening transformation can avoid fitting errors.  

3.5. Overall Implementation Procedure 

The overall procedure of the proposed aPC-based polynomial uncertainty quantification method for dynamic 
power systems is summarized in Fig. 1. 

 
Fig. 1. Flowchart of the proposed uncertainty quantification method. 

 

4. Case Studies 

In this section, we apply the proposed aPC-based method in two benchmark power systems. The first case study 
includes two scenarios which are conducted on the modified Western Electricity Coordination Council (WECC) 3-
machine 9-bus system with classical generator models [42]. The first scenario has only one random variable and serves 
to illustrate the features of the aPC method by comparing its accuracy and efficiency with the gPC and MCS methods. 
The second scenario has two linear correlated variables. We focus on the aPC algorithm performance with the 
combination of whitening transformation and k-means++ clustering method. 

The second case study is conducted using real-world measurement data and a larger test system. The network is a 
modified model of the IEEE 69-machine 300-bus system with the detailed 6-order generator model, excitation, and 
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turbine system [42]. Nonlinear correlated photovoltaic (PV), wind generations and random loads are integrated into 
the system. This case demonstrates the robustness of the proposed method when applied to a larger system with various 
sources of uncertainty. Moreover, the second case study also serves to test the performance of the aPC under the 
assumption of nonlinear correlation among measurement data. The largest dimension of random inputs in this paper 
is set to 40 because this paper mainly focuses on the data-driven uncertainty quantification process rather than solving 
high-dimensional problems. The proposed algorithm in this paper can be integrated with any of the several state-of-
the-art sparse PCE schemes to solve high-dimensional uncertainties, e.g., [43], but this is out of the scope of this 
manuscript.  

By setting the results of MCS as the benchmark, the Average Absolute Error (AAE) e can be used as performance 
comparison index: 

       (24) 

where Pi and  are the probabilistic characteristics (mean or standard deviation) of the state variable by using MCS 
and PCE in the ith timestep, respectively; N is the total number of simulation moments. Then, the computational 
burden is divided into preprocessing time tpre, solving procedure time tsol, postprocessing time tpost, as shown in Fig. 1.  

All simulations have been carried out using Matlab R2016b on a laptop with Intel Core i5-10210U (4.2GHz) and 
16GB RAM. The initial power flow results of the time-domain simulations are derived by MATPOWER 7.1 [44] and 
time-domain simulations are carried out based on PSDAT [45]. 

4.1. WECC 9-Bus System  

1) Scenario 1: One Random Variable 
In this first scenario, we assume that a wind farm is added in bus 3 to account for the uncertainty. The data power 

injection of the wind farm during a single day comes from the German Transmission System Operators (GTSO) [46]. 
A three-phase fault occurs at 1 second and is cleared by opening the line 8-9 after 0.1 second. The benchmark is 
obtained based on MCS, using the measurement data of one day that is measured every 15 minutes, a total of 96. Note 
that we have chosen to use a relatively short data set on purpose, in order to test a worst case scenario where the 
availability of raw data is limited, such as the case of online DSA. Simulation results reflect the superiority of aPC 
driven by data and the significant error introduced by gPC due to PDF fitting. 

We observe the trajectories of the rotor angle δ2 and the rotor speed ω2 of generator 2. The orders of expansion for 
both aPC and gPC methods are set from 1 to 3. To avoid the interference of other conditions and only test the 
performance of different orthogonal basis construction processes between the aPC and gPC, the collocation points 
both are calculated based on the root methods [26]. The PDF used in gPC is fitted from the raw data and the orthogonal 
basis is constructed by the Gram-Schmidt orthogonalization method [37]. 

A quantitative AAE comparison of δ2 and ω2 is shown in Table 1, where the mean and standard deviation are 
represented by M. and S.D. The percentage number means the AAE of aPC as a percentage of the AAE of gPC. The 
results show that aPC has better accuracy than gPC in every order. Besides, with the order increase from 1 to 2, the 
accuracy of gPC is even worse, while the improvement of using aPC is significant. This is because for the gPC method, 
a considerable amount of error is introduced in the PDF fitting process which also impacts the precision of the 
orthogonal basis and the collocation points performance. Thus, though the order is increased, the approximation 
accuracy decreases in the end. This indicates that, in this scenario, increasing the order of gPC fails to improve the 
accuracy which poses the limitation of this method.  

The problem above is avoided in the aPC method since it constructs the orthogonal basis purely from the original 
raw data instead of the fitted PDF and chooses collocation points based on accurate orthogonal basis. When the order 
increases to 3, the accuracy of mean of aPC remains almost the same to the second order, while the standard deviation 
can still be improved. This indicates that the upper bound of mean accuracy is reached while the standard deviation 
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still has room for improvement. In contrast, the performance of third order gPC gets worse than that of second order. 
Table 1 reflects the superiority of the proposed data-driven aPC method and at the same time, the significant error 
introduced by gPC due to PDF fitting. 

The computational burden of PCE-based methods is compared with the MCS method in Table 2. Both gPC and 
aPC methods can significantly reduce computational burden while achieving comparable precision. Take the second 
order expansion as an example, only 3 time-domain simulations are required to extract the statistical information of 
the state variables instead of 96 in the MCS. Moreover, aPC can further shorten the time consumption to some extent 
in the preprocessing and postprocessing stage. For preprocessing stage, on the one hand, in the orthogonal basis 
construction process of aPC (17), parallel computing architecture can be deployed while only the serial calculation 
method is applicable to the Gram-Schmidt orthogonalization process of gPC. On the other hand, the integral operation 
of the Gram-Schmidt method is also more time-consuming than the linear equations solving process (17). For 
postprocessing stage, the integral operation of calculating the 2-norm in (7) is more complex than simply substitute 
moment information into (19). 

The Mean, standard deviation error using second order gPC and aPC, and the bounds of aPC with MCS results of 
δ2 and ω2 are plotted in Fig. 2 and Fig. 3 respectively. Fig. 2.a, Fig. 2.b, Fig. 3.a and Fig. 3.b show that the initial 
points approximations of aPC are more accurate meanwhile the error fluctuation ranges are much smaller. Also, the 
maximum approximation error of aPC after the fault is cleared remains relatively stable while that of gPC deteriorates 
considerably. Moreover, the average absolute mean and S.D. error are increased along with time for both PC-based 
methods. The major reason is that a certain distribution of solution is assumed at the initial time, however, this may 
not fulfill the real shape or distribution after a long time which leads to a decrease in accuracy. Several methods are 
proposed to tackle this issue, such as multi-element [47] and time-dependent PC [48]. Besides, it is worth noticing 
that both gPC and aPC have some spikes during the fault. The reason is that if the approximated variables change too 
fast, or even step change occurs in some cases, the performance of both PCE-based methods decreases accordingly 
due to the limited order of expansion. The upper and lower bounds of aPC are given in Fig. 2.c and Fig. 3.c according 
to the 3s rule [27]. These results not only intuitively reflect the uncertainty of the state variables caused by random 
power injection of wind farms but demonstrate the capability and accuracy advantage of aPC to estimate system 
uncertainty intervals, which provides operators with information to figure out how to reduce the system fluctuations. 

 
Table 1 

AAE of the rotor angle and rotor speed in different orders of gPC and aPC 

Method ed2(rad×10-5) ew2(rad/s×10-3) 
M. S.D. M. S.D. 

gPC (d=1) 112.02 288.56 20.18 50.56 
aPC (d=1) 27.57(24.61%) 184.86(64.06%) 5.33(26.41%) 34.83(68.89%) 
gPC (d=2) 182.20 994.72 31.26 169.75 
aPC (d=2) 8.79(4.82%) 20.74(2.09%) 1.41(4.51%) 4.85(2.86%) 
gPC (d=3) 197.20 1389.83 30.25 213.22 
aPC (d=3) 9.07(4.60%) 7.67(0.55%) 1.41(4.66%) 1.30(0.61%) 

 
 

Table 2 
Computational burden of different orders using MCS, gPC and aPC  

Order Method Time Components(s) ttotal(s) tpre tsp tpost 
- MCS - 973.24 0.01 973.25 

1 gPC 1.67 22.14 4.65 28.46(2.92%) 
aPC 0.64 21.55 4.38 26.57(2.73%) 

2 gPC 8.99 32.16 4.79 45.94(4.72%) 
aPC 0.64 33.41 4.91 38.96(4.00%) 

3 gPC 10.76 40.80 4.58 56.14(5.77%) 
aPC 0.96 41.73 4.22 46.91(4.82%) 
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(a) 

 
(b) 
 

 
(c) 

Fig. 2. Mean, standard deviation error of δ2 using second order gPC and aPC methods and bounds using aPC method with MC 
results. (a) Average absolute mean error. (b) Average absolute variance error. (c) The upper and lower bounds of the gPC and 

aPC methods and MCS results. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Mean, standard deviation error of ω2 using second order gPC and aPC methods and bounds using aPC method with MC 
results. (a) Average absolute mean error. (b) Average absolute variance error. (c) The upper and lower bounds of the gPC and 

aPC methods and MCS results. 
 

 
Table 3 

AAE of the rotor angle in different correlation coefficients  

ρ ed1
(rad×10-4) gPC 

aPC 
k-means++ 
clustering Root method 

0.3 M. 198.75 9.68(4.87%) 9.65(4.86%) 
S.D. 54.35 44.79(82.41%) 44.70(82.24%) 

0.6 M. 199.25 9.89(4.96%) 9.85(4.94%) 
S.D. 60.44 40.20(66.51%) 40.24(66.58%) 

0.9 M. 198.12 9.48(4.78%) 9.49(4.79%) 
S.D. 69.81 35.98(51.54%) 35.93(51.47%) 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Mean and standard deviation error of δ1 when ρ=0.6. (a) Average absolute mean error of δ1 using gPC, aPC methods. (b) 
Average absolute standard deviation error of δ1. (c) Mean and error bar of δ1 using aPC method. 

 
2) Scenario 2: Two Correlated Random Variables 
In this scenario, linear correlation among random variables is considered. The power injections of generators 2 and 

3 are assumed to follow the normal distribution with means being the original value and standard deviation being 10% 
of the means. The correlation between them is described using Pearson coefficient ρ. The aPC is combined with 
whitening transformation in this case and the collocation points are calculated by the k-means++ clustering method. 
The expansion orders of aPC and gPC methods are set to 3. The fault settings are the same as for scenario 1 and the 
benchmark is obtained based on MCS with 1000 samples. Due to the length limitation, only the results of rotor angle 
δ1 of generator 1 are discussed below. 

The detailed AAE results of δ1, including the relative AAE of aPC compared to gPC, are presented in Table 3. The 
comparison of k-means++ clustering method and traditional root method is also presented in the table. First, the 
proposed aPC method also has better accuracy than the traditional gPC method. Also, note that with the growth of the 
Pearson coefficients, the improvement of aPC becomes more remarkable. This is because for gPC, the errors caused 
by correlation in (7) become larger, which makes the decorrelation process of greater importance. Moreover, the 
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reasons for the difference between Table 1 and 3 are, on the one hand, the input data of scenario 1 comes from the 
German Transmission System Operators which leads to larger distribution parameter fitting error. So the performance 
of aPC in scenario 1 is much better than that of gPC. On the other hand, in scenario 2, the distribution fitting error 
using gPC is relatively small, or even close to that of aPC, because the data is generated from normal distribution 
rather than practical measured data. The majority of errors for both methods are introduced by the increased number 
of random variables. In addition, gPC is also affected by errors caused by linear correlation. By comparing the 
collocation point selection methods, it is observed that the accuracy is very close. The main advantage of k-means++ 
clustering method is to avoid the problem of matrix singularity of the polynomial matrix Hj in (5) when using root 
method. Using different root combinations could be time-consuming especially when the dimension of random 
variables and the expansion order are high. 

The mean and standard deviation error of δ1 when ρ=0.6 are plotted in Fig. 4.a and Fig. 4.b respectively. Fig. 4.a 
and Fig. 4.b show that aPC has better accuracy than gPC during the entire simulation period. Also, the effectiveness 
of whitening transformation is presented visually. Besides, it is observed again that as time increases, the average 
absolute mean and S.D. error become larger. The reason is the same as analyzed in Section 4.1. The AAE can be 
quantitatively verified in Table 3. The mean and error bar of δ1 using the aPC method are plotted in red and grey 
respectively as shown in Fig. 4.c, which can provide operators with useful information to prevent the system from 
becoming unstable. 
 

 
Fig. 5. Cumulative probability of δ1 using MCS, gPC and aPC methods when ρ=0.6. 

 
Fig. 5 shows the cumulative probability of δ1 at t=7s. The density of MCS is directly obtained from the statistics 

of the time-domain simulation results while the cumulative probability of PCE-based methods is derived by 
substituting the original raw data into the established surrogate models (2). The results in Fig. 5 show that the curve 
of aPC algorithm is closer to the reference MCS result which indicates the original distribution is reconstructed better 
than gPC. 

4.2. IEEE 300-Bus System  

This second case study illustrates the adaptation of the proposed method in a larger system and research the 
performance of different types of nonlinear correlated uncertain inputs. To this aim we consider a modified model of 
the IEEE 300-bus system [49]. The practical data of PVs and wind farms with nonlinear correlation obtained from the 
National Renewable Energy Laboratory (NREL) [50] and GTSO is utilized in this case. The raw data is measured 
every 15 minutes for one month and the data size is 2976. Two PVs and two wind farms are connected to buses 20, 
76, 124, and 125 to model the real volatile generation. 2 to 18 pairs of correlated Gaussian random loads are added 
and ρ is set to 0.4, respectively. The means of the active power consumption of the random loads are set equal to the 
original value and the standard deviations are σ = 3% of the means. The expansion order of PCE-based methods is set 
from 1 to 3, respectively. Hyperbolic truncation scheme is implemented to mitigate the curse of dimensionality. Since 
this algorithm is not a contribution of this paper, we do not introduce it further to save space. Details of the scheme 
can be found in [43]. All cross terms are excluded by adjusting the parameters of hyperbolic truncation scheme which 
effectively reduces the required number of simulations. For example, the polynomial terms of 3rd order PC-based 
methods decrease from 11480 to 118 which means only 118 simulations are required. Meanwhile, 2976 simulations 
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are performed for MCS. Admittedly, the accuracy of PC-based methods is decreased to some extent after truncation. 
However, this truncated scheme is implemented in both gPC and aPC methods which provides us a rigorous 
comparison of the differences in accuracy between them. The total simulation time is set to 10 s. A three-phase fault 
is imposed on bus 4 at t=1s and lasts for 0.1s by tripping bus 4.  

Table 4 and Table 5 show the average absolute mean, standard deviation error comparison of the rotor angle δ3 
and rotor speed ω3 of generator 3. The performance of gPC and aPC using different expansion order d in systems 
containing different numbers of random inputs N are tested. We have analyzed the overall performance on all machines 
and the performance across all machines is similar, thus only δ3 and ω3 are presented. The performance of aPC is still 
better than that of gPC overall. Moreover, with the order increase from 1 to 3, the accuracy of gPC is even worse, 
while the improvement of using aPC is significant or its accuracy is stable. The main reason is the inaccuracy of 
polynomial bases caused by the parameter fitting error of PDF and the correlation of inputs. The results once again 
demonstrate the importance of input decorrelation and data-driven construction of accurate polynomial bases in the 
aPC algorithm. 

As the N is increased from 8 to 40, we can observe that the AAE of gPC decreases rapidly, while that of aPC 
remains stable. This phenomenon can be attributed to the error of the gPC basis accumulates as the number of random 
variables increases. In contrast, this problem is avoided in aPC due to its data-driven calculation of the optimal 
orthogonal basis. Moreover, the adverse influence of correlation is mitigated by Whitening transformation.  

Compared with the results of the 9-bus system, the accuracy is decreased, which is the result of a variety of reasons, 
mainly including the increase in the number of random variables, the introduction of nonlinear correlation and the 
increase of the nonlinearity of the system model. Admittedly, the best way to tackle nonlinear correlation is by utilizing 
nonlinear decorrelation methods, such as Copula-based methods. This case is only to provide an alternative method if 
the copula-based method has an excessive approximation error caused by fitting the PDF of the raw data. Our future 
work includes investigating how to perform non-linear decorrelation directly based on the raw data. 
 

Table 4 
Average absolute mean error of the rotor angle and rotor speed  

Method ed3(rad×10-4) ew3(rad/s×10-3) 
N=8 N=24 N=40 N=8 N=24 N=40 

gPC (d=1) 447.35 498.50 540.25 18.11 21.58 26.84 
aPC (d=1) 7.99 (1.79%) 7.81 (1.57%) 8.24 (1.53%) 2.02 (11.15%) 2.15 (9.96%) 2.28 (8.49%) 
gPC (d=2) 465.83 525.49 590.42 23.09 22.07 30.63 
aPC (d=2) 8.21 (1.76%) 7.73 (1.47%) 8.07 (1.37%) 2.55 (11.04%) 2.37 (10.74%) 2.47 (8.06%) 
gPC (d=3) 470.15 546.27 608.42 36.56 26.94 38.89 
aPC (d=3) 8.20 (1.74%) 7.80 (1.43%) 8.11 (1.33%) 2.35 (6.43%) 2.27 (8.43%) 2.43 (6.25%) 

 
Table 5 

Average absolute standard deviation error of the rotor angle and rotor speed  

Method ed3(rad×10-3) ew3(rad/s×10-3) 
N=8 N=24 N=40 N=8 N=24 N=40 

gPC (d=1) 3.54 7.90 9.74 6.63 14.24 25.51 
aPC (d=1) 2.42 (68.36%) 4.95 (62.66%) 7.25 (74.44%) 6.05 (91.25%) 11.20 (78.65%) 14.80 (58.02%) 
gPC (d=2) 6.59 12.73 17.32 10.57 21.85 39.19 
aPC (d=2) 2.16 (32.78%) 3.34 (26.24%) 6.08 (35.10%) 5.50 (52.03%) 8.32 (38.08%) 11.08 (28.27%) 
gPC (d=3) 11.24 20.58 46.85 17.36 37.87 56.52 
aPC (d=3) 1.05 (9.34%) 3.96 (19.24%) 5.59 (11.93%) 3.29 (18.95%) 4.07 (10.75%) 5.73 (10.14%) 
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Fig. 6. Computational burden comparison of gPC and aPC 

 

 
Fig. 6 shows the total computational burden ttotal using different expansion orders d of gPC and aPC under different 

random variable numbers N. Since the same truncation scheme is implemented in both gPC and aPC, for a given N, 
the required number of simulations is same. It means the time consumption of solving procedure tsp of both methods 
is very close. The difference between the two methods is mainly from the time consumption of preprocessing tpre and 
postprocessing tpost. The reason why aPC is more timesaving than gPC in these two stages has been analyzed in 
Scenario 1 of Section 4.1. Besides, as d increases, the advantage of aPC in efficiency becomes more significant. 
Moreover, the growth rate of ttotal is linear because the number of bases, required simulations, coefficients grow 
linearly with N under the setting of the truncation scheme.  

The detailed computational burden when N=40 and d=3 is shown in Table 6. Results indicate that the PCE-based 
method can effectively improve efficiency compared to MCS. It is observed that aPC saves more time in the 
preprocessing and postprocessing stages than gPC. The computational burden difference becomes larger in this case 
compared to Scenario 1 in Section 4.1 due to the increased number of random variables and the increased simulation 
time. Moreover, the speed difference of the postprocessing stage is mainly because of the time-consuming integral 
operation of gPC in (7), while only several moments are needed to achieve the same target for aPC-based method 
(19). Note that since tpost is related linearly to the number of output variables to be studied, the efficiency of the PCE-
based method is directly influenced. The advantage of the proposed method in computational efficiency is found in 
cases where limited number of outputs instead of complete system information is required. Note that when N=40 and 
d=3, the number of collocation points combinations of the traditional root method reaches 404=2,560,000. Since there 
is no theoretical basis for selecting collocation points that can avoid singularity, a large number of combination 
attempts could be required while k-means++ method can effectively avoid this issue. 
 

Table 6 
Computational burden of MCS, gPC, and aPC  

Method Time Components(s) ttotal(s) tpre tsp tpost 
MCS - 35307.2 0.5 35307.7  
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gPC 408.2 1480.2 300.3 2188.7 (6.2%) 
aPC 47.5 1478.7 69.6 1595.8 (4.5%) 

 
 

 
(a) 

 
(b) 

Fig.7. Mean and standard deviation of δ3. (a) Mean of δ3 using gPC, aPC, MCS methods. (b) Standard deviation of δ1 using gPC, 
aPC, MCS methods. 

 
Figure 7 shows the estimated mean and standard deviation of gPC, aPC and MCs when N=40 and d=3. The results 

in Fig. 7 show that the curves of aPC algorithm is closer to the reference MCS result which indicates the probabilistic 
features are more accurate than gPC. 

5. Conclusions 

The paper proposes an aPC-based framework combined with whitening transformation and k-means++ clustering 
to evaluate the propagation of uncertainties in dynamic power systems caused by RES. The proposed method is fully 
data-driven and free from any prior distribution assumptions or knowledge of the random inputs. The calculation 
speed is faster than the traditional gPC method because the integral operation in the preprocessing and postprocessing 
stages is effectively replaced by the moments of raw data. Moreover, whitening transformation is integrated to deal 
with the linear correlation which is very suitable to be combined with the aPC-based structure because the output data 
of whitening transformation can be directly utilized by aPC. It also has the capability to dealing with nonlinear 
correlation. In addition, the k-means++ clustering method is adopted to find the presentative collocation points which 
can effectively avoid the problem of matrix singularity when attempting different combinations of roots.  

Future work will focus on exploring the data-driven nonlinear decorrelation method and the implementation of 
the PCE-based method in stochastic time-varying cases. 

 

Appendix A 

The moments’ matrix M in Eq. (17) can be decomposed as: 
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where 

; ; ; ; . 

Since matrix D is invertible, based on the determinant rule for block matrix, the determinant of M can be 
transformed as follows: 

 

From the above, we know that  and , so: 
 

The properties of matrix H are presented in [38] that |H|=0 if and only if the distribution of random variable x has 
only k or fewer points of support, where k is the rank of H. The points of support of a probability distribution refer to 
the values for which the PDF or probability mass function (PMF) is nonzero. To discrete data set, it means the number 
of different values. This condition is equivalent to that |H|¹0 if and only if the number of support points of x is larger 
than k and all moments up to order 2k-1 are finite. 
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