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Abstract—Accurate local bus frequency is essential for power
system frequency regulation provided by distributed energy
sources, flexible loads and among others. This paper proposes
a robust frequency divider (RFD) for online bus frequency
estimation. Our RFD is independent of the load models, and
the knowledge of swing equation parameters, transmission line
parameters and local PMU measurements at each generator
terminal bus is sufficient. In addition, it is able to handle several
types of data quality issues, such as measurement noise, gross
measurement errors, cyber attacks and measurement losses.
Furthermore, the proposed RFD contains the decentralized
estimation of local generator rotor speeds and the centralized
bus frequency estimation, which resembles the structural of the
decentralized/hierarchical control scheme. This enables RFD for
very large-scale system applications. Specifically, we decouple
each generator from the rest of the system by treating metered
real power injection as inputs and the frequency measure-
ments provided by PMU as outputs; then a robust unscented
Kalman filter-based dynamic state estimator is proposed for
local generator rotor speed estimation; finally, these rotor speeds
are transmitted to control center for bus frequency estimation.
Numerical results carried out on the IEEE 39-bus and 145-
bus systems demonstrate the effectiveness and robustness of the
proposed method.
Index Terms—Frequency estimation, frequency control, robust

statistics, decentralized estimation, dynamic state estimation,
unscented Kalman filter, power system dynamics and stability.

I. INTRODUCTION

W ITH the increasing penetration of renewable energy-
based generations, the total inertia of the synchronous

power system is reduced significantly. As a result, the tradi-
tional capacity-based requirements for primary reserve defini-
tions may not be able to satisfy the frequency RoCoF and nadir
limits [1], [2]. To tackle this potential frequency instability is-
sue, it is expected by the transmission system operators (TSOs)
that the wind farms [3], flexible loads [5], and energy storage
devices [6] would provide frequency regulations. However, to
enable effective frequency regulations, reliable and accurate
knowledge of the local bus frequency is a prerequisite.
In the literature, the numerical derivative of the voltage

phase angle provided by Phasor Measurement Unit (PMU)
through a washout filter is used to define the local bus
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frequency [7], [8]. However, as shown by Radman et al. [9],
it may produce physically implausible spikes in frequency
due to the numerical derivatives and consequently may exhibit
instabilities if controls are taken based on them. An alternative
way to obtain local bus frequency is through the phase-
locked loop (PLL) technique [10]. But it may be unreliable in
presence of large step-input speed changes, and has problems
in presence of harmonics, unbalance, etc. Furthermore, only
a few load buses/substations have PMUs or PLLs installed,
which may prevent the system from taking full advantages
of local frequency controls. Finally, measurements provided
by PMUs and PLLs are always subject to noise or even gross
errors, communication losses, etc [4]. For example, it is shown
in [5] that the measurement noise affects the performance
of the frequency regulator significantly, not to mention the
gross errors, measurement losses, etc. To address these issues,
a model dependent analytical expression of bus frequency
is proposed in [11] assuming comprehensive and accurate
models of the system. Milano and Ortega [12] improved
that approach and proposed a transient stability simulation-
based frequency divider. The main idea underlying this method
is to solve a steady-state boundary value problem, where
the boundary conditions are given by synchronous generator
rotor speeds. However, both methods assume accurate power
system dynamic models for time-domain simulations, which
is difficult to achieve in practice. In addition, the time-domain
simulations of large-scale power systems are computational
demanding, which may prevent them for the online control
applications.
This paper proposes a robust frequency divider (RFD) for

online bus frequency estimation. Our RFD is not depen-
dent on load models, and the knowledge of swing equation
parameters, transmission system line parameters and local
PMU measurements is sufficient. In addition, it is able to
filter out measurement noise, suppress gross measurement
errors, handle cyber attacks as well as measurement losses.
To develop the proposed RFD, it is observed that to obtain an
accurate estimation of bus frequency, accurate generator rotor
speeds are required. In the meantime, complicated generator
and load models should be avoided. To this end, we propose
to divide RFD into two subproblems, namely the decentralized
estimation of local generator rotor speed using local measure-
ments and the centralized bus frequency estimation. To address
the first problem, we decouple each generator from the rest of
the power system by treating metered real power injection as
model inputs and the frequency measurements provided by
PMU, local meter devices or Frequency monitoring Network
devices [13] as outputs. As a result, only the swing equa-
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tion is required for rotor speed estimation and no detailed
generator model is assumed. Since the local measurements
can be subject to data quality issue when implementing an
estimator, a robust unscented Kalman filter-based dynamic
state estimator is proposed. Next, the local estimates are
transmitted to the control center for bus frequency estimations,
yielding two benefits: 1) the requirement of communication
bandwidth is decreased notably as only estimated rotor speeds
are communicated instead of voltage and current phasors; 2)
the wide-area generator rotor angles are available for operator
to achieve better situational awareness and carry out other
applications, such as oscillatory modes monitoring, rotor angle
stability analysis, etc. Last but not the least, thanks to the
decentralized and centralized estimation scheme, the proposed
method is suitable for designing controllers of very large-scale
power systems.
The remainder of the paper is organized as follows. Section

II presents the problem formulation. Section III describes the
proposed RFD in detail and Section IV shows and analyzes
the simulation results. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION
In this section, the analytical relationship between bus fre-

quency and generator rotor speeds will be presented first; then
the limitations of this approach will be discussed thoroughly,
and finally the problem statement will be declared.
A. Analytical Relationship between Bus Frequency and Gen-
erator Rotor Speeds
When a disturbance occurs, such as transmission line faults,

load shedding or generator tripping, power mismatch appears
between the mechanical torque and electrical power at the
generator terminal buses. As a consequence, the generator
rotor speeds will deviate from their nominal values. To re-
synchronize generator with the rest of the power system,
an increase or a decrease in the rotor speed is actuated,
which causes rotor angle oscillations as well. Due to such
oscillations, the voltage phase angles of the buses that are
adjacent to generators will encounter changes, which in turn
causes a power mismatch. In this way, the electro-mechanical
oscillations will be propagated throughout the entire power
system with limited speed. Since we are interested in electro-
mechanical oscillations and the propagation speed of such
oscillations is much lower than that of the wave, the transient
effects of wave propagation are therefore neglected. Based on
the analysis above, it is clear that the spatial variations of the
system frequency are characterized by synchronous generator
rotor speeds. Those frequency variations at each bus of the
system are of vital importance for designing local controllers
to enhance the frequency regulation capability of a power
system with high penetration renewable energy integrations.
Note that electro-mechanical oscillations can be charac-

terized by the magnitude and phase angle modulations of
voltages and currents as well since they are corresponding
to the movement of rotors of electric machines around the
synchronous speed [14], [15]. Thus, to estimate bus frequency
of a transmission system, we first need to analyze the rela-
tionship of the voltage or current phasors between generators

and system buses. This relationship can be expressed by the
balanced current injection formula shown as follows:

[
IG
IB

]
=

[
YGG YGB

YBG YBB + YB0

] [
VG

VB

]
, (1)

where IG are generator current injections; VG are generator
internal electromotive forces (emfs); IB and VB are current
and voltage injections of the network buses, respectively; YBB

is the power network admittance matrix; YGG, YGB and YBG

are admittance matrices calculated by including the internal
impedances of the synchronous generators; YB0 is a diagonal
matrix, which takes into account the internal impedances of
synchronous generators at the generator buses. Since the load
current injections are negligible compared with that of the
synchronous generators [12], [18], (1) can be rewritten as:

[
IG
0

]
=

[
YGG YGB

YBG YBB + YB0

] [
VG

VB

]
. (2)

By taking simple algebraic operations on the second row of
(2), we can derive the relationship between bus voltage vector
VB and the emfs of generators as follows:

VB = −(YBB + YB0 )
−1YBGVG = DVG. (3)

Taking time derivatives on both sides of (3) in rotating
reference frame, i.e., dq frame, we get

dVB

dt
+ jω0VB = D · dVG

dt
+ jω0DVG, (4)

where ω0 is the nominal rotor speed. For more details of
deriving (4), please see [12]. Define ∆ωB = ωB − ω0 ,
∆ωG = ωG − ω0 , the analytical relationship between bus
frequency and generator rotor speeds can be derived from ( 4),
which is expressed as follows [12]:

ωB = ω0 +D (ωG − ω0 ) . (5)

It can be observed from (5) that the bus frequency is
correlated with each synchronous generator in the system, but
the degree of participation of each generator on bus frequency
is determined by the transmission parameters. To speed up the
calculation of bus frequency from (5) without a relevant loss
of accuracy, the conductances of transmission lines utilized to
calculate D can be neglected [12].

B. Limitations and Problem Statement
When implementing (5) to estimate bus frequency, there are

two possible ways: i) the dynamic simulation based-approach
and ii) the measurement-based approach. In the former ap-
proach, the transient stability program is used to obtain the
rotor speed of each generator, followed by the calculations of
the bus frequencies through (5). However, to obtain good time-
domain simulation results, accurate and detailed generator and
load models are required, which may be difficult to achieve
in practice. In addition, the time-domain simulations of large-
scale power systems are computational demanding, which may
not be suitable for the online control applications. By contrast,
the measurement-based approach does not have such issues,
but the metered generator rotor speeds and frequencies by
PMUs or Frequency monitoring Network devices are assumed
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to be of high quality. However, this assumption may not hold
true for practical power systems as the PMU measurements
are usually subject to noise or even impulsive noise, gross
errors, cyber attacks, communication losses, etc. Under those
conditions, this approach will produce significantly biased
results and subsequently the control actions based on them
may make the system even worse. Furthermore, it should
be noted that the frequency of each bus is correlated with
most generators, thus if just one rotor speed measurement is
corrupted, its error may propagate to many other bus frequency
estimations. It is thus indispensable to make sure that every
generator rotor speed is of good accuracy.
Problem statement: given a limited number of PMUs in-

stalled at the terminal bus of each generator, a robust frequency
divider is developed to address the data quality issues of PMU
measurements; in the meantime, it should be model indepen-
dent so as to mitigate the strong assumptions on the generator
and load models, and finally, it should be fast to calculate
and suitable for large-scale system online control applications.
Note that in this paper, the rotor speed and frequency of each
generator at its terminal bus are assumed to be monitored by
PMUs. This is a reasonable assumption due to several reasons:
1) online monitoring of generators plays a major role in power
system operation and control, thus it is given a high priority
for PMU placement according to the NERC PMU placement
standard [16]; 2) it is required by NERC standard [17] to have
PMUs installed at the point of interconnection for power plant
model validation and verification.
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Fig. 1: Proposed decentralized-centralized bus frequency
estimation framework.

III. PROPOSED ROBUST FREQUENCY DIVIDER
By looking at (5), one may easily come up with the idea

that this equation can be formulated as a regression problem,
where the generator rotor speeds are measurements provided
by PMUs while the frequency of each bus is the unknown
state vector to be estimated. However, since the number of
rows of the matrix D is larger than that of the columns,
(5) cannot be treated as an estimation problem. Therefore,
alternative approaches should be developed.
Note that to obtain an accurate estimation of bus frequency,

accurate generator rotor speeds are required. Thus, if measure-
ment quality issues can be addressed locally at the generator

bus through a local robust estimator, we are able to obtain
accurate bus frequency estimates. To this end, we propose a
decentralized-centralized bus frequency estimation framework
shown in Fig. 1. Particularly, we first perform the robust
unscented Kalman filter-based dynamic state estimator at the
local generator substation or phasor data concentrator (PDC)
level by using the proposed model decoupling approach; then
these local estimates (generator rotor speeds and angles) are
transmitted to control center for bus frequency estimation
through (5). Note that if the decentralized dynamic state
estimation at each generator substation is costly, the data of
those generators associated with PMU measurements will be
transmitted to the PDC or regional system operating center
for decentralized estimation. After that, local controls can be
initiated if required, otherwise, they will be further commu-
nicated to the control center for bus frequency estimation
and coordinated control. In the following subsections, we will
elaborate on each of the block.

A. Generator Model Decoupling Approach
Due to power unbalance and other control actions, the rotor

of the generator will accelerate or deaccelerate. Those electro-
mechanical dynamics can be captured by the swing equations
shown as follows [18]:

dδ

dt
= ω − ω0 , (6)

2H

ω0

dω

dt
= TM − Pe −Dp(ω − ω0 ), (7)

where δ is the rotor angle; H is the generator inertia constant;
TM and Pe are the generator mechanical power and electrical
power outputs, respectively; it is assumed that TM remains the
same value as that in steady-state condition during transient
process, which is reasonable as the time constant of the
governor is very large; Dp is the generator damping constant.
Note that the generator first swing dynamics are affected by
Pe significantly. In other words, the generator swing equation
is coupled with its dq windings and the rest of the system
through Pe. For example, in the two axis generator model,
Pe = E′

dId + E′
qIq + (X ′

q −X ′
d)IdIq , where E ′

d and E ′
q are

the d-axis and q-axis transient voltages, respectively; X ′
d and

X ′
q are generator d-axis and q-axis transient reactance, respec-

tively; Id and Iq are the d and q axis currents, respectively.
For more detailed model, the expression is different.
Motivated by the aforementioned analysis, if Pe is measured

and taken as the model input while the measured frequency
by PMUs is treated as outputs, the swing equation can be
decoupled from the rest of the system. Furthermore, no infor-
mation of the d and q damper windings is required. By doing
that, no complex generator model is assumed. The physical
mean of this decoupling approach can be explained as follows:
when there is a disturbance at one point of the power system,
synchronous generators will response to it through actions
on the rotors; these responses reveal themselves in their real
power injections and frequency. In other words, the generator
swing dynamics are coupled with the rest of the system at the
point of connection, and its interactions with the rest of the
system are through the real power injections and frequency. If
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real power injections and frequency are measured by a PMU,
its swing responses to the disturbance are captured completely
and no other system information is required.

B. Proposed Robust Decentralized Dynamic State Estimator

The model decoupling approach enables a generator swing
equation to be decoupled from the rest of the system model,
which in turn allows us to rely only on local measurements to
estimate the rotor speed and angle of a generator. The discrete-
time state representation of the ith synchronous generator is

xi
k = fi

(
xi
k−1,u

i
k

)
+wi

k, (8)
zi
k = hi

(
xi
k,u

i
k

)
+ vi

k, (9)

where xi
k is the state vector, including the generator rotor

speed ωi and rotor angle δi; zi
k is the measurement vector that

contains rotor speed zk1 provided by PMUs and frequency zk2

by local metering devices or frequency monitoring network
devices [13]; fi(·) represents the discrete-time form of (6)
and (7) while zi

k = [zk1 zk2 ]T and zk1 = ωi + vk1,
zk2 = (1+∆ωi)f0 +vk2 ; f0 is the nominal system frequency;
hi(·) = H i

kx
i
k andH i

k is a constant matrix that can be derived
directly from the measurement equations of zk1 and zk2 ; wi

k
and vi

k = [vk1 vk2 ]T are the process and observation noise,
respectively; they are assumed to be Gaussian with zero mean
and covariance matrices Qi

k and Ri
k, respectively; ui

k is the
input that contains the real power injection of the ith generator.
Based on the derived discrete-time state space equations

(8) and (9), the dynamic state estimator (DSE) can be used
to estimate the generator rotor speed and angle using local
measurements. In this paper, the UKF is chosen as the basic
DSE as it achieves a more balanced performance between
computational efficiency and ability to cope with strong system
nonlinearities than the extended Kalman filter, or the particle
filter [19]. However, UKF has been proved to be sensitive
to gross errors, cyber attacks and loss of measurements, etc
[20]. To handle these issues, a robust Generalized Maximum-
likelihood-type UKF (GM-UKF) is proposed. It consists of
four major steps, namely a batch-mode regression form step, a
robust pre-whitening step, a robust regression state estimation
step, and a robust error covariance matrix updating step. In the
following subsections, we will discuss them in detail. Note that
the index i is neglected for simplicity but without the loss of
generality.
1) Derive Batch-Mode Regression Model: Given a state

estimate at time step k-1, x̂k−1|k−1 ∈ Rn× 1, having a
covariance matrix given by P xx

k−1|k−1, its statistics are captured
by 2n weighted sigma points defined as [19]

χi
k−1|k−1

= x̂k−1|k−1 ±
(√

nP xx
k−1|k−1

)

i
, (10)

with weights wi = 1
2n , i = 1, ..., 2n, where n is the number

state variables for each generator. Then, each sigma point is
propagated through the nonlinear system process model ( 8),
yielding a set of transformed samples expressed as

χi
k|k−1

= f
(
χi

k−1|k−1

)
. (11)

Next, the predicted sample mean and sample covariance
matrix of the state vector are calculated by

x̂k|k−1 =
2n∑

i=1

wiχ
i
k|k−1

, (12)

P xx
k|k−1 =

2n∑

i=1

wi(χ
i
k|k−1

− x̂k|k−1)(χ
i
k|k−1

− x̂k|k−1)
T +Qk.

(13)
We define x̂k|k−1 = xk −∆k, where xk is the true state

vector; ∆k is the prediction error and E
[
∆k∆T

k

]
= P xx

k|k−1 .
By processing the predictions and observations simultane-
ously, we have the following batch-mode regression form:

[
zk

x̂k|k−1

]
=

[
Hk

I

]
xk +

[
vk

−∆k

]
(14)

which can be rewritten in a compact form

z̃k = H̃kxk + ẽk, (15)

and the error covariance matrix is

Wk = E
[
ẽkẽ

T
k

]
=

[
Rk 0
0 P xx

k|k−1

]
= SkS

T
k , (16)

where I is an identity matrix; Sk is calculated by the Cholesky
decomposition technique.
2) Perform Robust Pre-whitening: Before carrying out a

robust regression, the state prediction errors of the batch-mode
regression form need to be uncorrelated. This can be done by
pre-multiplying S−1

k on both sides of (15), yielding

S−1
k z̃k = S−1

k H̃kxk + S−1
k ẽk, (17)

which can be further organized to the compact form

yk = Akxk + ξk, (18)

where E[ξkξkT ] = I. However, if outliers occur, the use of
S−1
k for prewhitening will cause negative smearing effect. To
handle this issue, we first detect and downweight the outliers
by means of weights calculated using the projection statistics
(PS) [21] and a statical test applied to them. Those weights
contribute to the robust prewhitening and their functionals will
be shown later in the objective function. Specifically, we apply
the PS to a 2-dimensional matrix Z that contains serially
correlated samples of the innovations and of the predicted state
variables. Formally, we have

Z =

[
zk−1 −Hkx̂k−1|k−2 zk −Hkx̂k|k−1

x̂k−1|k−2 x̂k|k−1

]
, (19)

where zk−1 −Hkx̂k−1|k−2 and zk −Hkx̂k|k−1 are the in-
novation vectors while x̂k−1|k−2 and x̂k|k−1 are the predicted
state vectors at time instants k-1 and k, respectively. The PS
values of the predictions and of the innovations are separately
calculated because the values taken by the former and the latter
are centered around different points. The implementation of PS
can be found in [21].
Once the PS values are calculated, they are compared to a

threshold to identify outliers. According to our previous work
[20], [21], Z can be shown to follow a bivariate Gaussian
probability distribution and the calculated PS values using Z
follow a chi-square distribution with degree of freedom 2. As
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a result, the outliers can be flagged if their PS values satisfy
PSi > χ2

2 ,0 .975 at a significance level 97.5% in the statistical
test, and are further downweighted via [22]

ϖi = min
(
1, d2

/
PS2

i

)
, (20)

where the parameter d is set as 1.5 to yield good statistical
efficiency at Gaussian distribution.
Remark: Except for the occurrence of outliers in rotor

speed measurements, outliers may occur in the measured
real power injections as well, and consequently, yielding
incorrect predicted states, called innovation outliers [23]. In
such condition, the predicted state corresponding to incorrect
real power injection will be flagged as outliers. Since the local
measurement redundancy is not high, we will not downweight
it directly, instead we propose to replace the current real
power injection by its previous value and obtain the new state
predictions. By doing that, we can achieve a better statistical
efficiency.
3) Carry out Robust Regression: To address the data quality

issues, we develop a robust GM-estimator that minimizes the
following objective function:

J (xk) =
l∑

i=1

ϖ2
i ρ (rSi) , (21)

where l = m+n and m is the number of measurements; ϖ i is
calculated by (20); rSi = ri/sϖi is the standardized residual;
ri = yi−aT

i x̂ is the residual, where aT
i is the ith row vector

of the matrix Ak; s = 1.4826 · bm·mediani |ri| is the robust
scale estimate; bm is a correction factor; ρ(·) is the convex
Huber-ρ function, that is

ρ (rSi) =

{ 1
2 r

2
Si
, for |rSi | < λ

λ |rSi |− λ2
/
2, elsewhere

, (22)

where the parameter λ is typically chosen to be between 1.5
and 3 to achieve high statistical efficiency in the literature [24].
To minimize (21), the following necessary condition must

be satisfied

∂J (xk)

∂xk
=

l∑

i=1

−ϖiai

s
ψ (rSi) = 0, (23)

where ψ (rSi) = ∂ρ (rSi)/∂rSi is the so-called ψ-function. By
dividing and multiplying the standardized residual rSi to both
sides of (23) and putting it in a matrix form, we get

AT
k Λ (yk −Akxk) = 0, (24)

where Λ =diag(q (rSi)) and q (rSi) = ψ (rSi)/rSi . By using
the IRLS algorithm [21], the state estimates at the j iteration
can be updated using

∆x̂(j+1)
k|k =

(
AT

k Λ
(j)Ak

)−1
AT

k Λ
(j)yk, (25)

where ∆x̂(j+1)
k|k = x̂(j+1)

k|k − x̂(j)
k|k . The algorithm converges

when
∥∥∥∆x̂(j+1)

k|k

∥∥∥
∞

≤ 10−2 .

4) Update Error Covariance Matrix: After the convergence
of the algorithm, the estimation error covariance matrix P xx

k|k
of the GM-UKF needs to be updated so that the state prediction
at the next time sample can be performed. Following the work
from [20], we derive the estimation error covariance matrix of
our GM-UKF as

P xx
k|k =

EF [ψ2(rSi)]
{EF [ψ′(rSi)]}2

(
AT

kAk

)−1(
AT

k QϖAk

)(
AT

kAk

)−1

(26)
where Qϖ = diag

(
ϖ2

i

)
.

Remark: the proposed robust DSE is supposed to be per-
formed for each generator substation. It can be implemented
at the control center as well if all the generator data and
PMU measurements are transmitted from local substations to
it. However, there exist several concerns by doing so, such
as increased communication burden that is discussed in the
next subsection and the delayed local control, etc. Indeed, if
all the calculations are performed at the control center while
some local controls are required at this period, the estimated
bus frequency for those local controls can be delayed; by
contrast, our robust DSE is first conducted locally using local
PMU measurements and its estimated rotor speeds and angles
can be used for local controls; in the meantime, they can be
transmitted to control center for bus frequency estimation and
coordinated control. In practice, if it is costly to implement the
decentralized DSE for each generator substation, we can do it
at the local phasor data concentrator (PDC) level or regional
system level. This can still save a lot of communication burden
and enable the timely local control actions compared with the
fully centralized strategy.

C. Bus Frequency Estimation
When the rotor speed and rotor angle of each generator are

obtained, they need to be communicated to the control center
for bus frequency estimation. Depending on the applications,
there are two ways to communicate the estimation results.

• If the control center is only interested in monitoring
and regulating the system frequency, the rotor speed
of each generator is transmitted and the bus frequency
is estimated using (5). Compared with the conventional
strategy, that is, all the measured voltage magnitudes and
angles, current magnitudes and angles, and frequency by
PMUs are communicated, the communication burden of
our proposed approach is only 20% of it;

• If the control center are interested in both frequency
and rotor angle stability monitoring and control, rotor
speed and angle estimates are communicated. In this
case, it only requires 40% communication burden of the
conventional strategy.

Note that the total computing time of the proposed approach
consists of two parts: the decentralized DSE and the projection
of the rotor speed to bus frequency through (5). Since each
robust DSE is performed locally and its estimates are com-
municated to the control center through its communication
link, the proposed DSE is independent of the size of the
power system. The only concern of the proposed RFD for
very large-scale power system online applications is that
D becomes rather dense, which requires a lot of computer
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memory. However, this is not a problem if we use the sparse
matrices BBB , BG0 and BBG instead ofD for the projection
of rotor speeds to bus frequencies (see equation (20) in [ 12]).
As a result, the computational burden of this step is negligible.
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Fig. 2: Comparing the estimated frequency at bus 34 by DUKF,
RDUKF and D-method with normal measurement noise in the
IEEE 39-bus system.
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Fig. 3: RMSE of DUKF, RDUKF and D-method with
normal measurement noise in the IEEE 39-bus system.

Remark: The reason that the complicated generator model
is not required has been discussed in the model decoupling
section. We discuss here how the proposed RFD is not
dependent on load model. It is well-known that the power
system dynamics are different if different load models are
assumed. However, although system dynamic behaviors are
different, they are reflected on the variations of the rotor speeds
of synchronous generators. Since the proposed RFD is based
on such variations, load models have been implicitly taken into
account. This conclusion has also been verified by extensive
simulation results in [12].
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Fig. 4: RMSE of DUKF, RDUKF and D-method with large
measurement noise in the IEEE 39-bus system, where the noise
covariance matrix is changed from 10−6I to 10−4I.

IV. NUMERICAL RESULTS
In this section, extensive simulations on the IEEE 39-bus

test system will be carried out to demonstrate the effectiveness
and robustness of the proposed RFD. Specifically, at t=0.5s,
the Generator 4 connected to bus 33 is tripped to simulate
system disturbance. The transient stability simulations are per-
formed to generate measurements and true state variables using
the Matlab-based software PST with some revisions [25]. The
fourth order Ruger-Kutta approach is adopted with integration
step t=1/120s to solve differential and algebraic equations. The
measured real power injection of each generator is taken as
model input, while the measured generator rotor speed and
frequency by PMU are treated as outputs/measurements. A
random Gaussian variable with zero mean and variance equal
to 10−6 is assumed for system process noise. The generator
model assumed for transient simulation is the detailed two-axis
generator model, whose parameter values are taken from [26].
The root-mean-squared error (RMSE) of all bus frequencies is
used as the performance index while the estimated frequency
at bus 34 is taken for illustration. Note that, Generator 5 is
connected to bus 34. The proposed non-robust UKF based
method will be called DUKF, and the proposed robust UKF
based method is called RDUKF while the original proposal
[12] that works on D matrix directly will be called the D-
method.
A. Estimation Results with Noisy Measurements
All the methods are tested with noisy measurements. Nor-

mal and large noise are considered; their noise covariance
matrices are assumed to be 10−6I and 10−4I with appropriate
dimensions, respectively. The results are shown in Figs. 2-
4, where in Fig. 2 the rotor speed of Generator 5 is shown.
From Fig. 2, we observe that the rotor speed of Generator 5
is different from its terminal bus frequency. This difference
is caused by two factors: (i) generator internal impedance and
(ii) severity of the transient (e.g., how much rotor speeds differ
from each other). On the other hand, by observing both Figs.
2 and 3, it is found that the D-method is one of the most
sensitive method to measurement noise while our DUKF and
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Fig. 5: Estimated frequency at bus 34 by DUKF, RDUKF
and D-method with observation outliers in the IEEE 39-bus
system, where the measured rotor speed of Generator 5 is
contaminated with 20% error from t=4s to t=6s.

RDUKF approaches are able to filter them out. This is because
in D-method, the noise is directly propagated through the rotor
speed measurements to the bus frequency. By contrast, our
methods adopt the UKF to filter out the noise, yielding better
performance. When we increase the measurement noise level,
i.e., the covariance matrix is changed from 10−6I to 10−4I,
the results of D-method become even worse while our methods
can achieve comparable performance as those in the former
case (see Fig. 4).

B. Impact of Observation and Innovation Outliers
Due to cyber attacks, imperfect phasor synchronization, the

saturation of metering current transformers or by metering
Couple Capacitor Voltage Transformers (CCVTs), to name a
few, gross errors can occur in the PMU measurements [20].
As for our decentralized DSE-based bus frequency estimation
problem, there are two ways to induce outliers: i) the measured
rotor speed by PMUs is contaminated with gross error, which
is called observation outlier; ii) since the real power injection
measured by PMUs can be contaminated with gross error,
treating it as model input can yield incorrect rotor speed
predictions, which is called innovation outlier. Note that, as D-
method is working directly with rotor speed measurements, it
is affected by observation outliers while being independent of
the innovation outlier caused by incorrect real power injection
measurements. To this end, two cases are considered:
Case 1: the measured rotor speed of Generator 5 is contami-

nated with 20% error from t=4s to t=6s to simulate observation
outlier.
Case 2: the measured real power injection of Generator 5

is contaminated with 30% error from t=3s to t=6s to simulate
innovation outlier.
The test results for Case 1 are shown in Figs. 5 and 6.

From these two figures, we find that the estimation results
of the DUKF and the D-method are significantly biased in
the presence of observation outliers. DUKF is less sensitive
to the observation outlier compared with the D-method. By
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Fig. 6: RMSE of DUKF, RDUKF and D-method with observa-
tion outliers in the IEEE 39-bus system, where the measured
rotor speed of Generator 5 is contaminated with 20% error
from t=4s to t=6s.
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Fig. 7: Estimated frequency at bus 34 by DUKF, RDUKF and
D-method with innovation outliers in the IEEE 39-bus system,
where the measured real power injection of Generator 5 is
contaminated with 30% error from t=3s to t=6s.

contrast, our RDUKF is able to suppress the observation
outliers thanks to the robustness provided by PS and the GM-
estimator, yielding negligible bias of the estimation. It should
be noted that due to the smearing effect of applying (5) for
bus frequency estimation, the estimated frequencies at many
buses are affected by the incorrect rotor speed of the generator
5. This however does not happen in our RDUKF.
The test results for Case 2 are shown in Figs. 7 and 8. As

expected, the results of DUKF are biased in the presence of
innovation outliers while the D-method is not affected. Due to
the robustness of the proposed DSE, this innovation outlier has
been suppressed. By comparison, RDUKF still outperforms D-
method, yielding the best results.

C. Loss of PMU Measurements
Due to the failures of communication links between PMU

and phasor data concentrator or cyber attacks, the PMU placed
at Bus 34, where Generator 5 is connected, is assumed to
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Fig. 8: RMSE of DUKF, RDUKF and D-method with innova-
tion outliers in the IEEE 39-bus system, where the measured
real power injection of Generator 5 is contaminated with 30%
error from t=3s to t=6s.
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Fig. 9: Estimated frequency at bus 34 by DUKF, RDUKF
and D-method with measurement losses from t=3s to t=6s in

the IEEE 39-bus system.

loss its measurements from t=3s to t=6s. Therefore, the
measurement set becomes unavailable during this time interval
and their values are set equal to zero for simulation purpose.
Please note that in this extreme case, both predicted and
measured rotor speeds will be flagged as outliers. To enable
the estimation of bus frequency by the proposed method,
we advocate to either recover the missing data using [27]
or perform short-term forecasting of the PMUs using their
spatial and temporal correlations [28]. The test results are
presented in Figs. 9 and 10. It can be seen from these two
figures that the estimated bus frequencies of both the DUKF
and the D-method are biased significantly. But the DUKF
approach is less sensitive to the measurement losses than the
D-method. As a result, the proposed RDUKF can always track
the bus frequency reliably and accurately. It should be noted
that the two mitigation approaches [27], [28] can be used in
the situation that the measurements are temporally lost (a few
seconds). For longer period, they may not be valid. Otherwise,
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Fig. 10: RMSE of DUKF, RDUKF and D-method with
measurement losses from t=3s to t=6s in the IEEE 39-bus

system.
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Fig. 11: RMSE of DUKF, RDUKF and D-method with
normal measurement noise in the IEEE 145-bus system.

the operator will be warned and the decentralized DSE stops
before further careful investigations are done.

D. Results on Large-Scale Systems

To demonstrate the applicability of the proposed robust
frequency divider for large-scale system, the 50-machine IEEE
145-bus system is used. The dynamic data can be found
through [29]. The generator located at bus 106 is tripped at
t=0.5s to simulate the system disturbance. The following three
scenarios are considered and tested:

• Scenario 1: only normal Gaussian noise is added to the
simulated data like the test done in Section IV-A;

• Scenario 2: 10% of the measured generator rotor speeds
is contaminated with 20% error from t=2s to t=5s;

• Scenario 3: 50% of the measured generator rotor speeds
are lost from t=3s to t=6s.

The test results of all three scenarios are displayed in Figs.
11-13, where the RMSE of scenario 1 and the estimated
frequencies of bus 73 under scenarios 2 and 3 are represented



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. , NO. , 2017 9

0 1 2 3 4 5 6 7 8 9 10
time [s]

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001
Fr

eq
ue

nc
y 

at
 b

us
 7

3 
[p

u]

True value
DUKF
RDUKF
D-method

Fig. 12: Estimated frequency at bus 73 by DUKF, RDUKF
and D-method with outliers in the IEEE 145-bus system,
where 10% of the measured generator rotor speeds is
contaminated with 20% error from t=2s to t=5s.
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Fig. 13: Estimated frequency at bus 73 by DUKF, RDUKF
and D-method with measurement losses in the IEEE 145-bus
system, where 50% of the measured generator rotor speeds

are lost from t=3s to t=6s.

accordingly. Note that bus 73 is close to the tripped generator.
Based on these figures, we conclude that our proposed robust
frequency estimator still outperforms the other two alternatives
in a larger-scale system. These results are consistent with those
for the IEEE 39-bus system. It is interesting to find that even
without using missing data recovering approach [27], [28], our
proposed method is able to rely on good PMU measurements
and the predicted dynamic state variables for filtering, yielding
good estimation results.

E. Computational Efficiency
To validate the capability of the proposed method for online

estimation, that is, to be compatible with PMU sampling
rate, its computational efficiency is analyzed. All cases and
scenarios simulated in the previous sections are considered.
All the tests are performed on a PC with Intel Core i5, 2.50
GHz, 8GB of RAM. The average computing time of each

TABLE I: Average Computing Times of The Three Methods
At Each PMU Sample

Scenarios D-method DUKF RDUKF
Section IV-A 0.02ms 0.15ms 0.37ms

Section IV-B Case 1 0.022ms 0.14ms 0.45ms
Section IV-B Case 2 0.021ms 0.16ms 0.46ms

Section IV-C 0.021ms 0.15ms 0.46ms
Scenario 1 0.08ms 0.66ms 1.6ms
Scenario 2 0.09ms 0.78ms 2.1ms
Scenario 3 0.085ms 0.79ms 2.14ms

method for every PMU sample is displayed in the Table I.
We observe from this table that all methods have comparative
computational efficiency and their computing times are much
lower than the PMU sampling period, which are 16.7ms and
8.3ms for 60 samples/s and 120 samples/s, respectively. On
the other hand, although RDUKF is the most time consuming
method compared with RDUKF and D-method, its computing
time is negligible for practical applications considering the
PMU sampling speed. Note that the decentralized DSE for
each generator can be carried out independently and in a par-
allel manner, which are very fast to calculate and independent
of the scale of the power system. For very large-scale power
systems, D becomes rather dense and a numerical stable and
computational efficient approach proposed in [12] is used to
project the rotor speeds to bus frequencies. The computational
burden of this step has been shown to be negligible [12]. In
conclusion, the proposed method is suitable for large-scale
power system online applications.

V. CONCLUSION

A robust frequency divider (RFD) is proposed to estimate
the frequency of each bus in a power system. Our RFD
consists of two steps, namely the estimation of generator
rotor speeds through a robust decentralized UKF using local
measurements, and the projection of all generator rotor speeds
to bus frequency. The proposed RFD is model independent,
and the knowledge of local PMU measurements at each
generator terminal bus and transmission system line param-
eters is sufficient. Furthermore, the proposed RFD is able
to filter out measurement noise, suppress gross measurement
errors, handle cyber attacks as well as measurement losses.
Extensive results carried out on the IEEE 39-bus and 145-
bus systems demonstrate the effectiveness and the robustness
of the proposed method. A possible issue of the proposed
RFD is that the decentralized and centralized scheme may
produce some delays for the estimated bus frequencies used
for controllers. However, thanks to the advancement of control
techniques, the time delays can be effectively mitigated [30],
[31]. In the future work, we will design this type of robust
frequency regulator based on our RFD.
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