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Modelling Load Stochastic Jumps for Power Systems
Dynamic Analysis
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Abstract—This letter proposes an approach to model power system
loads as stochastic processes that incorporate both continuous and event-
driven dynamics. The letter provides a brief theoretical background
on the stochastic differential equations defining Ornstein-Uhlenbeck
processes with jumps used for the stochastic modeling of power system
voltage-dependent loads. The all-island 1479-bus Irish transmission
system serves to illustrate and test the proposed jump-diffusion model.

Index Terms—Ornstein-Uhlenbeck processes, jump-diffusion processes,
exponential load recovery.

I. INTRODUCTION

This letter originates from the observation that the noise of
measured quantities of a power system, such as the frequency, is
not distributed as a Gaussian process, but shows heavy tails. These
are known to be caused by discrete, sporadic events, which, in
the literature on stochastic differential equations, are called jumps
[1]. These events, e.g., load step variations, have been scarcely
studied in the literature as they are not big enough to be considered
as contingencies and not small enough to be classified as noise.
However, in systems with high penetration of stochastic sources, such
as wind, they can contribute to reducing the overall system stability.

Stochastic processes able to combine both continuous small per-
turbations and event-driven random phenomena are called jump-
diffusion processes. These processes are reckoned to be appropriate to
model the discrete events occurring in various physical systems, and
are largely used in financial modeling. Particularly, jump-diffusion
models of the Ornstein-Uhlenbeck type have shown a great modelling
potential in the context of econometrics [1], [2]. However, the
application of these models in power system analysis is very limited.
In [3], stochastic processes including jumps are used for modeling
the perturbations due to the operation of transformer tap changers.
More recently, jump-diffusions are employed in [4] for the stochastic
characterization of network faults.

In the last decades, a number of studies have taken into account
the load volatility to define generalized load models, to determine
the system operational bounds, and to prevent instability issues by
means of load sensitivity analysis [5]. In [6], the authors pose the
foundations for this letter. A number of studies develop and validate
load models via measurement approach [7], [8].

The letter proposes to use Stochastic Differential Algebraic Equa-
tions (SDAEs) with jumps as a general model to describe continuous
noise as well as random discrete events in power systems, and it
addresses the impact on power system stability of the discrete events
that originated the heavy-tail distribution in power system quantities.

II. ORNSTEIN-UHLENBECK PROCESSES WITH JUMPS

A one-dimensional standard Ornstein-Uhlenbeck process, x(t), is
the solution of the following Stochastic Differential Equation (SDE):

dx(t) = a [µ(t)− x(t)] dt+ b dW (t) , (1)
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Fig. 1: Irish system frequency measured at transmission level. Excerpt of the
frequency series.

with initial value x(t0) = x0. In (1), a, µ, and b are constant param-
eters and W (t) represents a standard Wiener process. As t→∞, the
standard Ornstein-Uhlenbeck process represented by (1) tends to a
stationary Gaussian distribution with mean E [x(t)] = µ, and variance
Var [x(t)] = b2/2a. Moreover, in the stationary state, process x(t)
is exponentially autocorrelated according to Aut [x(t), x(t+ τ)] =
e−aτ . The mean-reversion parameter a controls both how fast the
process x(t) tends to the stationary mean value µ, and the memory of
the process, such that the lower the value of a the slower the process
autocorrelation decays. In the context of power systems, the standard
Ornstein-Uhlenbeck process have been directly and/or indirectly used
for the modelling of different stochastic phenomena (see, e.g., [9]–
[12]).

Ornstein-Uhlenbeck processes represented by (1) are only able to
model continuous stochastic phenomena. Discrete stochastic events
can be modelled by introducing in (1) a jump term, as follows:

dx(t) = a [µ(t)− x(t)] dt+ b dW (t) + c dC(t) , (2)

with initial value x(t0) = x0. In the jump term, c is a constant
parameter and C(t) is a compound Poisson process. A compound
Poisson process C(t), t ∈ [0,∞), with initial value C(t0) = C0 = 0,
is defined as

C(t) =

N(t)∑
k=1

ζk , (3)

where N(t) is a Poisson process with finite intensity λ > 0, and
ζ1, ζ2, ... are independent identically distributed random variables,
known as marks, which are independent from N(t). A compound
Poisson process generates a sequence of pairs (tk, ζk), with k ∈ N,
of Poisson distributed jump times tk and marks ζk defined on the
mark set E = R\{0}, that can have an arbitrary distribution.

The solution of the SDE (2) is a Ornstein-Uhlenbeck process
with jumps, which belongs to a wider class of processes so-called
jump-diffusion processes [1]. The presence of the jump term does
not modify the autocorrelation of the resulting process, which also
follows an exponential decaying law similar to the autocorrelation of
the process (1). However, the distribution of the process (2) generally
shows heavier tails and higher peaks than the standard Gaussian
distribution.
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Although W (t) and C(t) are not differentiable, two types of white
noise processes ξW (t) and ξC(t), namely Gaussian white noise and
Poisson white noise, respectively, can be formally defined as follows
[13]:

ξW (t) =
dW (t)

dt
, ξC(t) =

dC(t)

dt
. (4)

In view of (4) and dropping the time dependency of ξW (t) and ξC(t),
the SDE (2) is reformulated as follows

ẋ(t) = a[µ(t)− x(t)] + b ξW (t) + c ξC(t) . (5)

Finally, the solution of SDEs with jumps is generally carried out by
numerical integration methods. A wide collection of them is described
in [1].

Expression (5) allows us to model the resulting stochastic voltage
dependent load as:

pL(t) = pL0(t) + xp(t)

qL(t) = qL0(t) + xq(t)

ẋp(t) = ap[µp(t)− xp(t)] + bpξWp + cpξCp

ẋq(t) = aq[µq(t)− xq(t)] + bqξWq + cqξCq ,

(6)

and xp(t0) = xq(t0) = 0, where pL0(t) and qL0(t) are the transient
active and reactive power consumptions, which are time dependent as
they can depend on the voltage magnitude at the bus where the load
is connected. Interestingly, the deterministic part of (6) is formally
equivalent to the dynamic load model proposed in [7], and later
validated in [8], if pL0, qL0, µp and µq are assumed to be voltage
dependent.

III. CASE STUDY

The parameters of the stochastic load model (6) should be com-
puted on the basis of the statistical analysis of high-voltage load
measurements. In absence of such data, we have roughly conjectured
the stochastic behaviour of the load from the analysis of frequency
measurements of the All-Island Irish Transmission System (AIITS).
For simplicity, we assume that deviations from the nominal frequency
are only consequence of changes in the system load.

Frequency data are pre-processed as follows: frequency changes
above a certain threshold are considered jumps (see Fig. 1). A new
set of data with the value of these changes is created, whose statistical
properties are used to set the parameters of the jump term of the
model. The statistical analysis of the rest of the frequency series is
used to set the parameters of the drift and diffusion terms of the
Ornstein-Uhlenbeck process following the procedure shown in [10]
and [12]. Quantities in terms of load are obtained based on the inertia
and frequency control droop characteristics of the system.

The statistical analyses previously described are applied to the
modified version of the IEEE 14-bus system used by the authors
in [6]. They draw the following results:

• An average of 6 jumps every 300 s is found.
• The distribution of the load jump sizes can be approximated by

a normal distribution with µ = 0 and σ = 0.046.
• The distribution of the load volatility can be approximated by a

normal distribution with µ = 0 and σ = 0.008.
• The autocorrelation exponent of the load volatility is set to

0.0125.

According to these estimations, the parameters of the stochastic
part of the active load model in (6) are set as follows:

• ap = 0.0125.
• µp(t) = µp = 0.
• bp =

√
2apσp = 0.0001.
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Fig. 2: Active power of the stochastic load. Upper panel: dynamic trajectory;
lower panel: Histogram of the active power and normal PDF fit.

• λ = 0.02 jumps per second. This value, together with the
simulation time, defines the Poisson process that determines the
jump times tk of the compound Poisson process.

• Marks ζk of the compound Poisson process are random values
taken from a N (0, 0.0462).

• cp = 1.
For simplicity, the stochastic part of the reactive load model in

(6) is modelled according to xq = xp tanϕ, where ϕ is the angle
corresponding to the power factor of the considered load.

The stochastic load model is tested by means of time-domain
simulations carried out with DOME [14]. The upper panel in Fig. 2
shows the time evolution of a given load with pL0(t) = pL0 = 0.75
pu. This is an example of the kinds of trajectories generated by
the proposed model, whose stochastic behaviour can be viewed as
the composition of two stochastic contributions: the orange line
is pL0 plus the drift-diffusion component of xp(t), the green line
represents pL0 plus the pure jump component of xp(t), and the
blue line corresponds to the actual pL(t). The lower panel of Fig. 2
depicts the histogram of pL(t) along with the Probability Density
Function (PDF) of the normal distribution that best fit the data.
The deviations from the normal distribution are apparent. This is
an expected phenomenon which results from the incorporation of a
jump component to the standard Ornstein-Uhlenbeck process.

The proposed model could be used to study the robustness of power
systems with respect to event-driven phenomena. A simple example
is provided here where the robustness of the AIITS is analyzed with
respect to the variation of the parameters characterizing the compound
Poisson part of the stochastic load model.

The AIITS dynamic model used as benchmark is a 1, 479-bus
system. The model comprises conventional generators modeled as
6th order machines with turbine governors including a deadband on
the frequency error signal (db = 0.0006 pu), automatic generation
control and automatic voltage regulators, 176 wind farms including
both Doubly-Fed Induction Generators (DFIGs) and Constant Speed
Wind Turbines (CSWTs), load demand totaling 3, 100 MW and 965
MVAr. Stochastic perturbations affect the load power consumption,
which is modeled as a stochastic PQ load. Wind speed is modeled
as a Ornstein-Uhlenbeck process, in the same way as in [6]. The
study considers two different levels of wind penetration, 25% and
55%. A set of 2000 one-hour-long simulations is run for both wind
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Fig. 3: Probability of system infeasible operation. Wind generation: 25%
(black), and 55% (grey). Upper panel: as function of λ; lower panel: as
function of σpP .

scenarios in each analyzed case. In all simulations, the parameters
of the drift and diffusion part of the load model remain the same as
previously described. An intensity of λ = 0.02 jumps per second and
N (0, σ2

pP ), with σpP = 0.33, as the distribution of the marks for
the compound Poisson process are the base values. Different cases
are defined by increasing λ and σpP .

Defining as infeasible all those operating conditions where fre-
quency and voltage nominal limits are violated, the upper panel in
Fig. 3 shows the probability of infeasible operating conditions the
system might experience with respect to an increasing number of
jumps (increasing intensity of compound Poisson process), in case
of 25% (black bars) and 55% (grey bars) of wind penetration. The
average number of jumps per second ranges from the base value
of λ to 2λ with a step of 0.5λ. The chart shows that increasing the
average number of events in the load dynamics does not considerably
destabilize the system, albeit this fact results in introducing more
randomness into the grid. The lower panel in Fig. 3 shows the same
probability percentage as the upper panel but now with respect to
the increasing amplitude of the jumps, that ranges from the base
value of σpP to 1.5σpP with an increase of 25%. As expected, the
bigger σpP , the higher the chance to experience an infeasible system
condition due to a sudden and relatively high load variation. This
trend is particularly non-linear and amplified by high wind power
production.

IV. CONCLUSIONS

This letter presents a novel formulation for modelling the random-
ness affecting power systems loads, this is based on jump-diffusion
models. This choice stems from the heavy-tailed distribution of this
power system quantity. On this purpose, the load model parameters
are statistically inferred from real system frequency measurements.

The benefit in adopting the approach proposed lies in a more
realistic and more accurate load model, that incorporates both the
continuous component of the uncertainty and the event-driven dy-
namics that are natural of the power system load behaviour. Also,
this simple model is suitable to represent the non-linearity and non-
stationarity of the load.

The convenience in adopting the approach proposed is illustrated
by means of a sensitivity analysis based on the AIITS 1, 479-bus
system. The study shows that, under the current standard operation,

the risk of experiencing stability issues is low. However, the sensi-
tivity with respect to the jumps variation is non-linear, and the risk
increases dramatically as the amplitude of the jumps increases and
the inertia of the system reduces.

Future works will focus on exploiting the jump-diffusion model
for improving wind power generation modelling.
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