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Abstract—This paper presents a security redispatching proce-
dure that allows achieving an appropriate security level in terms
of small-signal rotor angle stability. The proposed methodology
is based on an OPF problem that explicitly considers security
limits through stressed loading conditions. The solution of the
proposed redispatching procedure yields the optimal preventive
control actions to be implemented to ensure a given security level.
The New England 10-machine 39-bus and the IEEE 145-bus 50-
machine systems are used for illustrating, testing and discussing
the proposed technique.

Index Terms—Loading Margin, Optimal Power Flow, Small-
Signal Rotor Angle Stability, Hopf Bifurcation, Voltage Stability.

NOTATION

The notation used throughout the paper is stated below for
quick reference. Throughout the paper, the superscript “A”
indicates base-case solution and the superscript “s” indicates
stressed operating condition.
A. Functions:

z objective function.
zD cost function of load active power adjustments.
zG cost function of generation active power ad-

justments.
zV penalty function of voltage magnitude adjust-

ments.
B. Variables:

PDi active power consumption of demandi.
PGj active power production of generatorj.
QGj reactive power production of generatorj.
Vn voltage magnitude at busn.
∆P down

Di active power decrease in demandi for security
purposes.

∆P down
Gj active power decrease in generatorj for secu-

rity purposes.
∆P up

Gj active power increase in generatorj for secu-
rity purposes.

∆V down
n voltage magnitude decrease at busn for secu-

rity purposes.
∆V up

n voltage magnitude increase at busn for secu-
rity purposes.

θn voltage angle at busn.
λ loading margin.
λ∗ optimal loading margin resulting from the OPF

problem defined in Appendix A.
C. Eigenvalues:

α± jβ pair of complex eigenvalues associated with the
system state matrix.

D. Constants:

cdown
Di cost of decreasing loadi for security purposes.
cdown
Gj offering cost of generatorj to decrease its

dispatched power for security purposes.
cupGj offering cost of generatorj to increase its

dispatched power for security purposes.
cdown
Vn penalty factor for decreasing voltage magni-

tude at busn.
cupVn penalty factor for increasing voltage magnitude

at busn.
Gk + jBk series admittance of the branchk connecting

busesn andm.
Gk0 + jBk0 total shunt admittance of the branchk connect-

ing busesn andm.
Imax
k maximum current magnitude through branchk.
Pmax
Gj maximum power output of generatorj.
Pmin
Gj minimum power output of generatorj.
Qmax

Gj reactive power capacity of generatorj.
Qmin

Gj minimum reactive power limit of generatorj.
Rup

Gj active power ramp-up limit of generatorj.
Rdown

Gj active power ramp-down limit of generatorj.
ψDi power factor angle of demandi.
V max
n maximum voltage magnitude at busn.
V min
n minimum voltage magnitude at busn.

E. Parameters:

∆t time interval considered.
λSM security margin.
̺ probability of the considered operating condi-

tion. For the stressed cases, it is the probability
of a line outage occurrence.

F. Sets:

D set of demands.
Dn set of demands located at busn.
G set of on-line generators.
Gn set of on-line generators located at busn.
S set of all stressed operating conditions.
Su subset of stressed operating conditions relevant

for small-signal instability analysis (Su ⊂ S).
N set of buses.
NG set of generator buses.
Ωk set of network branches.
Ωn set of branches connected to busn.
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I. I NTRODUCTION

A. Motivation

Most existing electricity markets have led to a neat sep-
aration between the economical analysis (market clearing
procedure) and the technical one (security assessment). Fur-
thermore, market participants expect that the security assess-
ment modifies as little as possible the economical dispatch
solution. In order to ensure that the security adjustments
have the minimum impact on the original market solution,
an appropriate approach requires modeling the behavior of the
system and the security constraints in detail. As a consequence,
the operator typically has to deal with a nonlinear model
and advanced stability analysis concepts, such as bifurcation
theory. Thus, the security-targeted redispatching step isa
complex and not fully solved task. In this vein, the paper
focuses on a redispatching procedure that is able to ensure
small-signal rotor angle stability while minimizing generally
supplier and demand power changes.

B. Literature Review

Small-signal stability is concerned with the ability of a
power system to maintain synchronism under small distur-
bances [1]. Small-signal instability typically appears inthe
form of rotor angle oscillations whose amplitude increases
due to insufficient damping torque. These oscillations can be
originated by local modes or by inter-area modes. The former
are typically rotor angle oscillations of a single generator
swinging against the rest of the system. Damping these oscilla-
tions depends on (i) the strength of the transmission systemat
the generator point of connection, (ii) the generator excitation
control system and (iii) the generator power output. Inter-area
mode oscillations consist in a group of generators swinging
against another group of generators. The characteristics of
these oscillations are complex and differ significantly from
those of local mode oscillations [2]–[4]. Regardless of the
local or inter-area nature of the oscillation modes, the small-
signal instability is always originated by one or more pair
of complex eigenvalues whose real part becomes positive.
This phenomenon is known as Hopf bifurcation [5] and has
been widely studied in recent years [6]–[9]. Several damping
controllers have been proposed to avoid Hopf bifurcations.
For example, Power System Stabilizers (PSS) have proved
to be effective in improving small-signal stability. However,
damping controllers cannot guarantee that no Hopf bifurca-
tions occurs [10]. As a matter of fact, Hopf bifurcations can
have catastrophic consequences on power systems (e.g., the
WSCC blackout of August 10, 1996).

Despite the importance of Hopf bifurcations, the consid-
eration of small-signal rotor angle stability constraintsin
electricity markets is still an open field of research. In [10], the
authors propose two sensitivity-based methods to reschedule
the generation in order to maximize the power transfer be-
tween two areas subject to the small-signal stability constraints
under a set of selected contingencies. Both methods use a
linear optimization problem in which the amount of active
power generation rescheduled in one area is balanced by
rescheduling the same amount of active power generation in

other area. Contingency filtering is based on the damping
ratio of the least stable rotor angle mode in the system [11].
The small-signal stability constraint is formulated in terms of
sensitivities of this damping ratio with respect to the active
power generation that corresponds to a previously selected
set of generators. In [12], the authors include small-signal
stability constraints in an OPF problem in which the expected
security cost, first proposed in [13], is minimized. The OPF
problem includes the pre-contingency operating conditions and
the post-contingency operating conditions for the entire set
of credible contingencies. In [12], the small-signal stability
constraints are formulated in terms of the first- and second-
order sensitivities of a set of critical eigenvalues with respect to
the OPF decision variables. In this paper, small-signal stability
constraints are defined based on first-order sensitivities of
critical eigenvalues with respect to generator powers.

C. Tool Features and Contributions

This paper improves and extends the security redispatching
procedures described in [14] and [15] in order to take into
account small-signal stability. The resulting security redis-
patching procedure allows achieving an appropriate security
level in terms of both voltage stability and small-signal sta-
bility. The proposed procedure is based on an OPF problem
that includes voltage stability constraints as well as small-
signal stability constraints. It has to be noted that the proposed
technique serves in those cases where small-signal instability
occurs despite existing regulation. In other words, the proposed
procedure does not adjust the power productions of market
participants instead of using PSS devices, but because the
actions of the existing controllers (PSSs included) are not
sufficient to provide the system with the required security
level.

As in [12], the proposed procedure considers several operat-
ing conditions, the adjusted one and a set of stressed operating
conditions. The main difference with [12] is that each stressed
operating condition is characterized by both a contingencyand
a fictitious loading level that defines a distance, in terms of
load power, to instability and/or collapse. Furthermore, we
propose a contingency filtering procedure that allows selecting
the very critical contingencies, i.e., a reduced subset of all
credible contingencies.

The solution of the proposed redispatching procedure yields
the optimal preventive control actions that have to be imple-
mented to ensure a given security margin in terms of small-
signal stability. Furthermore, as a byproduct of the proposed
OPF problem formulation, voltage stability is also ensured.

D. Paper Organization

The paper is organized as follows. In Section II, the OPF
problem is formulated and the steps of the redispatching
procedure are described. In Section III, the performance ofthe
proposed procedure is tested using the New England 39-bus,
10-machine system and the IEEE 145-bus 50-machine system.
The results are analyzed and discussed. Finally, Section IV
gives some conclusions.
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II. SECURITY REDISPATCHINGPROCEDURE

This section presents a redispatching procedure based on
a Small-Signal Stability Constrained Optimal Power Flow
(SSSC-OPF) problem to help the independent system operator
(ISO) ensure an appropriate security level. We assume that the
ISO has access to the technical information of generators and
that the generators communicate their offers to the ISO.

The ISO has to ensure that the system operates in safe and
stable conditions, including adequate margins with respect to
voltage and angle stability. Since small-signal angle stability
analysis cannot be performed without the knowledge of techni-
cal data (e.g., machine parameters), one has to assume that the
ISO has access to such information or, at least, can estimate
with reasonable accuracy the required data. As far as we know,
ISOs have a reasonable knowledge of the technical data of the
system under their control. Furthermore, it is not requiredthat
the ISO knows everything of the entire interconnected system.
For example, in Europe, the ISO of each country generally has
detailed dynamic information only about its national system
and has developed adequate static and dynamic equivalents to
model the behavior of interconnection buses.

A. SSSC-OPF Problem Description

This subsection describes in detail the objective functionand
all constraints used in the SSSC-OPF problem. The starting
point of our analysis is the working condition established
through a dispatching procedure (e.g., a market clearing al-
gorithm) adjusted by losses in such a way that the voltage
profile is optimized. This solution, hereinafter denoted asbase
case, does not typically take into account security. Thus, the
ISO has to check whether redispatching actions (that modify
the base-case solution) are needed. In the proposed procedure,
redispatching does not substitute PSS or any other existing
controller actions but, rather, provides additional meansto
obtain the required stability margin.

1) Objective Function:The proposed objective function is
aimed at minimizing the variations with respect to the base-
case solution. In particular, the objective function is composed
of several terms representing adjustment costs and penalty
functions. The adjustments correspond to changes on the
generated and consumed powers, while the penalty functions
concerns voltage magnitudes at generator buses. These terms
are as follows:

1) The cost function of generation power adjustments is
defined as:

zG =
∑

j∈G

cupGj∆P
up
Gj + cdown

Gj ∆P down
Gj . (1)

where cupGj and cdown
Gj are offering costs provided by

suppliers. In practice, these offers can be chosen equal
to the generator price offers used in the market clearing
procedure, which is solved before the proposed redis-
patching OPF problem.

2) The penalty function of voltage magnitude adjustments
at generator buses is

zV =
∑

n∈NG

cupVn∆V
up
n + cdown

Vn ∆V down
n . (2)

The term (2) is included to penalize the changes on the
base-case voltage magnitudes at generator buses since
the voltage profile of the base case is considered to be
the most suitable one.

3) Finally, the cost of adjustments on the demand power
decrease is:

zD =
∑

i∈D

cdown
Di ∆P down

Di . (3)

To avoid load curtailment unless strictly necessary for main-
taining system security, the penalties of voltage magnitude
adjustmentscupVn and cdown

Vn are higher than the costs of
generation power adjustmentscupGj and cdown

Gj but lower than
the costs of load decreasecdown

Di . For each considered stressed
operating condition, we also include in the objective function
a penalty function of the generation power adjustments

zsG =
∑

j∈G

cupGj∆P
up,s
Gj + cdown

Gj ∆P down,s
Gj , (4)

and a penalty function of voltage magnitude adjustments

zsV =
∑

n∈NG

cupVn∆V
up,s
n + cdown

Vn ∆V down,s
n . (5)

Terms (4) and (5) are introduced to force all stressed systems
to work at an economic operating condition and to maintain
appropriate voltage profiles, respectively. However, the cost
function of power demand decrease is not considered for the
stressed conditions since load powers of the stressed systems
are parametrized by the ones of the adjusted one (see (18)
and (19) in the next subsection). In summary, the complete
objective function is as follows:

z = ̺(zG + zV) + zD +
∑

s∈S

̺s(zsG + zsV), (6)

where̺ and̺s are, respectively, the probability of operating
in the adjusted operating condition and the probability of
occurrence of the contingency considered in the stressed
operating conditions. These probabilities satisfy the condition
[13]:

̺+
∑

s∈S

̺s = 1, (7)

where̺s ≪ ̺.
2) Power flow equations for the adjusted operating con-

dition: The adjusted operating condition of the system is
established by the active and reactive power balance at all
buses:
∑

j∈Gn

PGj −
∑

i∈Dn

PDi =
∑

k∈Ωn

V 2
n (Gk + 0.5Gk0) (8)

− VnVm(Gk cos θnm +Bk sin θnm), ∀n ∈ N ,
∑

j∈Gn

QGj −
∑

i∈Dn

PDi tan(ψDi) =
∑

k∈Ωn

−V 2
n (Bk + 0.5Bk0)

(9)

− VnVm(Gk sin θnm −Bk cos θnm), ∀n ∈ N ,

whereθnm = θn − θm and with

PGj = PA
Gj +∆P up

Gj −∆P down
Gj , ∀j ∈ G, (10)

PDi = PA
Di −∆P down

Di , ∀i ∈ D, (11)
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and

∆P up
Gj ≥ 0, ∀j ∈ G, (12)

∆P down
Gj ≥ 0, ∀j ∈ G, (13)

∆P down
Di ≥ 0, ∀i ∈ D. (14)

The terms on the right-hand side of (8) and (9) are the well-
known power flow equations and depend on the bus voltage
magnitudes and angles.

The voltage magnitudes at generator buses are defined as

Vn = V A
n +∆V up

n −∆V down
n , ∀n ∈ NG, (15)

with

∆V up
n ≥ 0, ∀n ∈ NG, (16)

∆V down
n ≥ 0, ∀n ∈ NG. (17)

Equation (9) implies that constant power factor loads are
considered. Superscript “A”, in (10), (11) and (15), indicates
base case solution.

3) Power flow equations for the stressed operating condi-
tions: The power flow equations for the stressed operating
conditions are

∑

j∈Gn

P s
Gj −

∑

i∈Dn

(1 + λSM)PDi (18)

=
∑

k∈Ωn

(V s
n )

2(Gk + 0.5Gk0)

− V s
nV

s
m(Gk cos θ

s
nm +Bk sin θ

s
nm), ∀n ∈ N , ∀s ∈ S,

∑

j∈Gn

Qs
Gj −

∑

i∈Dn

(1 + λSM)PDi tan(ψDi) (19)

=
∑

k∈Ωn

−(V s
n )

2(Bk + 0.5Bk0)

− V s
nV

s
m(Gk sin θ

s
nm −Bk cos θ

s
nm), ∀n ∈ N , ∀s ∈ S,

with

P s
Gj = PGj +∆P up,s

Gj −∆P down,s
Gj , ∀j ∈ G, ∀s ∈ S, (20)

∆P up,s
Gj ≥ 0, ∀j ∈ G, ∀s ∈ S, (21)

∆P down,s
Gj ≥ 0, ∀j ∈ G, ∀s ∈ S, (22)

andPDi provided by (11).
The functions of the right-hand side of (18) and (19) have

the same expressions as the power flow equations (8) and (9),
respectively, except for substituting the corresponding vari-
ables by those pertaining to the stressed operating conditions.
The voltage magnitudes at the generator buses are defined as

V s
n = Vn +∆V up,s

n −∆V down,s
n , ∀n ∈ NG, ∀s ∈ S, (23)

with

∆V up,s
n ≥ 0, ∀n ∈ NG, ∀s ∈ S, (24)

∆V down,s
n ≥ 0, ∀n ∈ NG, ∀s ∈ S. (25)

Equations (18)-(19) represent the system at the loading level
determined by the security marginλSM. Moreover, equations
(18)-(19) include a single line outage to enforce theN − 1
contingency criterion.

4) Technical limits:The power production is limited by the
capacity of the generators. Hence, under adjusted and stressed
operating conditions,

Pmin
Gj ≤ PGj ≤ Pmax

Gj , ∀j ∈ G, (26)

Pmin
Gj ≤ P s

Gj ≤ Pmax
Gj , ∀j ∈ G, ∀s ∈ S, (27)

Qmin
Gj ≤ QGj ≤ Qmax

Gj , ∀j ∈ G, (28)

Qmin
Gj ≤ Qs

Gj ≤ Qmax
Gj , ∀j ∈ G, ∀s ∈ S. (29)

A more precise capability curve can be used instead of
constraints (26)-(29). However, since detailed dynamic models
of generators and automatic voltage regulators are used for
determining the small-signal stability constraints, it isnot
necessary to include a precise capability curve in the OPF
problem. Voltages magnitudes throughout the system under
the adjusted and the stressed operating conditions should be
within operating limits,

V min
n ≤ Vn ≤ V max

n , ∀n ∈ N , (30)

V min
n ≤ V s

n ≤ V max
n , ∀n ∈ N , ∀s ∈ S. (31)

The current flow through all branches of the network should
be below thermal limits,

|0.5(Gk0 + jBk0)Vne
jθn (32)

+ (Gk + jBk)(Vne
jθn − Vme

jθm)| ≤ Imax
k ,

∀k ∈ Ωk,

|0.5(Gk0 + jBk0)V
s
n e

jθs

n (33)

+ (Gk + jBk)(V
s
n e

jθs

n − V s
me

jθs

m)| ≤ Imax
k ,

∀k ∈ Ωs
k, ∀s ∈ S.

The changes in the production of generators between adjusted
and stressed conditions are limited by ramping constraints

P s
Gj − PGj ≤ Rup

Gj∆t, ∀j ∈ G, ∀s ∈ S, (34)

PGj − P s
Gj ≤ Rdown

Gj ∆t, ∀j ∈ G, ∀s ∈ S, (35)

where ∆t is a time interval within which generators must
be able to adjust their power productions in order to reach
the stressed operating conditions. Equation (34) and (35)
along with (18) and (19) couple the variables of the stressed
operating conditions with those pertaining to the adjusted
operating condition. Constraints (34) and (35) enforce thefact
that up and down changes of generator powers can be obtained
only within given rates, which in turn depends on the type and
the characteristics of the power plants. A further discussion on
(34) and (35) and similar ramping constraints can be found in
[15].

5) Small-signal stability constraints:So far, we have not
introduced any differential equation. Actually, we do not
include directly differential algebraic equations (DAE) in the
proposed SSSC-OPF problem but rather solve an eigenvalue
analysis of the state matrix of the system DAE and then
define a linear constraint based on eigenvalue sensitivities with
respect to generated powers. Only this constraint is included
in the SSSC-OPF problem, not the DAE system, which makes
the problem tractable. The dynamics that are considered for
setting up the system state matrix are synchronous machine
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transient models (i.e., IV-order models) and AVR controls.
These models are described in several books and are not
reported here for brevity. The interested reader can find in
[16] a complete description of the models and the small-signal
stability analysis used in this paper.

The eigenvalues of the system state matrix that are asso-
ciated with a particular operating condition are implicit non-
linear functions of the system variables and parameters. Asit
is well-known, small-signal instability occurs if the realpart
of an eigenvalue (sayα ± jβ) of the system state matrix
“moves” from the left-hand side (α < 0) to the right-hand
side (α > 0) of the complex plane, following a parameter
variation. Therefore, the small-signal stability boundary is
α = 0 for all “critical” eigenvalues whose real part is
approaching the imaginary axis. It is relevant to note that
computing all eigenvalues of a large system may involve a
high computational effort. However, we are interested only
in a subset of eigenvalues, i.e., those with minimum absolute
real part. Thus, efficient numerical methods (e.g., Rayleigh’s
iteration) can be used.

The goal of the proposed SSSC-OPF problem is to stabilize
the set of stressed operating conditions that shows positive
(unstable) eigenvalues. At this aim, we introduce small-signal
stability constraints based on the first-order Taylor series
expansion of the critical eigenvalue real part, taking into
account the dependence of the eigenvalue real partα only on
active power generations. In general, eigenvalues are highly
nonlinear with respect to system parameters. However, eigen-
values associated with Hopf bifurcations have been shown to
vary smoothly with respect to power changes [17].

For the set of unstable stressed operating conditions (Su),
the small-signal stability constraints are as follows:

αs + F s
∑

j∈G

σs
jδP

s
Gj ≤ αmax, ∀s ∈ Su, (36)

where:

• αmax is the limit for the critical eigenvalue real part.
This limit can be defined either in terms of the HB point,
i.e., αmax = 0, or in terms of a minimal damping ratio
(ζmin) as follows:

αmax = −
ζminβ

s

√

1− ζ2min

, ∀s ∈ Su. (37)

whereβs is the critical eigenvalue imaginary part.
• σs

j is the sensitivity ofαs with respect to changes in the
generator power outputP s

Gj , i.e.,

σs
j =

∂αs

∂P s
Gj

∣

∣

∣

∣

∣

u

. (38)

• δP s
Gj is a finite variation in the form:

δP s
Gj = P s

Gj − P s,u
Gj , (39)

whereP s,u
Gj is the active power output of generatorj at

the unstable stressed operating conditions.
• F s is a scaling factor that avoids large variationsδP s

Gj

and, thus, possible infeasibility of the proposed OPF
problem.

In this paper, sensitivities (38) are computed using numeric
differentiation, i.e., by means of finite small variations of
generated powers around the equilibrium point. The procedure
is similar to those used in [18] and [19] for computing
transmission line sensitivities, and works as follows.

1) As a result of the modal analysis carried out in step 4
of the proposed redispatching procedure, the real part
αs of the critical eigenvalue corresponding to a stressed
operating conditions is obtained.

2) The generator power outputP s
Gj is varied of a small

quantity, sayǫ, and the modal analysis is performed
again. A new value of the critical eigenvalue is obtained
whose real part isαs

ǫ .
3) The sensitivityσs

j is computed as

σs
j =

∂αs

∂P s
Gj

≈
αs
ǫ − αs

ǫ
(40)

This procedure is repeated for all generator power outputs
of the stressed operating condition considered. The rationale
behind the scaling factorF s in (36) is as follows. Due
to non-linearity, the approximation of the first order Taylor
series expansion can be inaccurate if the power variations
δP s

Gj are too large. The size of these variations depends
on the relative values ofαs and σs

j . Numerical simulations
carried out throughout the work reported in this paper show
that sensitivities (38) have in general small values (typically
an absolute value less than 1), whereas the real part of an
eigenvalue can have, in principle, any value. If the difference
between theαs and σs

j is relatively large (say, a factor of
10), satisfying equation (36) can lead to unnecessary large
variations ofδP s

Gj . Generally, the larger the values ofδP s
Gj ,

the further the solution move from the initial stressed operating
condition. Thus, a weighting factorF s that allows controlling
the size of δP s

Gj is introduced. Since all sensitivities are
multiplied by the same constantF s, the global direction of
(36) is not modified as all power variationsδP s

Gj are equally
scaled. The following formula provides a suitable value for
F s:

F s =
αs − αmax

σs
minδP

, (41)

where

σs
min = min(|σs

j |), ∀j ∈ G, ∀σs
j 6= 0, (42)

and the parameterδP (δP > 0) is the desired bound for all
δP s

Gj , i.e., |δP s
Gj | ≤ δP .

The purpose of constraint (36) is to drive unstable eigen-
values from the right hand side to the left hand side of the
imaginary axis of the complex plane. Thus, the smaller is the
value ofδP , the smaller is typically the variation ofαs.

The statement above can be qualitatively deduced from the
following observations:

1) The coefficientF s amplifies the effect ofδP s
Gj , i.e.,

increasingF s allows satisfying (36) with smaller incre-
ments ofδP s

Gj .
2) Small increments ofδP s

Gj lead to a small variation of
the current operating point and thus to small changes of
the eigenvalues.
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Constraints (43) and (44) below are used along with (36)
for ensuring that the variations of generator powers are always
consistent with the sign of the sensitivities:

δP s
Gj ≥ 0 if σs

j < 0, ∀j ∈ G, ∀s ∈ Su, (43)

δP s
Gj ≤ 0 if σs

j > 0, ∀j ∈ G, ∀s ∈ Su. (44)

6) Other constraints:The proposed SSSC-OPF problem
includes the following additional constraints:

− π ≤ θn ≤ π, ∀n ∈ N , (45)

− π ≤ θsn ≤ π, ∀n ∈ N , ∀s ∈ S, (46)

θref = 0, (47)

θsref = 0, ∀s ∈ S. (48)

Equations (45) and (46) are included to reduce the feasibility
region, thus speeding up eventually the convergence of the
OPF problem.

7) SSSC-OPF problem formulation:The formulation of the
SSSC-OPF problem is summarized below:

Minimize (6)

subject to

1) Power flow equations for the adjusted operating condi-
tion (8)-(9).

2) Power flow equations for all the stressed operating
conditions (18)-(19).

3) Technical limits (26)-(35).
4) Small-signal stability constraints (36) and (43)-(44).
5) Other constraints (45)-(48).

The optimization variables of the proposed SSSC-OPF prob-
lem are:Vn, θn, V s

n , θsn, PGj , QGj , PDi, P s
Gj , Q

s
Gj , ∆P

up
Gj ,

∆P down
Gj , ∆P up,s

Gj , ∆P down,s
Gj , ∆P down

Di , ∆V up
n , ∆V down

n ,
∆V up,s

n , ∆V down,s
n , andδP s

Gj .

B. Security Redispatching Procedure

The proposed OPF problem includes an “adjusted” op-
erating condition as well as a number of “stressed” ones.
Each stressed operating condition has to be stable at the
desired loading levelλSM. This means that each stressed
operating condition has to be both a feasible power flow
solution (i.e., voltage stable) and a feasible equilibriumpoint
(i.e., small-signal stable). In other words, we first ensurethat
the current operating condition is sufficiently far away from
voltage instability and then ensure that it is sufficiently far
away from small signal instability. Note that without ensuring
voltage stability, it is not possible to run an eigenvalue analysis
at the equilibrium point, since such equilibrium point would
not exist. Hence, the voltage stability is a pre-requisite for the
small signal stability but is not “coupled” with it.

The proposed security redispatching procedure based on the
proposed SSSC-OPF works as follows.

1) Base Case Solution. The base case solution corresponds
to the solution of a dispatching procedure (e.g., a market
clearing procedure) adjusted by losses in such a way that
the voltage profile is optimized.

2) Selection of Stressed Operating Conditions.

For each considered contingency, the loading marginλ∗

of the system is computed by means of the maximum
loading condition (MLC)-OPF problem described in
Appendix A. At the maximum loading condition an
eigenvalue analysis is carried out (see Appendix B). For
a given security marginλSM, the contingency is selected
if:

a) λ∗ < λSM. This means that the system exhibits po-
tential voltage instability at the considered loading
condition.

b) The real part of an eigenvalue at the maximum
loading condition is positive. This situation implies
that a Hopf bifurcation has occurred. Thus, the
system can be subjected to small-signal instability
at the required loading condition.

A set of stressed operating condition constraints is
included in the SSSC-OPF problem for each selected
contingency fixing the value ofλSM in (18) and (19).

3) Solution of the SSSC-OPF problem. The OPF problem
described in Subsection II-A7 is solved and the adjusted
and the stressed operating conditions are computed. The
first time that this problem is solved, constraints (36) and
(43)-(44) are not included.

4) Eigenvalue Analysis. An eigenvalue analysis is carried
out in order to determine the stability of each stressed
operating condition computed in step 3. This analysis
requires two preparatory steps: (i) computing the equi-
librium point through the initialization of the dynamic
devices (e.g., synchronous machines and AVRs); and (ii)
setting up the system state matrix for that equilibrium
point. Regarding the stability of the stressed operating
conditions, two scenarios are possible:

a) The real part of all eigenvalues associated with
all stressed operating conditions are negative. All
stressed operating conditions are thus stable and
the procedure stops.

b) One or more stressed operating conditions show
an eigenvalue with positive real part. For each one
of these contingencies (setSu) sensitivities (38) are
computed and the constraints (36) and (43)-(44) are
added to the SSSC-OPF problem. The procedure
continues at step 3.

The flowchart depicted in Fig. 1 summarizes the proposed
method.

C. Remarks on the Stressed Operating Conditions

How to interpret stressed operating conditions is a delicate
issue in any stability-constrained OPF problem that includes
a loading parameter (e.g., [20], [21]), which is the case of the
proposed SSSC-OPF problem.

It should be noted that the system is not expected to operate
at the loading level defined byλSM. In other words, the load
increase represented byλSM is not a predicted load increase.
Instead, parameterλSM is used for enforcing a margin, in
load terms, to instability. The value ofλSM is fixed by the
ISO. Since each stressed operating condition is defined by a
contingency and by theλSM value, if the system at all the
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Base Case

Selection of Stressed Operating Conditions:

Loading Margin

Eigenvalue Analysis

SSSC−OPF

Yes

No

Stable?

Eigenvalue Analysis

Computation of sensitivities

Definition of stability constraints

End

Fig. 1. Flow chart of the proposed procedure.

stressed operating conditions is stable, then it is assumedto
be stable at the adjusted operating condition as well, and it
has at least a marginλSM to instability even if a contingency
occurs.

The small-signal stability constraints are imposed on the
stressed operating conditions. These constraints force to
change the generator powers in order to ensure small-signal
stability at the conditions imposed. In some cases, the changes
in the stressed operating conditions imply changes at the ad-
justed operating condition. This is due to constraints (18)-(19)
and/or (34)-(35), which link the stressed operating conditions
to the adjusted one. The changes at the adjusted operating
condition correspond to redispatching actions, or preventive
control actions, on the base case operating condition needed
to ensure the desired security marginλSM.

In other cases, the changes in the stressed operating con-
ditions do not involve any change in the adjusted operating
condition. That means that no preventive control actions
are needed to achieve the required security margin and the
adjusted operating condition remains equal to the base case
one.

A particular case isλSM = 0. In this case, besides the pre-
ventive control actions corresponding to the adjusted operating
condition, the solution of the proposed procedure provides
the emergency control actions needed to maintain stabilityif
any of the considered contingencies occurs. These emergency
control actions correspond to the value of the control variables
at the different stressed operating conditions.

III. C ASE STUDIES

In this section, we consider two benchmark systems, namely
the New England 39-bus, 10-machine system and the IEEE
145-bus, 50-machine system. Due to its reduced size, the

TABLE I
NEW ENGLAND 39-BUS, 10-MACHINE SYSTEM. LOADING MARGIN AND

CRITICAL EIGENVALUES FOR THESELECTED CONTINGENCIES.

Contingency λ∗ α± jβ

1 - 2 0.1004 0.1905± j2.5572

1 - 39 0.1004 0.2089± j2.5518

2 - 25 0.1002 0.2095± j2.7582

8 - 9 0.1006 0.0705± j2.6639

9 - 39 0.1007 0.0922± j2.6590

21 - 22 0.0957 0.7435± j2.4743

28 - 29 0.0976 0.4326± j2.9084

39-bus system is particularly well suited for describing the
proposed technique. On the other hand, the 145-bus system
is used for testing the proposed technique on a comparatively
larger system.

A. New England 39-Bus, 10-Machine System

For this system, generators are modeled using a IV-order
model incorporating a primary voltage control, except for
generator 10 that represents an equivalent of the New York
network (i.e., a large inertia). In order to force small-signal
instability, PSS devices are not considered. The full dynamic
data of the system can be found in [22] while the base case
and the economic and technical data are provided in Appendix
C. In this case study, two security margins are considered:
λSM = 0.07 andλSM = 0.09.

Neglecting generator islanding, there are 35 possible line
outages. Solving the MLC-OPF problem defined in Appendix
A and carrying out the eigenvalue analysis, we observe that
seven contingencies are characterized by a small-signal unsta-
ble maximum loading condition. For the considered security
margins, no line outage is selected due to voltage stability
issues. Table I provides the loading marginλ∗ and the cor-
responding critical eigenvalues for the seven contingencies
selected. In summary, the SSSC-OPF problem used in this
case study embodies variables and constraints for the adjusted
operating condition and for seven stressed operating condi-
tions.

After solving the first SSSC-OPF problem, two stressed
operating conditions show a pair of complex eigenvalues with
positive real part for the security marginλSM = 0.07. All
stressed operating conditions are stabilized after 10 iterations
of the proposed procedure usingδP = 1 p.u. andαmax = 0
in the small-signal stability constraints. Table II provides
the critical eigenvalues of the considered stressed operating
conditions for the initial unstable solution and for the final
stable solution obtained after applying the proposed procedure.

The stressed conditions corresponding to the outage of lines
1-2, 1-39, 2-25, 8-9, and 9-39 become stable after the first
iteration.

It is relevant to note that the critical contingencies identified
by means of the MLC-OPF problem given in Appendix A are
not necessarily unstable at the desired security marginλSM if
λ∗ > λSM. On the other hand, if for a certain contingency
λ∗ < λSM, that contingency has to be included in the SSSC-
OPF problem due to voltage stability and/or security issues.
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TABLE II
NEW ENGLAND 39-BUS, 10-MACHINE SYSTEM. CRITICAL EIGENVALUES

OF THE STRESSEDOPERATING CONDITIONS BEFORE AND AFTER

APPLYING THE PROPOSEDPROCEDURE FORλSM
= 0.07.

Iteration 1 Iteration 10

Cont. αs ± jβs αs ± jβs

1 - 2 -0.0350± j2.6911 -0.1580± j2.7349

1 - 39 -0.0206± j2.6725 -0.1631± j2.7043

2 - 25 -0.1605± j2.7804 -0.3038± j2.5579

8 - 9 -0.1451 -0.1449

9 - 39 -0.1477 -0.1476

21 - 22 0.3330± j2.6865 -0.0127± j2.5056
28 - 29 0.2134± j3.0076 -0.1049± j3.0415

TABLE III
NEW ENGLAND 39-BUS, 10-MACHINE SYSTEM. CRITICAL EIGENVALUES

OF THE STRESSEDOPERATING CONDITIONS BEFORE AND AFTER

APPLYING THE PROPOSEDPROCEDURE FORλSM = 0.09.

Iteration 1 Iteration 14

Contingency αs ± jβs αs ± jβs

1 - 2 0.1389± j2.5837 -0.1032± j2.7958
1 - 39 0.1576± j2.5766 -0.1018± j2.7746
2 - 25 0.1817± j2.7639 -0.3902± j2.5315
8 - 9 -0.0088± j2.6779 -0.3711± j2.3574

9 - 39 0.0159± j2.6705 -0.3540± j2.3731
21 - 22 0.7161± j2.4874 -0.0096± j2.7604
28 - 29 0.4228± j2.9157 -0.2930± j3.3282

Observe that the proposed procedure is able to take implicitly
into account these voltage stability constraints.

For λSM = 0.09, six stressed operating conditions show
a pair of complex eigenvalues with positive real part. The
stressed condition corresponding to the outage of line 8-9 is
stable at the first iteration. All stressed operating conditions
are stabilized after 14 iterations of the proposed procedure
(δP = 1 p.u. andαmax = 0). Table III shows the critical
eigenvalues of the considered stressed operating conditions for
the initial unstable solution and for the final stable solution
after applying the proposed procedure.

Figure 2 depicts the resulting generation power adjust-
ments∆P up

Gj and ∆P down
Gj needed for ensuring the consid-

ered security margins. In both cases, no load curtailment is
required. These results show that generation redispatching
can be enough to restore small-signal stability. However,
for security margins higher than 0.10, load curtailment is
needed to stabilize stressed conditions. For example, if the
required security margin isλSM = 0.11, all stressed operating
conditions are stabilized in one iteration with a total load
curtailment of 4.82 p.u.

B. IEEE 145-Bus, 50-Machine System

We consider a slightly modified version of the IEEE 145-
bus, 50-machine benchmark system [23] provided by the soft-
ware package Power System Toolbox (PST) [24]. This system
consists of 145 buses, 453 line/transformers, and 50 machines.
Machines connected to buses 93, 102, 104, 105, 106, 110, and
111, are modeled through a VI-order model. These machines
are equipped with IEEE ST1a exciters including PSS devices.
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Fig. 2. New England 39-Bus, 10-Machine System. Redispatching actions
needed for ensuring a loading marginλSM

= 0.09.

TABLE IV
IEEE 145-BUS, 50-MACHINE SYSTEM. LOADING MARGIN AND

CRITICAL EIGENVALUES FOR THESELECTED CONTINGENCIES.

Contingency λ∗ α± jβ

67 - 124 0.0659 0.2165± j9.7872

102 - 117 0.0671 0.0702± j6.4852

119 - 130 0.0415 -0.0454± j9.4041

119 - 131 0.0392 -0.1010± j0

121 - 125 0.0521 0.2882± j9.5961

The classical model is used for the remaining machines. We
have removed the PSS device from the machine connected to
bus 102 in order to force small-signal instability. The base-
case operating condition and dynamic data of this system can
be found in [24], whereas economic and technical data are
provided in Appendix C.

For this system, 434 possible line/transformer outages are
analyzed. In the contingency filtering procedure, the MLC-
OPF problem described in Appendix A is solved and an
eigenvalue analysis at the maximum loading condition is
carried out for each contingency. The desired security margin
is set toλSM = 0.05. According to the contingency analysis,
five contingencies have be considered in the stressed operating
conditions. Table IV provides the system loading margin and
the critical eigenvalues for these five contingencies. Since
the system loading marginλ∗ for line 119-130 and 119-
131 outages is smaller than the required security margin
λSM = 0.05, these contingencies can potentially lead to
voltage stability issues. On the other hand, line 67-124, 102-
117 and 121-125 outages show positive eigenvalues at the
maximum loading condition. Thus, these contingencies are
selected due to the risk of small-signal instability at the loading
condition corresponding toλSM = 0.05.

The SSSC-OPF problem for this case study includes vari-
ables and constraints for the adjusted operating condition
and for five stressed operating conditions. Table V provides
the critical eigenvalues of the considered stressed operating
conditions for both the initial and the final iteration of the
proposed procedure.



9

TABLE V
IEEE 145-BUS, 50-MACHINE SYSTEM. CRITICAL EIGENVALUES OF THE

STRESSEDOPERATING CONDITIONS BEFORE AND AFTERAPPLYING THE

PROPOSEDPROCEDURE.

Iteration 1 Iteration 9

Contingency αs ± jβs αs ± jβs

67 - 124 0.2740± j9.7602 -0.5177± j9.3964
102 - 117 -0.1009± j0 -0.1009± j0

119 - 130 -0.1009± j0 -0.1009± j0

119 - 131 -0.1010± j0 -0.1010± j0

121 - 125 -0.1010± j0 -0.1010± j0

The solution of the SSSC-OPF problem without including
small-signal stability constraints (first iteration of thepro-
posed procedure) shows generation redispatching and load
curtailment. This result is mainly due to the stabilizationof
the stressed operating conditions corresponding to line 119-
130 and 119-131 outages. Note that, for these contingencies,
λ∗ < λSM. The load curtailment affects all stressed oper-
ating conditions in such a way that the stressed conditions
corresponding to line 102-117 and 121-125 outages do not
present unstable eigenvalues. However, the stressed operating
condition corresponding to line 67-124 outage shows small-
signal instability. This stressed operating condition is stabilized
in the ninth iteration usingδP = 1 p.u. andζmin = 0.05 in
the small-signal stability constraints. The final solutionshows
a total load curtailment of 2.4078 p.u. Note that standard
PSS models are included in VI-order machines, i.e., the full
differential-algebraic equations of such controllers have been
included in the system model in order to properly compute
the state matrix eigenvalues. Thus, PSS actions are implicitly
and fully taken into account in the proposed procedure in the
same way as generator and AVR models are.

Figure 3 depicts two time-domain simulations of the 145-
bus system at the stressed operating condition corresponding
to line 64-124 outage when subjected to a small disturbance.
In particular, Fig. 3 shows the unstable rotor speed trajectories
for the solution of the first iteration and the stable transient
for the final solution of the proposed method. Time-domain
simulations confirm eigenvalue analysis.

C. Simulation Times

All simulations presented in this paper have been carried
out using Matlab 7.6 [25] and GAMS 22.7 [26], in a Sun
Fire X4600 M2, with eight quad-core processors clocking at
2.9 GHz and 256 GB of RAM memory. For solving power
flows, eigenvalue analysis and time-domain simulations, PSAT
[27] has been used. All OPF problems has been solved using
CONOPT [28] under GAMS.

Each iteration of the proposed procedure involves eigen-
value analysis, computing sensitivities and solving the SSSC-
OPF problem. Eigenvalue analysis is performed for each
stressed operating condition obtained after solving the SSSC-
OPF problem. Sensitivities of the critical eigenvalue realpart
with respect to each generator power output are computed
by means of numerical differentiation, as described in sub-
section II-A5. Computing sensitivities implies an additional
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Fig. 3. IEEE 145-bus 50-machine system. Time-domain simulation of the
stressed operating condition corresponding to line 64-124outage. Plot (a)
corresponds to the first solution and plot (b) to the final solution.

TABLE VI
COMPUTATIONAL REQUIREMENTS OF THE PROCEDURE ITERATIONS

39-bus system 145-bus system

Step Average Total Average Total

CPU [s] CPU [s] CPU [s] CPU [s]

Eigen. Analysis 0.04 4.20 0.29 13.05

Sensitivities 0.18 148.84 0.68 270.06

SSSC-OPF 0.31 4.34 54.57 491.14

Total CPU [s] - 157.38 - 774.25

eigenvalue analysis and to evaluate expression (40) for each
generator and for each small-signal unstable stressed operating
condition. Once sensitivities are computed, the corresponding
sets of constraints (36) and (43)-(44) are included in the SSSC-
OPF problem to be solved. Table VI provides the average step
and the total CPU times for the simulations based on the 39-
bus and on the 145-bus system. Simulation times for the 39-
bus system refers to the simulation forλSM = 0.09.

The proposed procedure comprises some steps that are
time consuming, potentially making their implementation im-
practical for large-scale power systems. This is the case
of the eigenvalue analysis and the sensitivity computation.
The computational burden of the eigenvalue analysis can be
reduced computing only the critical eigenvalues (e.g., using
Rayleigh’s iteration method). For simplicity, sensitivities have
been computed using numerical differentiation. Dependingon
the system size, numerical differentiation may entail a non-
negligible computational burden. However, as the sensitivity
computations are independent of each other, the required CPU
time can be reduced using parallel computation techniques.Al-
ternatively, closed formulas for computing sensitivitiesreduce
significantly the computational burden. These formulas can
be found, for instance, in [29]–[32]. Since this paper focuses
on the design of an effective procedure, these computational
issues have not been specifically addressed.
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IV. CONCLUSIONS

This paper presents a security redispatching procedure able
to resolve stability issues pertaining to both voltage stabil-
ity and small-signal stability. It is intended to help system
operators guarantee an appropriate level of security for the
operation of the system. The proposed procedure provides the
optimal redispatching actions on the base-case solution that
allow ensuring the required security margin.

The proposed procedure is able to incorporate theN − 1
security criterion. In order to reduce the size of the resulting
OPF problem, a prior contingency filtering is used for reducing
the size of the SSSC-OPF problem, thus incorporating only
contingencies that threaten system stability.

Another advantage of the proposed technique is the fact
that the redispatching procedure is separated from the small-
signal stability analysis, which allows maintaining the OPF
problem tractable and structurally similar to existing redis-
patching problems. Simulation results show the effectiveness
of the proposed procedure. Future work will focus on the
development of a specific solution algorithm for the proposed
SSSC-OPF problem to speed up computations.

APPENDIX A
DETERMINATION OF THE MAXIMUM LOADING CONDITION

In this appendix we define the problem for computing the
maximum loading condition point that is used in the step 2 of
the proposed procedure, as follows:

Minimize − λ (49)

subject to
∑

j∈Gn

PGj − (1 + λ)
∑

i∈Dn

PA
Di =

∑

k∈Ωn

V 2
n (Gk + 0.5Gk0)

(50)

− VnVm(Gk cos θnm +Bk sin θnm), ∀n ∈ N
∑

j∈Gn

QGj − (1 + λ)
∑

i∈Dn

QA
Di =

∑

k∈Ωn

−V 2
n (Bk + 0.5Bk0)

(51)

− VnVm(Gk sin θnm −Bk cos θnm), ∀n ∈ N

PGj − PA
Gj ≤ Rup

Gj∆t, ∀j ∈ G (52)

PA
Gj − PGj ≤ Rdown

Gj ∆t, ∀j ∈ G (53)

and constraints (26), (28), (30), (32), (45) and (47).
The superscript “A” denotes base case. Constraints (50)-(51)

represent the power flow equations with inclusion of one line
outage, whereas (52)-(53) represent the generators ramp up
and ramp down limits, respectively, for the considered time
period∆t.

Since in the optimization problem above we use only static
equations (i.e., power flow equations), the resultingλ∗ does
not take into account Hopf bifurcations. Thus, an eigenvalue
analysis of the system at the loading level defined byλ∗ is
carried out separately including generator dynamic models.

APPENDIX B
SECURITY ASSESSMENT: CONTINGENCY FILTERING

This section describes the procedure used for identifying
the harmful contingencies related to small-signal instability as
well as to voltage instability. The initial set of contingencies
includes all contingencies of theN − 1 security criterion, that
is, a single outage of any system element. For a given security
margin λSM, the contingency screening procedure works as
follows:

1) For each one of the initial set of contingencies, the
maximum loading condition and the loading marginλ∗

of the system are computed using the problem described
in Appendix A.

2) At the maximum loading condition a modal analysis is
carried out and the eigenvalue with the largest real part
α is computed.

3) If λ∗ ≤ λSM, the contingency is selected. At the loading
condition defined byλSM the system exhibits potential
voltage instability.

4) If α ≥ 0, the contingency is selected. This situation
implies that a Hopf bifurcation has occurred. Thus, at
the loading condition defined byλSM, the system may
suffer small-signal instability.

5) If λ∗ > λSM andα < 0, the contingency is filtered out.

Note that the computation ofλ∗ for one contingency and the
modal analysis at the corresponding maximum loading condi-
tion are independent of other contingencies. This fact can be
exploited for reducing CPU time using parallel computation.

APPENDIX C
SYSTEM DATA

This Appendix provides economic data and technical limits
used in the case studies presented in Section III. For both the
39-bus and the 145-bus systems, the considered time period is
set to∆t = 5 minutes and the probability of the occurrence of
each selected contingency is̺s = 0.01. The units of penalty
factors are introduced only for compatibility with costs.

A. New England 39-Bus, 10-Machine system

Table VII provides the generated active powers and voltage
magnitudes at the generator buses for the base case, the offer-
ing costs of generators for redispatching purposes, and gen-
erator limits. With respect to the offering costs,cupGj = cdown

Gj

for all generators. With respect to generator limits,Pmin
Gj = 0,

Qmin
Gj = −Qmax

Gj andRup
Gj = Rdown

Gj for all generators. With
regard to bus voltage magnitude limits,V max

n = 1.05 p.u. and
V min
n = 0.95 p.u. for all generator buses, andV max

n = 1.1
p.u. andV min

n = 0.9 p.u. for the remaining buses.
The load has been increased by15% with respect to the base

case shown in [22]. For all loads, cost of decreasing load,
cdown
Di , is 1000 $/p.u.h, and for all generator buses, costs of

increasing and decreasing voltage magnitude,cupVn andcdown
Vn ,

is 100 $/p.u.h
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TABLE VII
GENERATORDATA FOR THE NEW ENGLAND 39-BUS, 10-MACHINE

SYSTEM

Gen. PA
Gj

V A
n cdown

Gj
Pmax
Gj

Qmax
Gj

Rdown
Gj

# [p.u.] [p.u.] [ $
p.u.h

] [p.u.] [p.u.] [ p.u.
min.

]

1 2.9134 1.0433 6.9 4.025 2.4945 0.0671

2 5.9783 1.05 3.7 7.475 4.6326 0.1246

3 7.8748 1.05 2.8 9.200 5.7016 0.1533

4 7.3089 1.05 4.7 8.625 5.3453 0.1437

5 5.7801 1.05 2.8 7.475 4.6326 0.1246

6 7.4560 1.05 3.7 8.625 5.3453 0.1437

7 6.4704 1.05 4.8 8.625 5.3453 0.1437

8 6.1246 1.05 3.6 8.050 4.9889 0.1342

9 9.4772 1.05 3.7 10.350 6.4144 0.1725

10 11.2828 1.05 3.9 13.800 8.5525 0.2300

B. IEEE 145-Bus, 50-Machine system

Technical limits, offering costs and penalty factors used for
the 145-bus system are as follows. Bus voltage magnitude
limits are V max

n = 1.1 p.u. andV min
n = 0.9 p.u. for all

generator buses, andV max
n = 1.2 p.u. andV min

n = 0.8 p.u. for
the remaining buses.Pmin

Gj = 0 is used for all generators,
whereasPmax

Gj is set to the value that results from increasing
a 10% the base-case active power output of each generator.
Ramping limits areRup

Gj = Rdown
Gj = (Pmax

Gj − Pmin
Gj )/60

p.u./min. Generator reactive power limits are provided in [23].
With regard to the offering costs and penalty factors, we use
cupGj = cdown

Gj = 10 $/p.u.h for all generators,cdown
Di = 1000

$/p.u.h for all loads, andcupVn = cdown
Vn = 100 $/p.u.h for all

generator buses.
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