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Abstract

The paper is concerned with the development and evaluation of control algo-

rithms for the implementation of demand response strategies in a smart-grid

enabled all-electric residential building. The dwelling is equipped with a 12 kW

heat pump, a 0.8m3 water storage tank, a 6 kW photovoltaic (PV) array, solar

thermal collectors for domestic hot water heating and an electric vehicle. The

building, located in Ireland, is fully instrumented. An EnergyPlus building sim-

ulation model of the dwelling was developed and calibrated using monitored data

from the building. The developed model is used to assess the effectiveness of

demand response strategies using different time-of-use electricity tariffs in con-

junction with zone thermal control. A reduction in generation cost (-22.5%),

electricity end-use expenditure (-4.9%) and carbon emission (-7.6%), were es-

timated when DR measures were implemented and compared with a baseline

system. Furthermore, when the zone control features were enabled, the effi-

ciency of the control improved significantly giving, an overall annual economic

saving of 16.5% for the residential energy cost. The analysis also identified an

annual reduction of consumer electricity consumption of up to 15.9%, lower car-

bon emissions of 27% and facilitated greater utilisation of electricity generated
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by grid-scale renewable resources, resulting in a reduction of generation costs

for the utility of up to 45.3%.

Keywords: residential building, control algorithms, demand response,

renewable energy, time of use tariff, energy management system, thermal

storage, building simulation, flexibility, smart grid

1. Introduction

Over the past decade, government policy initiatives have established ambi-

tious targets for the increased penetration of renewable generation in power sys-

tems to combat the threat of climate change. Large-scale renewable generation

penetration presents major challenges for Transmission System Operator (TSO),5

challenging established methods of balancing supply and demand [1]. Tradition-

ally, supply-demand balancing measures have been achieved by controlling the

output of conventional generation in response to changes in the demand. With

increasing renewable generation, however, there are greater fluctuations on the

supply side, requiring faster-balancing response from grid operators. Conven-10

tional generation units, however, may not have sufficient ramping capabilities to

counter rapid fluctuations in renewable energy. In Ireland and UK, the domestic

sector accounts for more than 27% of the total end-use electricity consumption

[2]. This electricity demand peaks in winter due to increased lighting and heating

demand, and these peaks result in high wholesale electricity prices and reduced15

reliability due to tight generation reserve margins. Without sufficient forward

planning on the generation side, high penetration levels of renewable generation

and high demand peaks may lead to system contingencies, or in an extreme case,

system blackouts [3]. Demand Response (DR) is one of the Demand Side Man-

agement (DSM) measure that has being promoted since 1970’s in the UK and20

other countries, so as to reduce high winter peaks as well as avoiding associated

grid upgrade costs [4]. More recently, there has been renewed interest in DR

as a mechanism to increase the percentage of renewable energies in the system

[5]. Demand response (DR) has been defined as “changes in electricity use by
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demand-side resources from their normal consumption patterns in response to25

changes in the price of electricity or to incentive payments designed to induce

lower electricity use at times of high wholesale market prices or when system

reliability is jeopardized” [5]. DR can be price-based such as Real Time Price

(RTP), Critical Peak Price (CPP) and Time of Use Tariff (TOU) or incentive-

based, where the participating customers are rewarded for reducing their load30

when requested by an aggregator or TSO [4]. DR measures can have different

levels of automation. Manual DR requires human intervention to shift or force

loads or to change set point temperature. In the semi-automated measures, an

energy manager operates a centralised system to initialise the demand response

strategy. In the fully automated DR strategies, an external communication sig-35

nal triggers the pre-programmed methods, and thus does not require human

interaction. In the latter case, the responsible subject should be able to over-

ride the event at any time [6]. Among several challenges for DR schemes, is

the reliable availability of the resources. The DR system may not be in a po-

sition to respond to high peak prices. Capturing the time-varying availability40

using advanced metering and tailored metrics is a necessity for the success of

DR schemes. Furthermore, the impact of stochastic consumer behaviour can af-

fect the benefit of DR programs. However, such irregularities can be smoothed

by resource aggregation. As noted in Nolan et al. [7], the aggregation of few

thousands of households represents a stable DR system resource. Hence, the do-45

mestic sector electricity demand can provide services such as spinning reserve,

frequency control or short term operating reserve.

Therefore, exploiting residential flexible electricity demand, facilitated by

clear and appropriate regulation to promote the operation of demand response

programmes, can be part of the solution for the power system balancing chal-50

lenges [8]. In this work, demand flexibility is considered as the ability to force

(activate) or shift (defer) building electrical energy consumption, based on sup-

ply constraints at a current or future time. In a residential building, the flexible

loads can be appliances, electric vehicles or space and water heating systems.

Flexibility is generally enabled by means of energy storage systems, which can be55
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electrical (e.g., electrical vehicle, battery) or active thermal storage (e.g., phase

change material, water tank) or passive thermal storage (e.g., building fabric).

By using an Energy Management System (EMS), capable of integrated control

of the overall domestic electrical demand, it is possible to dynamically adapt

the supply to demand response signals, thereby providing short-term reserve60

to the power system without affecting the thermal comfort of the occupants.

In fact, with the improvements in computer and communication technology, it

is possible to conceive a fully automated DR systems in the domestic sector.

However, to utilize residential buildings as flexible electricity demand resource,

additional communication infrastructure and large-scale data is required. The65

data required includes real-time prices, weather forecasts, energy mix genera-

tion and end-use consumption. To this end, the upcoming smart grid has the

objective to provide a bidirectional communication system to exchange data

from electricity generation to end-use though better control. Such technologies

aim to increase the resiliency of the network, integrate a higher percentage of70

renewable energy and storage resources, as well as maximising asset utiliza-

tion. Alam et al. [9] define a smart dwelling as the end node of the smart grid

which provides services in the form of ambient intelligence, remote home con-

trol, or home automation. In a smart house, the EMS adapts the house energy

consumption to the overall grid requirements without affecting the comfort of75

the occupants. Furthermore, each dwelling or node of the smart grid has the

possibility to broadcast information about its electricity consumption profile

and status. Advanced communication infrastructure, along with appropriate

end-use optimization algorithms, can potentially allow end-users to shape their

electricity consumption according to price signals, which would follow the real-80

time balance between renewable energy generation and power system demand.

The use of price signals based on TOU tariffs to manage household electric-

ity demand has been extensively explored in the literature [4]. Nevertheless

exposing end-users to price variations does not necessarily lead to energy cost

savings [10]. Especially for residential buildings, the daily economic benefit of85

peak reduction may be of little financial incentive to the consumer, and thus
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may not result in a change in consumer behaviour. For this reason, the ma-

jority of the projects in the DR area include the use of information technology

to develop automated systems for the management of the end-use participation

[11]. A residential building energy management system can analyse the data90

provided by the Smart Grid to trigger DR measures to assist grid operators

in maintaining the supply-demand balance on the power system. At the same

time, the system tries to optimise electricity consumption and production in a

manner that delivers the households energy services demands while minimising

their energy costs.Furthermore, increasing the integration of advanced energy95

management systems presupposes significant electrification of building thermal

loads, on-site generation and highly energy efficient building envelopes.

In the future, electrification of domestic heating systems through the deploy-

ment of heat pumps is expected to alter residential electrical energy demand

patterns substantially [12]. Hydronic heat pumps are an especially efficient way100

of electrifying residential thermal loads and can be easily coupled with thermal

energy storage systems, either active, such as water tanks, or passive, such as

building thermal mass. This trend towards greater levels of electrification of

thermal loads in buildings is already present with IEA [13] anticipating signifi-

cant growth in the number of heat pump installations worldwide in the coming105

decade. As illustrated by Hong et al. [14], heat pumps can provide flexibility

while meeting the end-user thermal comfort expectations. A simulation desk

study performed as part of this research illustrates how the comfort tempera-

ture settings can affect the available shifting time provided by the combination

of a heat pump and thermal storage. In energy efficient buildings, electrically110

driven heating systems such as heat pumps in conjunction with sophisticated

control algorithms can provide demand response capabilities to the power grid

[15]. However, according to Fuller et al. [16], until equipment and algorithms

can be validated and benchmarked, it is difficult for utilities and regulators to

install, operate and exploit these new resources. Therefore, the use of advanced115

analytical tools, building simulation software and appropriate metrics can help

to assess the value and the risks of new technologies that provide electricity
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demand flexibility.

In the literature, there are numerous examples on how to exploit building flexi-

bility and quantify its value at an aggregated level. Nuytten et al. [17] assessed120

the thermal flexibility of a centralised heating system and a thermal storage fa-

cility of 800 kWh connected to an aggregate residential district of 100 buildings.

Such analysis is useful for small district heating, but it is challenging to apply

this analysis to a single building where occupancy profiles and different heating

systems could affect the results significantly. Furthermore, Mohsenian-Rad et al.125

described an optimal residential control algorithm capable of reducing the peak

energy load and shift loads to periods of lower electricity prices [18]. The assess-

ment is based on a mathematical model which cannot be easily implemented in

a real building. Other researchers have focused on the EMS hardware design

incorporating demand response capabilities [19] or on how to reduce the elec-130

tricity cost for a single residential building [20]. Kolokotsa et al. [21] developed

an integrated indoor management system for buildings using a fuzzy controller.

They were able to consider the comfort constraints of the occupants by tuning

and optimising the system using two demonstration buildings in Greece. How-

ever, the control algorithm assessment in real buildings could require years of135

analysis before having consistent results, and it is difficult to validate the benefit

of small control flow variations.

Tahersima et al.[15] highlighted how a ground source residential heat pump

controlled by a smart algorithm can compensate for grid imbalances utilising

the thermal storage of the building mass within a thermal comfort band. In140

order to maximise the stored energy while keeping the temperature within an

established range, a flexible temperature set-point was defined, which was ad-

justed according to electricity tariffs. It was clear from this research that the

thermal mass associated with the residential building can reduce undesirable

temperature fluctuations and maintain occupant thermal comfort. Neverthe-145

less, further assessment of the overall economic and environmental benefits of

these solutions are required.

The contribution of this paper is the development of a demand response
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control algorithm that reduces the overall cost of energy and annual carbon

emissions for different stakeholders. The objective of the control algorithm is to150

minimise energy costs for both the house owner and electricity generation, by

taking advantage of time-of-use electricity tariffs, as well as enabling reductions

in CO2 emissions. The algorithms use thermal comfort criteria as a constraint

and facilitates a clear assessment of benefits derived, based on market and power

grid data. A key feature of the implemented control system is a dynamic as-155

sessment of the system flexibility which is capable of being calculated every 15

minutes, and thus can be used by DR aggregators to activate demand response

actions in real time. To assess the benefit of the control system, a software

model of an all-electric dwelling and its associated energy conversion system

was developed using EnergyPlus and calibrated using on-site data, which was160

monitored over a full heating season. The paper is organised as follows: Section

2 includes the description of the building, the installed energy systems, the oc-

cupancy profile and the tariffs used. Section 3 describes the control algorithm.

In Section 4, the performance results are presented utilising different demand

response strategies. Section 5 concludes the paper.165

Figure 1: Test bed house and EnergyPlus model
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2. Building description

The all-electric building used as a test bed in the current work is situated in a

rural location in eastern Ireland (Figure 1). The dwelling was retrofitted in 2012

and fully instrumented. The building was renovated to meet 2020 scenario as170

outlined in the Residential Energy Roadmap for Ireland [22]. This publication

sets out scenarios that show what reduction level of CO2 emissions is achievable

with different retrofit measures. The scenarios include a higher penetration

of solar thermal and solar PV, storage heating and heat pump systems. The

majority of these systems are present in the test building considered in the175

current study. Moreover, the test building energy consumption and the CO2

emissions are also aligned with the 2020 scenario. Furthermore, the building was

equipped with technologies that have been identified by the Irish Commission

for Energy Regulation as appropriate to offer demand response services. These

technologies, which if adopted in the residential sector would enable demand180

response in the Irish power system [23], are summarised in Table 1, where their

presence in the test bed building is also reported. One measure absent from the

current building is frequency response capabilities, which would typically be

enabled by home automation systems. Given the rural position of the building

and the associated network distribution system layout, the dwelling is at the185

terminal side of a distribution branch. In this location, the electricity supply

is more prone to voltage fluctuations that mitigate against the implementation

of frequency response measures. An EnergyPlus building model was developed

and calibrated against metered data using an hourly resolution according to

ASHRAE recommendations [24]. The Average Percentage Error (APE) was190

used to indicate the accuracy of the calibrated building model and is based on

an annual error specification calculated using one year of data (2012).

2.1. Architecture and building physics

The dwelling, a single storey building, was constructed using a two leaf

concrete wall with core insulation. Therefore, the inner wall displays significant195
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Table 1: CER Index: Demand Response Measures[23]

Technologies Delivery Cost Ranking Test Bed House

Energy efficiency - Domestic Medium High Present

Smart meter system - Dynamic

ToU tariff
Medium High

Home automation - Direct load

control
Medium High Present

Home automation -

Autonomous
Low High Present

Home automation -

Frequency-responsive
Medium High

Storage - Heat Low High Present

Smart meter system - Advanced

displays
Low Medium Present

Smart meter system - Static

ToU tariff
Low Medium Present

Electric vehicles - Price

responsive charging
Medium Medium

Behavioural change - Education Low Low Present

Heat pumps - fitted with storage High Low Present

Storage - Electric High Low

Electric vehicles - Night charge Low Neutral Present

Electric vehicles - Hybrid

vehicles
Medium Neutral

Microgeneration – Controllable Low Neutral Present
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Table 2: U-Value of different building elements

Building Element

U-Value Test

building

(W/m2K)

U-Value Irish

Building

Regulations[25]

(W/m2K)

Walls 0.25 0.21

Roof 0.25 0.21

Windows 1.7 1.6

Floor 0.21 0.21

passive thermal energy storage capacity. The floor area is 205m2 and the overall

window to wall ratio is 15%, with a 22% and 10% ratio on the south and north

facades, respectively. The house has 12 rooms and an unused attic space at roof

level. Although its architectural characteristics are those of a typical rural Irish

bungalow dwelling of the 1970s, its fabric specifications are very close to the200

current Irish building regulation values [25] as outlined in Table 2. According

to [26], the building category considered in the current work is classified as a

detached house, which represents 40% of the Irish building stock and is the most

common single building category.

2.2. HVAC and energy systems205

For space heating, the house is equipped with a 12 kW ground source heat

pump, which is connected to a hot water tank of 0.8m3 for thermal storage, and

an associated hydronic heating system. Convectors are present in each room,

while there is an additional 5 kW wood stove in the kitchen. The wood stove

is used only during the heating period, from October to April. A photovoltaic210

panel array consisting of 30 panels, of a total nominal power of 6 kWp is also

installed. It is located 30 meters from the house and any power losses from

cables are taken into account. The PV system was metered for one year with a

15 minute resolution.The electricity produced by the PV system and the Ener-
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gyPlus model was found to be accurate to within APE +/- 5.8%. Solar thermal215

collectors of surface area 6.15 m2 are used for heating of Domestic Hot Water

(DHW) in conjunction with a 250 litre water storage tank. A 2 kW electric

immersion heater is used as backup. The water tank is modelled in EnergyPlus

as a fully mixed system [27]. The overall DHW system was calibrated with

measured data and was found to be accurate to within APE +/- 13%.220

2.3. Air Exchange

The building is equipped with a Heat recovery ventilation (HRV) system

with air extraction points located in the kitchen and bathroom. The particu-

lar HRV system has an average sensible heat transfer effectiveness of 80% and

operates only during the heating period while during summer, natural ven-225

tilation (window opening) is being used. Based on the approach outlined in

[28], the combined infiltration and ventilation rates were adjusted such that

an average annual value was utilised. For infiltration and ventilation purposes,

the building is divided into two sections with the following ACH settings: a

kitchen/living/bathroom zone (ACH 1.5) and a sleeping/utility zone (ACH 1.0).230

Infiltration and ventilation rates are adjusted in each time-step using weather

data (wind speed and temperature differential between indoors and outdoors)

according to ASHRAE [29]. Therefore, seasonal (summer/winter) and daily

(day/night) variations of both infiltration and ventilation rates were taken into

account based on environmental conditions resulting in modifications to the235

above design flow rates.

2.4. Electric car

A Nissan Leaf with a 24 kWh battery pack is used for daily commuting

of approximately 50 km. According to Smith [30], the energy consumption by

Electric Car (EV) depends on the season due to the air conditioning require-240

ments of the cabin, which can significantly affect the energy performance of the

car. The electricity consumption of the EV for the system simulation model

was set to 150 Wh/km during the summer and 250 Wh/km during the winter.
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The car is charged overnight when electricity prices are lower. The daily energy

requirement of the car is 12.5 kWh in the winter and 7.5 kWh in the summer.245

During night time charging, the electricity drawn is assumed to follow the pat-

tern suggested by Marra et al. [31]. The model used in EnergyPlus was found

to be accurate to within APE +/- 3.5% of the referenced data.

2.5. Occupancy profiles

Two adults occupy the house. Occupancy profiles, domestic hot water usage250

patterns, use of electric equipment and lighting, and the respective distribution

of internal heat gains were calculated based on the national time of survey

resident activity data. As outlined in [32], using time of use data, Markov

Chain Monte Carlo techniques were applied to develop high time resolution and

disaggregated residential appliance electricity use patterns. In the current work,255

daily power consumption patterns, for different household sizes and different day

types, were quantitatively and qualitatively validated against metered data. The

synthesized profiles were calibrated with the appropriate occupant adjustments

to replicate better the real life activity patterns.

2.6. Weather data260

The weather data used was collected from the closest available weather sta-

tion (Dublin Airport) which is located 35 km from the dwelling. In order to

generate an appropriate weather data file, measured data from 2012 was ana-

lyzed using the Real Time Weather Converter software package [33]. This tool

creates weather files by combining observed weather data from the Integrated265

Surface Database (ISD) with the STRÅNG mesoscale solar radiation model.

2.7. Building model

The building model was calibrated with measured data from the site. A

15 minute time step was used for the simulations. Given that the objective

of the paper is to assess the building demand flexibility as secondary reserve270

and not for frequency response, a 15 minute resolution was considered to be
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Table 3: Time of Use electricity tariffs (e/kWh)

Weekdays Weekdays

A B C D Flat SMP (avg) A B C D Flat SMP (avg)

eKWh B C D Flat SMP (avg) A B C D Flat SMP (avg)

00:00-08:00 0.12 0.11 0.1 0.09 0.135 0.046 0.12 0.11 0.1 0.09 0.135 0.044

08:00-17:00 0.14 0.135 0.13 0.125 0.135 0.065 0.14 0.135 0.13 0.125 0.135 0.062

17:00-19:00 0.2 0.26 0.32 0.38 0.135 0.097 0.14 0.135 0.13 0.125 0.135 0.088

19:00-23:00 0.14 0.135 0.13 0.125 0.135 0.071 0.14 0.135 0.13 0.125 0.135 0.067

23:00-00:00 0.12 0.11 0.1 0.09 0.135 0.053 0.12 0.11 0.1 0.09 0.135 0.053

sufficient according to the technical specifications associated with the provision

of ancillary services in the Irish electricity market[34]

2.8. Electricity price

During the last decade, time of use electricity tariffs are increasingly being275

utilised in the US and to a lesser extent in European markets[23] . In 2010,

the Irish Commission for Energy Regulation initiated a residential smart meter

trial, with associated tariffs (A, B, C, D, Flatrate) as shown in Table 3 [35].

The pricing scheme reflects the trend of the Irish System Marginal Price (SMP)

Average and consequently of the overall electricity demand. These tariffs, along280

with a PV electricity export of 0.09 € per kWh were used in the current work.

3. Demand response control algorithms

The demand response algorithm implemented in the current paper had to be

capable of being integrated into a high-resolution simulation environment such

as EnergyPlus while keeping any hardware installation as simple as practica-285

ble. This required the use of the simplified programming language embedded

with the simulation engine (ERL) [27]. Due to the technical limits of the pro-

gramming language, the selection of suitable controlling algorithms was limited.

Other constraints include that the algorithm had to be adaptable to occupant

comfort profiles without the need for processing historical data. Furthermore,290

residents should be able to override the algorithm on demand. A rule-based

algorithm capable of been easily tuned by occupants based on their profile was
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therefore chosen, as it could be tested in the simulation environment while

meeting all the mentioned requirements. The rule-based control algorithm was

developed, tested and subjected to the three different case scenarios described295

in Table 4, as well as being compared with a baseline case. Control is based on

a heuristic response to a time-of-use (TOU) price scheme described in Section

2.8. The control algorithm was embedded in an energy management system

within the EnergyPlus model using the native programming language [36]. The

objective function (Eqn 1) of the energy management system is to reduce the300

owner energy cost while maintaining the comfort constraints (Eqn 2), which can

be written as follows:

min
(Ttk,Cset)

(

24∑
t=1

Ce(t)Pe(t, Ttk, Cset)) (1)

Tset(t)− Tbd ≤ Tint(t) ≤ Tset(t) + Tbd t = 1..24 (2)

Tmin ≤ Ttk ≤ Tmax t = 1..24 (3)

where Ce(t) is the price of electricity (€/kWh) and Pe is the electricity

consumption. Pe(t, Ttk, Cset) is the energy consumption in kWh of the build-305

ing simulation model described in this research at each time step t. The cost

optimisation depends on two control variables as follows: (i) the temperature

of the tank (Ttk) which is maintained within the range Tmax and Tmin and,

(ii) the energy supplied to the zones by means of the circulation pump which

can be either ON or OFF (Cset). At each time step, the zone temperature310

(Tint) is maintained at set point as illustrate in Table 5 with an associated 2°C

bandwidth (i.e., +/- 1°C around the setpoint), as shown in Eqn 2; while Eqn 3

constrains the storage tank temperature between its Max and Min temperature

settings, as illustrated in Table 5. The algorithm, outlined in Figure 2, has four

input variables: the building zone temperature, the time, the PV electricity315

production rate and the storage tank temperature. These input variables are

evaluated by the algorithm at each time step and control the heat pump and

the circulation pump. The heat pump exchanges heat with the Thermal En-
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ergy Storage (TES) storage tank by means of a tank heat exchanger coil. The

building hydronic circuit is coupled directly to the TES tank. The tank can also320

be by-passed, thereby allowing the dwelling to be heated directly. The control

algorithm, as outlined in Figure 2, utilises four input variables: time, building

zone temperature, storage tank temperature and PV electricity production rate.

The control algorithm optimises the charge of the TES and associated heating

of the building, while the direct heating of the dwelling can only be manually325

enabled. The algorithm is based on four different rules as follows (see Figure

2):

(Rule 1 Comfort constraint): This rule is activated whenever the building zone

temperature is below the zone comfort constraint for the period, or when the

photovoltaic electricity production is greater than the heat pump electrical de-330

mand. When this condition is verified, the heat pump is switched on to charge

the TES system. If the inside temperature is below the comfort constraint, then

the circulation pump is switched on to heat the building.

(Rule 2 TES charging time): This rule switches on the heat pump during the

night (23:00 – 08:00) to charge the TES. When the TES is fully charged and335

the temperature is below the set point, then the circulation pump is switched

on to supply heat to the house. During weekdays, between 15:00 and 17:00, the

heat pump is switched on to charge the TES.

(Rule 3 Off-peak rule): During the off-peak period when the PV production is

above the threshold, the heat pump is switched on to charge the TES. If the340

inside temperature is below the comfort constraint, then the circulation pump

is also switched on to heat the building.

(Rule 4 On-peak rule): On the weekdays, the heat pump is switched off during

the peak period (17:00 – 19:00) or when the house is not occupied (between

09:00 – 15:00), and the PV production is below the threshold illustrated in Ta-345

ble 4. The threshold corresponds to the heat pump nominal power consumption

(3 kW). When the PV system produces electricity above this threshold, the heat

pump is switched on to exploit PV electricity. The system is turned on for at

least one hour, using the weather data as forecast, in order to avoid intermittent
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switching of the heat pump.
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Figure 2: Algorithm Diagram Flow Chart

350

3.1. Simulation parameters

An analysis of the simulation results using two configurations were chosen

and these are illustrated in Table 4

1. The first control parameter is based on the number of thermostatic controls

in the house. For the Baseline Case and Case 1, a single temperature input355

variable, located in the hallway, controls the heating for the dwelling. For

Cases 2 and 3, multiple temperature measurement control points are used.

2. The second control parameter is the minimum and maximum temperature

set point of the thermal energy storage. For the Baseline Case and Case 1,

the two set points are set at 40°C and 55°C. The maximum temperature of360
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Table 4: Control system for each case

Parameter Description Baseline Case 1 Case 2 Case 3

Building Setpoints No. of programmable thermostats 1 1 5 5

Thermal

Storage

Min temperature 40°C 40°C 40°C 35°C

Max temperature 55°C 55°C 55°C 55°C

PV System Min HP activation power PV Not applicable 3 kW 3 kW 2 kW

TES Charging Charging start time before peak Not applicable 2 hrs 2 hrs 2 hrs

the TES is set with a 5K difference between the outlet temperature from

the heat pump (60°C) and the TES set point. The minimum temperature

was set at 40°C. Case 3 uses 35°C as the minimum temperature

3. The third control parameter is the PV output. If the produced PV power

is higher than the nominal maximum power demand of the heat pump (3365

kW), the heat pump is switched on to charge the TES. Cases 1 and 2 use

a threshold of 3 kW, while Case 3 lowers the threshold to 2 kW.

Test simulations were performed and revealed that switching on the heating

system two hours before the peak electricity price was sufficient to store energy in

the TES to maintain the comfort level while reducing the electricity consumption370

during the peak period.

3.2. Heating period and control

The heating season considered is between 01 Jan-30 Apr and 01 Oct-Dec

31 for the year 2012. The energy assessment uses two different thermostatic

set point configurations utilised in four different cases. Each case represents375

a different rule setting of the algorithm where the objective is to reduce the

overall electricity cost and increase the use of renewable energy or the energy

stored in the tank. The baseline and Case 1 uses a single thermostatic set point

(Configuration 1) for the whole building resulting in a partial cost reduction.

The objective of Case 1 is to charge the storage tank fully and slightly increase380

the indoor temperature during the night, thereby slightly reducing the daily

consumption. Meanwhile, Case 2 and 3 increase the energy efficiency of the
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Table 5: Building thermostatic set points for each case

Configuration 1 Configuration 2 Configuration 1 Configuration 2

Weekdays Baseline and Case 1 Case 2 and Case 3 Weekends
Baseline

and Case 1

Case 2

and Case 3

Corridor Bedrooms Corridor Bedrooms

00:00-06:30 19°C 19°C 17°C 17°C 00:00-06:30

20°C 20°C

06:30-09:00 18°C 18°C 19°C 19°C 06:30-09:00

09:00-16:00 16°C 16°C 16°C 16°C 09:00-16:00

16:00-19:00 18°C 18°C 18°C 16°C 16:00-19:00

19:00-24.00 18°C 18°C 18°C 18°C 19:00-23:59

system by using different set points for each room category (Configuration 2).

In this specific test case, the set points of the kitchen and living room are ig-

nored because the internal heat gains from the wood stove increase the ambient385

temperature beyond the set points without leading to a significant cost reduc-

tion. The two different thermostatic set point configurations are summarised

in Table 5 and they represent the thermal comfort constraints. Given that the

constraints above are satisfied for each case, the economic savings, the envi-

ronmental impact, and the flexibility assessment of the strategies adopted are390

presented in section 4.

4. Case study simulation results

Four metrics were used to assess the performance of the control algorithm

and the energy flexibility in the building. The metrics are as follows:

• Consumer annual electricity consumption395

• Consumer annual electricity cost

• Utility electricity cost

• System flexibility potential

Each of these metrics are considered in the following sections and are assessed

against a baseline scenario.400
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4.1. Assessment of consumer annual electricity consumption
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Figure 3: Annual total electricity consumption.

Figure 3 illustrates the annual house electricity consumption which is im-

ported from the grid for each case. Charging the storage tank before the peak

period and subsequently utilising this energy during the peak period can result

in additional energy consumption, due to additional temperature lift required405

to charge the TES system as well as the associated TES storage losses. Nev-

ertheless, in the current work, the overall net electricity consumption has been

reduced, due to the contribution of the PV system. This is because the heat-

ing system is switched on to charge the TES when the PV electricity generation

reaches a threshold (Table 4). The net reduction attributed to the control strat-410

egy is equal to the power consumption difference between the Baseline and Case

1. However, in Case 2 and 3 compared to Baseline and Case 1, the net reduc-

tion is mainly due to the zone thermostatic set point strategy. Thus, during the

unoccupied hours, the heating system operates, maintaining the temperature of

the zones at the lower bound of the thermal comfort band, resulting in a lower415

electricity demand.

Figure 4 shows the house electricity consumption minus the local renewable

energy production for the baseline case and for each of the three cases. A 15

minute time resolution is used, where each data point is determined by sum-
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Figure 4: Annual summated electricity consumption and power system CO2 emission

ming each time associated electricity consumption value (kWh) for that data420

point (365 instances) for the entire year. The PV contribution, is determined

in a similar way, but is subtracted from the consumed electricity to allow a net

value to be determined. The average SMP is also shown, which is based on the

wholesale single island-wide price for each half hour trading period in a typical

day[37]. For the baseline case, to meet the dwelling comfort constraints, the425

heat pump is switched on whenever needed, even during peak times. Case 1

exhibits increased electricity consumption between midnight and 0200 hrs due

to a rebound effect associated with the earlier demand response action between

1800 and 1900 hrs. This results in additional electricity consumption in order
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to restore both the zone set point temperature (19°C) and the tank set point430

temperature (55°C) after the demand response event (see Tables 4 and 5). Cases

2 and 3, which exhibit broadly similar consumption patterns, result in a sig-

nificant reduction of energy consumption during the peak period (17:00-19:00),

compared to Case 1 and the baseline. For the period 21:00-23:00, additional

electricity consumption is evident for Cases 2 and 3, compared to Case 1, due435

to the additional heating requirement to increase the bedroom temperatures

from a set point of 16°C to 18°C after 1900 hrs (see Table 5). Moreover, Case

3 aims to increase the energy extraction from the TES, by using a lower tem-

perature set point (35°C) as specified in Table 5. Case 1 exhibits increased

electricity consumption between midnight and 0200 hrs due to a rebound effect440

associated with the earlier demand response action between 1800 and 1900 hrs.

This results in additional electricity consumption in order to restore both the

zone set point temperature (19°C) and the tank set point temperature (55°C)

after the demand response event (see Tables 4 and 5). Cases 2 and 3, which

exhibit broadly similar consumption patterns, result in a significant reduction445

of energy consumption during the peak period (17:00-19:00), compared to Case

1 and the baseline. For the period 21:00-23:00, additional electricity consump-

tion is evident for Cases 2 and 3, compared to Case 1, due to the additional

heating requirement to increase the bedroom temperatures from a set point of

16°C to 18°C after 1900 hrs (see Table 5). Moreover, Case 3 aims to increase the450

energy extraction from the TES, by using a lower temperature set point (35°C)

as specified in Table 4.

4.2. Consumer electricity cost

Figure 5 shows the annual electricity cost for the baseline and the three

cases using the TOU tariffs outlined in Table 3. With reference to the baseline455

which exhibits the highest annual cost, Case 1 exhibits the next highest cost,

which can be attributed to the use of a single thermostatic set point control for

all controllable zones (bedrooms and corridor), resulting in additional heating

of unoccupied zones. Considering Case 2, relative to the baseline, savings of
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between 15% for tariff A and 20% for tariff D (which most closely follows the460

SMP price) are evident. Case 3 is optimised to utilise PV electricity production,

as well as using a lower TES set point (35°C). Therefore, it exhibits the greatest

savings relative to the baseline.
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Figure 5: Electricity cost for different time of use tariffs and algorithm cases

4.3. Utility electricity cost

Figure 6 shows the generation cost using Irish electricity SMP prices [37].465

The electricity consumption is multiplied by the relevant SMP price for each

time step in order to evaluate the yearly electricity production cost from a

utility perspective. Considering Case 2, where the control strategy aims to move

electricity consumption from peak (17:00-19:00) to off peak (15:00-17:00) times,

a generation cost reduction from €316 to €245 is evident (22% reduction).470

Considering Case 3, a 45% (€173) reduction is evident. The difference between

the SMP peak price and the off-peak can reach a ratio of 1 to 6. This ratio

rationalizes such significant reduction of generation cost between the cases.
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Figure 6: Annual electricity generation costs

4.4. Environmental Impact

Eirgrid, the Irish transmission system operator, provides 30 minutes aver-475

aged carbon emissions (gCO2/kWh), based on technical data from all genera-

tion units, including renewable energy, for the overall production of electricity

[38]. For 2012, the footprint varied from 29 (gCO2/kWh) to 846 (gCO2/kWh).

Figures 4 illustrates the annual carbon emissions per hour. The maximum an-

nual carbon emission is verified during the peak time hours (1700 – 1900 hrs).480

Therefore, a significant reduction in CO2 emission is expected as a result of the

control algorithm. Figure 7 illustrates the annual CO2 footprint as determined

for the baseline and the three cases. Case 3 is observed to give the greatest

reduction, which is 74% relative to the baseline case, as PV power is used to

charge the TES via the heat pump system whenever possible, thereby reduc-485

ing the overall electricity drawn from the grid and consequently the associated

carbon emissions.

4.5. System Flexibility

In the current paper, system flexibility is defined as the accrued or deferred

energy dividend (kWh) facilitated by thermal storage and residential renew-490

able energy generator like Photovoltaic (PV), made possible by the temporal
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Figure 7: Annual carbon dioxide emissions

decoupling of the building thermal energy and power demands. In the building

under consideration, this is achieved by means of the PV array, which acts as

a grid-independent electricity production device capable of converting electrical

energy to thermal energy via the heat pump system, which in turn is stored in495

the 800 litre water tank. The methodology to calculate the system flexibility is

based on establishing upper and lower temperature bounds for the TES system,

knowledge of the TES thermophysical characteristics, the heat pump rating and

the PV system rating. In the current work, the storage tank default lower and

upper temperature set points were set at 35°C and 55°C, respectively, as out-500

lined earlier in Table 4 (Case 3). These bounds were chosen with reference to

the heat pump nominal thermal output and a system sensitivity analysis. As

long as the heat pump control maintains the tank temperature Ttk between

Tmax and Tmin, the TES system can be used to meet the heat demand of the

building. If the temperature of the TES is close to the Tmax, as illustrated505

in Fig. 8 between 0200 hrs and 0700 hrs, the shifting potential is close to its

maximum. During such period, the building can be heated by discharge of the

TES, without active use of the heat pump, until Ttk reaches Tmin, where the

equivalent amount of electricity that is deferred or shifted (kWh) is given by
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Eqn. 4 as follows:510
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Figure 8: Yearly average flexibility potential for time of use price signal

S(t) = PV (t + dt) +

∫ t+1

t

Cpw ∗M ∗ (Ttk(t)− Tmin)

3.6 ∗ 106 ∗ COPhp
dt (4)

S(t) is the sum of the PV power production plus any deferrable heat pump power

consumption, which is provided by the TES system, where the PV output for

the next time period is given by PV (t+ dt) and the TES potential is estimated

with reference to the lower tank set point. This value represents the upper

limit of the deferred dwelling space heating power demand plus any on-site PV

electricity production.

The forcing potential F(t) is calculated by Equation 5 and is defined as the

accruable heat pump power consumption when the heat pump thermal output

is not used to meet the zone thermal demand but is instead stored by the TES

system.

F (t) =

∫ t+1

t

Cpw ∗M ∗ (Tmax − Ttk(t))

3.6 ∗ 106 ∗ COPhp
dt (5)
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Although the zone temperature is equal or greater than the thermostatic set

point, the heat pump can be forced to operate. In this case, the expected

electric profile is altered by the forced operation of the heating system, which

generates additional energy that is stored in the TES. The maximum amount

of electricity (kWh) that can be used by the heat pump to charge fully the TES515

defines the flexibility potential.

Figure 8 illustrates the system flexibility shifting and forcing potentials, as well

as the average TES storage temperature, based on the average daily flexibility

for the 2014 heating year. It can be observed that the forcing and shifting curves

are inversely proportional, as they are calculated with reference to the TES up-520

per and lower set-point temperatures. Further examination shows that the TES

is fully charged at 55°C, where the shift and forcing potential are maximised

and minimised, respectively. During peak periods (17:00-19:00), the shifting

potential decreases significantly because the heat pump is not operational and

the building thermal load is met by the TES system, while the forcing potential525

increases. It can also be observed that between 14:00 and 15:00, the PV is often

utilised thereby increasing the thermal energy stored in the TES tank. Figure

8 also shows the variation in hourly flexibility based on averaged data for the

heating season. During the peak times from 17:00 to 19:00 hours, the shifting

flexibility can be observed to decrease significantly, which can be attributed to530

the scheduled non-operation of the heat pump. During this period, the heating

system, in order to maintain zone comfort temperatures, extracts heat from

the TES, thereby resulting in periods when the average tank temperature goes

below the setpoint. Maximum shifting flexibility can be observed during the

night periods, when the heating system fully charges the TES and thus exhibits535

a maximum shifting potential. It can also be observed that between December

and February, for the period after peak time, that the forcing potential is greater

that the shifting, which results from the control strategy of avoiding active use

of the heat pump during peak periods, thereby resulting in the average tank

temperature being closer to the lower bound.540

Figure 9 and 10 summarise the cumulative shifting and forcing flexibility for
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Figure 9: Average hourly shifting flexibility
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Figure 10: Average hourly forcing flexibility

F (t)

each month. Total shifting flexibility potential (Figure 9) is greatest for March

and April, while the forcing flexibility potential (Figure 10) is greatest for De-

cember, January and February, when the TES system often operates closest

to its lowest setpoint temperature. Considering the accumulated total daily545

flexibility potential over the October-April period, a total shifting and forcing

potential of 366 kWh and 146 kWh, respectively, exists, which if averaged on

a daily basis is approximately 4.0 kWh per day or 5.5% of the heating season

energy consumption.

It is noted that the two metrics reported in Eqns 4 and 5 are an estimate550

of the potential flexibility available, and thus they do not give any indication

of the building energy demand. Therefore, the charging and discharging rates

depend on the energy demand of the building which vary based on the inter-

27



!

"!

#!

$!

%!

&!

'!

(!

)!

*+,-+./ 012.-+./ 3+.45 67.89 :4;<21. =<>1?21. @141?21.

!
"
#
"
$%
&'
(
)
*+
$)
,
'-
'$
'&
.
*/
0
1
2
3

A58B;8,C

0<.48,C

Figure 11: Monthly flexibility potential for the heating season

Table 6: Results summary in percentage compare to Baseline

CO2 emissions Electricity Consumption Electricity Cost (Tariff D) Generation Cost

Case 1 - 7.6% - 4.1% - 4.9% - 22.5%

Case 2 - 26.4% - 13.9% - 16.2% - 44.3%

Case 3 - 27.0% - 15.9% -16.5% - 45.3%

nal heat gains, outdoor weather conditions and temperature set points. In any

case, from a grid perspective, the maximum energy that could be shifted or555

forced during any period, is capped by the nominal electric power consumption

of the heating system. Further analysis could be performed based on the flexi-

bility variance for different conditions to estimate the maximum duration that

a demand response event could last.

4.6. Discussion560

This paper proposes a rule-based algorithm that reduces the electricity ex-

penditure of a residential building while maintaining the thermal comfort for

the occupants. The control system is designed to optimise energy consumption

using the heating system, the building thermal features and to provide flexibility

to reduce peak load or respond to DR events based on a time use tariff scheme.565

The algorithm was tested using three test cases against a baseline. Referring to

Table 6 and with reference to the baseline case, Case 1 illustrates the potential
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benefits arising from the DR measures alone, which are accrued through the PV

and TES systems only. The results show a 22.5% reduction in generation cost,

a 4.1% reduction in energy consumption, a 4.9% reduction in electricity end-use570

costs and a 7.6 % reduction in carbon emissions all relative to the baseline. Case

2 shows the increased operational efficiency compared to Case 1 resulting from

better setpoint control of the bedroom zones. These include an additional elec-

tricity cost reduction of up to 11.3% (Tariff A), as well as a decrease of 18.8%

in associated CO2 emissions and a reduction in the electricity consumption of575

9.8%. Case 3 shows a limited reduction of emission (0.6%) and a decreased

electricity demand (2%) due to the lower PV output threshold.

The control system, which is based on the presented rule-based algorithm, is

capable of being easily implemented and installed in buildings with different

characteristics, by adapting the parameters outlined in Table 4.580

However, in the case of high penetration percentage in the residential building

stock, the algorithm could pose some challenges to grid operators. The first

problem involves the simultaneous switching ON or OFF of the heating systems

after and before a TOU peak price signal, which could result in a significant

peak clipping and shifting. A solution to smooth any peak clipping and the585

associated rebound effect is to wait a random time interval before switching on

the heating system after the DR signal. Other challenges can be associated with

the tuning of the parameters for different building categories and to adapt the

settings for multiple or dynamic peak windows.

Compared to other work, it should be noted that the algorithm proposed does590

not require sophisticated hardware or different training periods to be utilised for

various building type and it was implemented and tested in a calibrated Energy-

Plus simulation environment. Furthermore, the overall end-use cost reduction of

the rule-based algorithm is 16.5%, lower than more complex algorithms. Kolotsa

et al. [21] estimated an average electricity bill reduction of 23% for the heat-595

ing system while Mohsenian et al. [18] indicate an overall 25% reduction. The

unique feature of the associated control system is the flexibility metric that is

independent of the building where it is installed. Flexibility is a function of the
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charge status of TES, the nominal power of the heating system and local re-

newable energy production. At each time step, the algorithm outputs flexibility600

in terms of forcing and shifting potential. This metric can be dynamically used

by DR aggregators to calculate aggregate flexibility potential at each time step

and design a signal to trigger the DR event.

5. Conclusion

In the current study, a rule-based demand response algorithm is applied to605

a residential building which resulted in energy and carbon emission reduction

as well as monetary savings, while maintaining thermal comfort. The algo-

rithm was developed to minimise the electricity expenditure under TOU tariff,

enhancing the control of zone temperature. The study shows the results of

two different versions of the control algorithm; the first version implements DR610

measures and on-site renewable and TES control while in the second version

the zone thermal control features have been enabled. The simulation results of

the first control version show a reduction of generation cost (-22.5%), electricity

end-use cost (-4.9%) and carbon emission (-7.6%). In the case of zone thermal

control features enabled, a reduction of up to 15.9% in annual electricity con-615

sumption, compared to a baseline reference system, was achieved. Furthermore,

annual monetary savings of up to 20% (Tariff D) in end-use electricity costs,

as well as a decrease of 27% in associated CO2 emissions were also evident. In

the context of the dwelling under consideration, it was also shown that elec-

tricity utilities can reduce the cost of generation by up to 45.3%. The heating620

system can provide 366 kWh in load shifting flexibility and 146 kWh in forcing

flexibility, which together represents approximately 5.5% of the annual heating

load. At a more general level, given the increasing likelihood of the adoption of

TOU tariffs in many European countries, the use of advanced demand response

control, such as rule-based control, coupled with thermal storage in all-electric625

residential buildings can positively contribute to the power system flexibility

as well as reducing the electricity costs and carbon footprint of EU building
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stock. Further research on algorithms, which can adapt on the basis of end-user

behaviour, occupant preferences could further enhance the capabilities of the

described approach.630
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Acronyms

APE Average Percentage Error. 8, 11, 12640

CPP Critical Peak Price. 3

DHW Domestic Hot Water. 11

DR Demand Response. 2–4, 28, 30

DSM Demand Side Management. 2

EMS Energy Management System. 4, 6645

EV Electric Car. 11

HRV Heat recovery ventilation. 11

PV Photovoltaic. 23

RTP Real Time Price. 3
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SMP System Marginal Price. 13, 20650

TES Thermal Energy Storage. 14, 15, 17, 19, 22, 24, 26

TOU Time of Use Tariff. 3, 4, 21

TSO Transmission System Operator. 2, 3

Nomenclature

Ce Electricity price (e\kWh)655

Cset Circulation pump status

COPhp Heat pump average COP

Cpw Specific heat capacity J\(kg * K)

F Forcing flexibility

M TES water mass660

Php Heat pump energy consumption (kWh)

PV PV electricity production

S Shifting flexibility

Tbd TES setpoint bandwidth (°C)

Tin Internal zone temperature (°C)665

Tmax TES maximum set point temperature (°C)

Tmin TES minimum set point temperature (°C)

Tout Outside temperature (°C)

Tset TES minimum set point temperature (°C)

Tset Temperature set point (°C)670

Ttk TES temperature (°C)
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