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Abstract—The paper proposes a hybrid dynamic model of
thyristor controlled series compensators (TCSCs). The objective
is to demonstrate, through advanced circuit theory tools and
numerical simulations that some modeling aspects are not prop-
erly taken into account in the existing literature. In particular we
consider those related to the role of the TCSC impedance when the
line current is polluted by harmonics and the phase-locked loops
(PLLs). Shooting methods and periodic small signal analyses are
utilized to compute the impedance of the TCSC at sub-harmonics
that are typical of the sub-synchronous resonance phenomenon.
The case study focuses on the impact of sub-harmonics, on the
behavior of the TCSC and on the synchronization of the firing
angle through the PLL. Modeling recommendations are finally
drawn based on the results presented in the paper.

Index Terms—Thyristor controlled series compensator (TCSC),
phase-locked loop (PLL), hybrid dynamical systems.

I. INTRODUCTION

A. Motivations

Among flexible alternating current transmission systems

(FACTS) devices, thyristor controlled series compensators

(TCSCs) are one of the most commonly utilized in practice due

to their low costs, relatively simple control and effectiveness

to provide series compensation, increase the power transfer

capabilities, damp oscillations of transmission systems and

reduce the sub-synchronous resonance (SSR) effect [1]. While

widely studied, conventional models of TCSCs [2], [3] typi-

cally neglect some aspects, i.e., the effects of sub-harmonics

on the equivalent impedance of the TCSC and the impact on

their dynamic performance of non-ideal phase-locked loop

(PLL). This paper attempts to fill this gap and presents a

theoretical and numerical analysis of the dynamic behavior

of TCSCs. With this aim, the paper exploits recent advances in

the formalism and numerical simulation of hybrid dynamical

systems that is appropriate to represent the switching nature

of FACTS devices.

B. Literature Review

Since the first installed devices in 1991/1992 [4], [5], the

interest in TCSCs has steadily grown during the last two

decades. In particular, industrial applications have exploited

the ability of TCSCs to increase power transfer capabilities
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of transmission systems and mitigate the SSR phenomenon

of conventional power plants coupled to the rest of the grid

through long transmission lines. Among theoretical studies on

TCSC, we cite [2], [3], [6]–[11]. In recent years, the interest in

TCSCs has been renovated by the observation that the control

of wind power plants farms can trigger oscillation phenomena

similar to the SSR and the insertion of TCSCs proved to be

effective to reduce such oscillations [12]–[14].

From a modeling point of view, FACTSs and, thus, TCSCs,

are challenging as they mix continuous elements, e.g., induc-

tors and capacitors, as well as discrete elements, e.g., power

electronic switches. These models fall in the category of hybrid

dynamical systems, which can be described by differential

algebraic equations (DAEs) where state variables are reset

or where the vector field shows discontinuities (switching)

governed by the values of the state variables [15].

The conventional modeling approaches of FACTS devices is

defined in [3] and the most accepted TCSC model is formalized

in [2]. This paper aims at enhancing the standard TCSC model

and focuses, in particular, on two relevant aspects, as follows.

1) Impact of sub-harmonics on TCSC equivalent impe-

dance: in the last decade, however, numerical tools to study

hybrid dynamical systems have been object of intense study.

Some relevant examples are [16]–[19]. In particular, [19]

applies the periodic small signal analysis (PAC), largely used in

micro-electronics area, whereas [20] extends shooting analysis

(SH) to handle hybrid dynamic models.

In this paper, PAC and SH are utilized to determine the

impedance of the TCSC as a periodically switched circuit that

works in a steady state condition. The focus is on the frequency

band of SSR, where the TCSC is expected to have an inductive-

type impedance. We show, however, that this requirement

might not be satisfied in actual TCSC implementations.

2) Impact of non-ideal PLLs on the dynamic response of

TCSC: the goal is to show how non-perfect synchronization

of non-ideal PLLs coupled with polluted currents can reduce

the performance of the TCSC control.

Several models of PLLs have been proposed in the literature

and implemented in practice. We cite, for example, [21]–[27].

In recent studies, it has been recognized that non-ideal PLLs

have a significant impact on the behavior of power electronic

converters. For example [28] and [29] discuss the impact of

PLL on the small-signal stability of VSC-HVDC converters and

type-4 wind turbines, respectively.

To study the impact of real-world PLLs, we apply a con-

trolling technique known as voltage reversal [9], [30] aimed

at defining the synchronization requirements that need to be

satisfied by the firing angle control of TCSCs considering

both ideal and real-world PLL models. Ideal voltage reversal
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Figure 1. (a) Simplified model of a series compensated line composed of
Ll, Rr and the compensating capacitor Cl. The two voltage sources model
the generators/areas. (b) The circuit of the improved compensator. The Lr

inductor is connected in parallel to the Cr compensating capacitor. The Rr

parasitic resistor models losses.

assumes that the voltage across the compensating capacitor is

instantaneously reversed, i.e., voltage sign is instantaneously

changed, when thyristors are turned on. This leads to a

square voltage waveform that superimposes to that across

the compensating capacitor by integrating the line current.

The amplitude of this square waveform can be controlled to

regulate the total amount of line compensation.

C. Contributions

The objective of this work is to present an accurate yet

readily implementable modeling approach for TCSCs. Main

contributions are as follows.

• A thorough discussion based on PAC and SH techniques

on the switching behavior of the TCSC, which makes

challenging to determine its impedance under different

working conditions especially if sub-harmonics are taken

into account.

• An in-depth appraisal through the voltage reversal tech-

nique aimed at defining the synchronization requirements

that need to be satisfied by the firing angle control of

TCSCs considering both ideal and real-world PLL models.

D. Organization

The remainder of the paper is organized as follows. Section

II introduces the basic concepts about series compensation

and the basic scheme of the TCSC. Section III presents the

proposed hybrid dynamical model of the TCSC based on

shooting analysis (SH) and periodic small signal analysis

(PAC). Section IV describes the effect of sub-harmonics on the

equivalent TCSC impedance and the effect of PLLs on the firing

angle synchronization. Numerical results are also presented in

this section. Finally, Section V draws relevant conclusions and

outlines future work directions.

II. SERIES COMPENSATION

In the basic circuit shown in Fig. 1(a), the e1(t) =
E1 sin(ωot+φ1) and e2(t) = E2 sin(ωot+φ2) voltage sources

represent two generators/areas connected by the line modeled

as a series connection of the Rl resistor and Ll inductor.

The maximum power transfer between the two generators is

obtained by inserting in series to the line the Cl capacitor such

that total impedance

Zl(ω) = Rl + jω

(

Ll −
1

ω2Cl

)

(1)

is real at ω = ωo which means that the ωl = (LlCl)
−1/2

resonance frequency and to ωo must be made the same.

Assume that e1(t) = E1 sin(ωot + φ1) + Es sin(ωst) and

that we would like to “see” an inductive type impedance at

ωs < ωo. It is trivial to observe that ℑ{Zl(ωs)} < 0 for

ωs < ωl thus Zl(ωs) being of capacitive type, viz. our target

can not be met with the circuit of Fig. 1(a).

Consider the third order circuit in Fig. 1(b) and introduce

ωr = (LrCr)
−1/2

. It also includes a parasitic resistance Rr

connected in series to Lr. The resulting equivalent line

impedance Zl(ω) becomes

Zl(ω) =Rl +

Req(ω;Rr, Lr, Cr)
︷ ︸︸ ︷

Rr

(1− ω2LrCr)
2
+ (RrCrω)

2 + (2)

jωLl + jω
Lr

(
1− ω2LrCr

)
− CrR

2
r

(1− ω2LrCr)
2
+ (RrCrω)

2

︸ ︷︷ ︸

Xeq(ω;Rr, Lr, Cr)

.

Based on the value of Rr, two cases can be distinguished, as

follows.

• Rr = 0 In this case, Req(ω; 0, Lr, Cr) = 0 and Xeq

simplifies as

Xeq =
Lr

1− ω2LrCr
.

The ℑ{Zl(ωo)} becomes equal to 0 when the series

resonance frequency

ωl =

√

Ll + Lr

CrLrLl
> ωr

is equal to ωo. If ω2 < ω2
r , Xeq(ω; 0, Lr, Cr) > 0, thus

leading Zl(ω) to become of “inductive” type. If ω2
s <

ω2
r < ω2

o , then Xeq(ω; 0, Lr, Cr) is of capacitive type

when ω > ωr, and particularly at ωo, and of inductive

type when ω < ωr and thus at ωs. If we assume to vary

Lr and keeping Cr fixed, we can adjust the value of Xeq .

This is important in the sequel.

• Rr 6= 0 In this case, observing (2), it follows that

Req(ω;Rr, Lr, Cr) 6= 0. More importantly, if CrR
2
r >

Lr, it follows that Xeq(ω;Rr, Lr, Cr) < 0 for ω < ωr.

In other words, a too high Rr once more does not allow

us to meet the target.

Hence, if Rr = 0, the circuit shown in Fig. 1(b) properly

compensates the inductive reactance of the line at the fun-

damental frequency ωo = 2πfo, and “shows” an inductive-

type impedance at frequencies (sub-harmonics) where the SSR

phenomenon may take place. However, if Rr 6= 0, at the

harmonics relevant for SSR, the equivalent impedance does not

behave as an inductive load but, rather, as a resistive-capacitive

one. This discussion allows concluding that losses have to be
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Figure 2. The basic schematic of the TCSC compensator.

carefully considered when studying the circuit of Fig. 1(b).

This remark will be crucial for the modeling of the TCSC.

The TCSC circuitry is conceptually similar to the circuit

of Fig. 1(b) but has the ability to vary the amount of com-

pensation, i.e. the value of Xeq . As anticipated this can be

achieved by varying Lr through the circuit shown in Fig. 2.

The thyristors Tp and Tn are suitably turned on during each

period of the fundamental frequency fo, thus causing the

insertion of the Lr inductance for a fraction of the period.

If the thyristors are never turned on, this is equivalent to

Lr = ∞, whereas, if the thyristors are always conducting,

the TCSC behaves as the circuit in Fig. 1(b). Thus it seems

that the action of the thyristors modulates the equivalent value

of Lr “inserted” in the circuit.

It is important to note that, even if Rr = 0, owing to the

switching (nonlinear) nature of the circuit, it is not ensured

that Lr sinks energy with current “in phase” with the vo(t)
voltage and releases energy with current not “in phase” with

vo(t). As for the circuit of Fig. 1(b), this can deeply change

the imaginary part of the equivalent impedance and, mostly

important, the TCSC equivalent impedance may exhibits a

resistive component, even if losses are low by design (i.e.,

even if Rr is small). It will be shown in the remainder of the

paper that this effect is not necessarily a drawback and can

actually be beneficial for the dynamic behavior of the TCSC.

III. HYBRID DYNAMIC MODEL OF THE TCSC

A simplified model of the TCSC and of the transmission

line to which it is connected can be defined by assuming

that the TCSC is driven by an independent current source and

that thyristors are characterized by a resistance Ron when on

and Roff when off. These assumptions lead to the following

equations:






Crv̇o(t) + ıl(t)− ıo(t) = 0

Lril(t) + (z(t)Ron + (1− z(t))Roff +Rr) ıl − vo(t) = 0

(3)

where z(t) is a piecewise constant function whose value is

set to 1 for t =
(

π
ωo

− δ
)

(k + 1) (k ∈ N) and to 0 for

t = t̂ if ıl( t̂ ) = 0 and z( t̂ ) = 1. Furthermore, in (3) vo(t)
is the voltage across Cr, ıl(t) is the current through Lr and

ıo(t) = A1 cos(ωot)+As cos(ωst) is the line current, which is

assumed to be “polluted” by the component As cos(ωst). This

assumption is useful to compute the equivalent impedance at

ωs, similarly to what was done in [2]. The value of Lr must

be chosen so that ωr > 2πfo. Design rules in [3] suggests

a XLr/XCr
ratio in the [0.1, 0.3] range and it is stated that

in present installations the used ratio is 0.133 which implies

a ωr resonant frequency of the TCSC equal to about 2.74fo.

Moreover, ωr must not coincide or be close to 2fo or 3fo.

These rules are followed in the design of the TCSC in [2].

The first two equations in (3) model voltage across Cr

and current through Lr. The third equation states that z(t)
is constant, but on a discrete set of time instants where

it instantaneously varies. In a more concise way z(t) is a

digital variable that switches between 0 and 1 discrete values

at discrete time instants. In these switching time instants

the vector field of the second equation in (3) undergoes an

instantaneous variation, i.e. the conductance of the thyristors

instantaneously switches between Ron and Roff . It is worth

noticing that, owing to the presence of the z(t) digital state

variable, the system can be modeled as an hybrid dynamical

system and one can exploit the results presented in [31] and

[32].

A. Ideal reversal

To understand the TCSC actual behavior, it is useful to study

(3) assuming an ideal operating condition first. With this aim,

let Rr = 0, Roff = ∞, Ron = 0, Lr → 0, δ → 0, i.e., the

thyristors when on and off behave like short-circuits and open-

circuits, respectively. The conduction interval of the thyristors

goes to 0 since the resonant frequency ωr → ∞. Clearly,

these assumptions are unrealistic as, among other issues, the

current through the conducting thyristors goes to ∞. With

these simplifications, the voltage vo(t) is the solution of the

recursive expression






vo(t+ tk) = (−1)k+1vo(tk)
︸ ︷︷ ︸

Ξk

+
1

Cr

∫ tk+t

tk

ıo(τ)dτ

tk =
π

ωo
(k + 1) , k ∈ N

tk < t ≤ tk+1

. (4)

If As = 0, the integral in (4) gives a null result between tk
and tk+1 (peaks of |ıo(t)|) and vo(tk) reverts its sign due to

the instantaneous oscillation due to the thyristor conduction.

The instantaneous capacitor voltage switch is known as voltage

reversal [9], [30]. The Ξk term contributes a square voltage

waveform to the solution and the integral part a voltage shifted

by π/2 with respect to the forcing current ıo(t) (capacitive

impedance). This does not happen if As 6= 0, as the integral

is no longer null along the intervals [tk, tk+1].
Equation (4) also shows a possible way to control the TCSC,

i.e., the thyristors must be turned-on each time the A1 cos(ωot)
fundamental component of the line current reaches a maximum

or a minimum. This justifies the π/ωo term in (3). In turn, this

suggests that thyristor turn-on must be synchronized to the

fundamental component of the polluted ıo(t) line current with

a PLL. This crucial aspect of the TCSC modeling is further

discussed in the following.

Figure 3 shows the ideal functioning of the TCSC. The volt-

age vo(t) (upper trace) exhibits discontinuities and anticipates

ıo(t) (lower panel) of π/2ωo due to lower/upper shifting at

the maximum/minimum of ıo(t). The vc(t) shifting voltage
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Figure 3. Relevant waveforms of electrical quantities of the TCSC: vo(t),
vc(t) and io(t).

waveform (center panel) is a square wave with zero mean

value, in particular

vc(t) =
∑

k∈N

Ξkχ(tk,tk+1]

(

t−
kπ

ωo

)

,

where χ(tk,tk+1](t) is the indicator function of the (tk, tk+1]
interval,2 tk and Ξk are defined in (4).

When the TCSC operates in steady-state, the fundamental

component of its Fourier series is a cosine wave whereas the

sine component is null.

The impedance of the TCSC working in steady-state con-

ditions can be computed as the ratio between the spectral

components of the vo(t) and ıo(t) periodic waveforms at the

same frequency.3 Hence, the total reactive power by the TCSC

depends on the magnitude of the square waveform (at the same

magnitude of ıo(t)), i.e., it depends on the value of vo(tk). This

square voltage waveform can be obtained by instantaneously

reversing (ωr → ∞) the sign of the vo(tk) voltage across the

Cr capacitor. In practice voltage reversal can be achieved only

in a finite amount of time that must not be too short in order

to limit the peak value of the ıl(t) current. This suggest to

select ωr as higher as possible while respecting device limits.

The vo(tk) value can be controlled by anticipating/delaying

the reversal time instant along several working periods, thus

by departing from a steady state working condition (details

are in [3] page 231).

2The χI(x) indicator or characteristic function of the generic I interval is
such that χI(x) = 1 if x ∈ I and χI(x) = 0 if x /∈ I.

3It goes without saying that the use of this impedance is correct only
for linear circuits in sinusoidal regime and actually this is not the case.
Nevertheless this is a typical “engineering” approach that implies the fact
that As ≪ A1, viz. a sort of small signal (periodic) analysis of the system is
performed. This consideration represents an open door towards the analysis
presented in the sequel in which PAC is rigorously adopted.

The expression of the Fourier components can be found in

closed form if we assume that ωo/ωs = n ∈ N \ {0, 1}. The

equivalent impedance at ωo is as follows:4

Z(ωo) = −j
4Asn tan π

2n + 4ωoCrvo

(
π
ωo

)

+ πA1

2πωoCrA1
. (5)

Equation (5) has the following characteristics:

• Z(ωo) does not changes its sign, i.e., it is capacitive and

satisfies the TCSC design;

• Z(ωo) depends on As, i.e., the polluted current acts on

the compensation capabilities of the TCSC.

• by dropping As, Z(ωo) depends linearly on vo(π/ωo)/A1,

where vo (π/ωo) is the instantaneous voltage at the re-

versal time instant (note that the absolute value of this

voltage before and after the ideal reversal is the same).

The latter is an important result that helps the design of the

controller. This result was originally derived, although using

a different formalism, in [9].

Similarly, the impedance Z(ωs) can be obtained as

Z(ωs) =
j

2πωsCr

(

2n tan
π

2n
− π

)

. (6)

The numerator of (6) is always positive and thus leads to an

always inductive type impedance at sub-harmonics. This is

again, a relevant result. It leads to conclude that the insertion

of a TCSC in series to a transmission line achieves the goal

to compensate the line at different levels by varying the
vo(π/ωo)/A1 ratio. Note also that vo (π/ωo) and A1 do not appear

in (6) and this once more is a relevant result: the amount of

compensation can be varied without altering the impedance at

the sub-harmonics.

Something similar to our investigation on the impedance at

the fundamental and sub-harmonics were done in [8], [34], but

in these papers the intermodulation effects due to the polluting

sub-harmonic were not considered.

The following subsection discusses whether a real design

with a current of finite peak value is still adequate to meet the

design objectives of the TCSC.

B. Real reversal: impedance determination

Since the TCSC circuit is non-linear, there can be several

inter-modulation products that contribute to each impedance

value at the discrete set of frequencies. For example this is

the purpose of the term As introduced in (5).

A possible approach to compute the impedance of the TCSC,

which was adopted in [2], is to perform a time domain simula-

tion for a long simulated time, to ensure that the TCSC operates

in a periodic steady-state and then to perform Fast Fourier

Transform (FFT) to derive the spectra of vo(t) and ıo(t). The

ratio between the corresponding components of the spectra can

be considered as the impedances of interest. However, more

efficient and accurate results can be obtained by adopting a

well-known approach that has been largely applied to micro-

electronic circuits. This approach is as follows:

4The expressions of Z(ωo) and Z(ωs) have been derived using Mathe-
matica [33].
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• A single SH is performed to accurately determine the

periodic solution without any perturbation applied to the

circuit.

• Then a small signal source that does not perturb the large

signal solution can be added as input and a PAC analysis

can be performed to compute the effects of the small

signal perturbation, for example the impedance of the

TCSC [35], [36].

The SH method solves the φ(xo, t0, t0+T )−xo = 0 boundary

value problem where xo ∈ R
S is the unknown vector of S

initial values of state variables at the t0 time instant, T is the

working period of the circuit and φ( · ) is the state-transition

function. The φ(xo, t0, t0 +T ) vector can be determined with

a conventional time-domain analysis along only one T period.

This approach is considerably more efficient than performing

several time-domain simulations along a large number of

T periods until the circuit reaches the steady-state working

condition, i.e., satisfies the above boundary condition [35].

PAC allows computing periodic transfer functions as the

independent variable is the frequency that is swept in the

desired interval. To this aim, PAC linearizes the circuit along

the steady state solution found by SH, i.e., it derives what

is known as variational model [37]. A periodic small signal

is then injected into the variational model of the circuit and

its effects are computed. Since the original circuit works on

a periodic orbit, the variational model and, hence, PAC can

capture intermodulation effects.

It is important to note that, since the TCSC is switched as

described in Section III and the turn-off of thyristor depends

on the state variables of the circuit (see (3)), the PAC analysis

cannot be applied directly because the variational model is

not defined at the switching time instants. To deal with hybrid

circuits both SH and PAC analyses have to be properly adapted

and extended as discussed in [31], [32]. These techniques have

been already profitably applied to power circuits and power

systems [18]–[20].

In this case, we applied SH to (3) with As = 0, i.e., with a

non-polluted ıo(t). Then, PAC is used to compute the effects

of a small As cos(ωst) current superimposed to the ıo(t)
line current, sweeping ωs in the 2π[100mHz, 60Hz] interval.

For each value of ωs, the spectral component of the vo(t)
small signal was derived at ω = ωs. The ratio between such

a component and the injected current gives the equivalent

impedance at ω = ωs.

As a first example, we consider the circuit described in [2].

The numerical analysis is performed using a circuit simulator

that is described in [38]. The design of this TCSC is such that

it acts as a capacitive line compensator with the firing angle

α that take values in the range [70o, 90o]. By referring to (3)

we have that α = 180o(1/2 − ωoδ/π). Numerical results are

shown in Fig. 4. The X68 imaginary part of the impedance

when α = 68o, i.e., slightly less than the lower design bound,

is clearly positive in the sub-harmonic range. For α = 70o,

i.e., high line compensation, the imaginary part X70 is slightly

positive up to about 25Hz, i.e., inductive in the sub-harmonic

range (see Fig. 4). The R78 real and the X78 imaginary part of

the impedance at α = 78o are shown in Fig. 4. X78 is negative

in the entire frequency range, this means that the behavior of

Figure 4. Rα and Xα represent the real and imaginary part, respectively, of
the TCSC equivalent impedance computed at the α firing angle (in degree).

the TCSC at sub-harmonics is capacitive and not inductive as

expected The behavior worsens at α = 88o, i.e., at lower line

compensation, since X88 is even larger at sub-harmonics.

The effectiveness of the results by the PAC analysis was

largely and already proved in several works [19], [36], [38].

Once more to check this, we computed the impedance by

considering the polluting signal as a large signal with α = 78o

through the SH analysis performed over the period correspond-

ing to 30Hz. The impedance was computed through the FFT;

the result is the “dots” in the corresponding panels of Fig. 4.

The impedance by PAC is 115.77− 200.98j and that by SH is

110.23− 203.87j that are in very good agreement. We recall

that PAC is much faster than SH and does not have limitations

on the frequency of the small signal tone (the simulation

time must be the smallest common multiple of the periods

corresponding to ωo and ωs).

The PAC analysis reveals that, even within design limits, the

TCSC does not always work as expected and that the resistive

part of its equivalent impedance is the life line for several
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Figure 5. Upper panel: the TCSC voltage with ideal synchronization. Central
upper panel: the current across the Lr inductance with ideal synchronization.
Central lower panel: the difference between the TCSC voltages obtained with
current peak and ideal synchronization. Lower panel: the difference between
the currents across the Lr inductance obtained with current peak and ideal
synchronization.

values of the α firing angle. The next section discusses another

aspect of the TCSC model that has been neglected so far in

the literature.

IV. IMPACT OF PLL ON THE TCSC BEHAVIOR

In the SH analysis carried out in Sec. III-B, the TCSC is

assumed to be perfectly synchronized with the time instants

of the peak values of the current fundamental. In a real

implementation of a TCSC, however, the synchronization is

achieved through a PLL that locks the firing angle to the

fo component of the ıo(t) line current. In the literature, it

is generally assumed that the firing angle is synchronous

with the peak values of the fundamental (fo) component of

ıo(t) in presence of harmonic pollution. However, such a

synchronization, i.e., the model of the PLL, should be carefully

considered because it has a relevant impact on the design of

the TCSC control and its dynamic behavior. The effect of non-

ideal synchronization and of the PLL model are thoroughly

discussed in the remainder of this section.

A. Non-ideal Synchronization with Polluted Current

In order to define the impact of the PLL model, a SH

and PAC analysis are carried out for α = 68o. In this case,

however, the TCSC is synchronized with the peak values of the

polluted ıo(t) current, not with the peaks of the fundamental

component of the current at fo. Results are shown in Fig. 5.

For comparison, Fig. 5 also shows the results obtained by

correctly synchronizing the TCSC on the peak values of the

fundamental harmonic of ıo(t). The vo(t) voltages and the

currents flowing through the Lr inductor in the case of perfect

synchronization and peak synchronization are reported in the

two upper panels of Fig. 5. Differences between the ideal and

the actual trajectories are shown in the two lower panels; they

are exclusively due to the different times at which thyristors

are turned on. While small, such differences have a non-

negligible impact on the resulting TCSC equivalent impedance.

Figure 6 shows the impedance of the TCSC for α = 68o

computed through the PAC analysis when it is synchronized

with the peak value of the polluted ıo(t). In the same figure

these results are compared with those previously obtained for

perfect synchronization and already shown in Fig. 4. The large

differences in the real and imaginary parts of the impedance

can be easily appreciated. The real part of the impedance

increases when the TCSC is synchronized to the peak values

of the polluted ıo(t) current. From the observation of the

imaginary parts, it is also evident that the inductive-type mode

is completely “lost”.

B. Time-Domain Analysis with PLL

For completeness and comparison, we have also computed

the impedance of the TCSC model discussed in [2] without

adopting the PAC analysis. With this aim, we performed a time-

domain analysis with fixed firing angle for 20 s of simulated

time, by using the model in [2] that was implemented in

SIMULINK. The need for such a “long” time-domain integra-

tion, is to be able to assume that the circuit is in stationary

conditions, since SIMULINK that does not implement any

steady-state analysis. Then, the spectrum of vo(t) and ıo(t)
were computed through a FFT on the evenly time spaced

samples in the [19 s, 20 s] interval with a sampling rate 1/50µs.

A 1 s interval ensures a frequency resolution of 1Hz. The

impedances are reported in Table I.

The most relevant observation that can be drawn from this

table is that Z(30) is always largely capacitive. This result is

in contrast with the result shown in Fig. 4 and is a direct

Figure 6. For α = 68o, real part and imaginary part of the TCSC equivalent
impedance (upper and lower panels, respectively). Solid curves refer to ideal
synchronization and dashed ones to peak synchronization.
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Table I
THE IMPEDANCE AT 30Hz AND 60Hz OF THE TCSC DESIGN IN [2].

α Z(60) Z(30)
70o 0.256− 153.22j 189.382− 60.75j
78o −0.183− 125.48j 93.157− 171.99j
88o 0.071− 120.15j −0.265− 240.33j

Figure 7. The schematic of the TCSC synchronised by the second-order digital
PLL. Rl = 6.0852Ω, Ll = 0.4323H, Cr = 21.977µF, Lr = 43mH,

Ron = 10mΩ, Roff = 1GΩ, e1(t) = 539 kV
√

2/3 sin(120πt) +
Vs sin(ωst), e2(t) = 477.8 kV

√

2/3 sin(120πt − 0.066549). Vs sets the
amount of “pollution”.

consequence of the imperfect synchronization of the TCSC

firing angle obtained with the non-ideal PLL model [26].

It is now clear that the PLL plays an important role in the

design of the TCSC. For polluted currents, in fact, a non-

perfect synchronization with the fundamental component of

ıo(t) leads to unexpected dynamic behavior of the TCSC.

C. Effect of Different PLL Designs

To complete our investigation, we considered several PLLs

[21]–[27]. We started by inserting in the TCSC model the same

PLL used in [2]. The (block) schematic of this single-phase

version of the TCSC is shown in Fig. 7. The value of the

parameters of the circuit elements are reported in the figure

caption. The circuit is composed of three main parts: the

TCSC, which is the same circuit of [2], the CONTROLLER that

drives the thyristors and the PLL that delivers the sync signal

to the controller. The PLL is described in [26] and is often

chosen for its superior characteristics and robustness. This

PLL model, however, is mainly utilized in theoretical studies

as it cannot be easily implemented in practice [27]. Its main

blocks are: INT that implements an ideal integrator; LP that

implements a second-order low-pass filter; PI that implements

a proportional-integral block, IDM that performs a modulus

integration, i.e. any time the output value goes above an upper

threshold (in this case 2π) the integrator is reset to 0; SFT that

replicates its input waveform with a delay equal to 1/freq and

finally the COS block that generates an output signal which

is the cosine of its input (local controlled oscillator (LCO)).

Note that we implemented the PLL through behavioural digital

50
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1 10 100
−200

−100

0

100

200
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Figure 8. Upper panel: modulus of the transfer function between the TCSC

voltage and the synchronization voltage. Lower panel: the phase of the transfer
function.

or analog blocks by using advanced description languages

such as VERILOG and VERILOGA. The same applies to the

CONTROLLER block and thyristors.

An accurate and careful analysis of this PLL model reveals

that it is not able to completely remove the polluting com-

ponents that cause jitter of the input signal with respect to

the signal generated by the local oscillator COS block). It is

an analog PLL; the output of the analog input multiplier is

filtered by integrating it along a time moving window of length

equal to the current period of the LCO frequency. By referring

to Fig. 7 this task is performed by the INT block, the two

multipliers, the SFT block and the adder. This integration is

equivalent to a comb-filter whose zeros are at multiples of the

LCO frequency. This means that the polluting components are

not completely filtered out since they do not fall at any zero

of the filter. An adequate locking speed of the PLL is obtained

by varying the time aperture of the window. The incomplete

removal of the jitter reflects in the PLL output and thus leads

to an imperfect synchronization and to the impedance issues

described above. Fig. 8 shows the transfer function between

the synchronization signal that drives the TCSC and the vo(t)
voltage as obtained through the PAC analysis. The figure shows

that there are no poles up to about 60Hz and that the gain

is very large, i.e., more than 100 dB20. The transfer function

is parametrized with the firing angle α but the high gain is

preserved. This means that even a very small variation of the

synchronization provided by the PLL leads to a very large

variation of vo(t) and thus of the impedance of the TCSC.

Finally, we considered the PLL described in [23], which

shows a more appropriate synchronization scheme for TCSC.

Simulation results show that it has better performance [22].

This SOGI-FLL is based on a high-q band-pass filter, its name

is the acronym of “second order generalized integrator” that

exhibits a null phase-shift at center frequency. Its (block)

schematic is shown in Fig. 9. The center frequency is adapted

by the PLL loop. Locking speed is achieved by adapting the

filter center frequency and good performance is achieved by

the high-q filter. Despite these properties, the SOGI-FLL does

not attenuate the polluting component at 30Hz of 100 dB20



8

Figure 9. The schematic of the SOGI-FLL.

and, once more, it appears to be inadequate to synchronize the

TCSC and to meet the TCSC impedance requirements.

The results obtained above suggest that a possible strategy

to attenuate the polluting components is to reduce as much as

possible the bandwidth of the PLL, i.e. to largely filtering the

line current. This strategy can introduce a severe limitation in

the design of the controller of the TCSC since its speed may be

consistently reduced. For example, we tested the second-order

digital PLL based on a three-state phase-frequency detector

with a bandwidth of 1Hz as described in [39]. The (block)

schematic is shown in Fig. 10. The FF1 and FF2 blocks

implement the RS-FLIP-FLOPs of the phase-frequency detector.

The output signals drive the charge-pump (CP) implemented

by the voltage controlled current sources, which sink/source

the ıcp current. The current by the CP drives the low-pass

filter (LP). The voltage of the LP constitutes the error signal

of the voltage controlled oscillator (VCO) that synchronises to

ıo(t). The cut-off frequency of the LP sets the bandwidth of

the PLL. This PLL model proved to work well as it allows the

TCSC meeting the impedance requirements, but the bandwidth

is severely limited. This makes the TCSC slow if controlled to

damp oscillations of transmission systems.

Fig. 11 shows the spectra of the output signals of the three

PLL models considered so far. The comparison is drawn for

a TCSC working in steady-state with a polluted io(t) current.

As it can be seen, at 30Hz the more attenuated components

are those by the digital PLL proposed in [39]. Being below

−100dB20 and considering the magnitude of the transfer

function between the TCSC voltage and the output of the PLL

shown in Fig. 8, they do not cause any appreciable effect in

the impedance of the TCSC.

Figure 10. The schematic of the second-order digital PLL. C1 = 1.59mF,
C2 = 0.17mF, R1 = 1kΩ, ıcp = 12.02mA, kvco = 2.

Figure 11. Spectra of the output signals of the different PLLs used in a
TCSC working in a steady state condition with a polluted io(t) current. The
black curve refers to the PLL described in [26]; the red curve to the SOGI-FLL

described in [23]; the green curve refers to second order digital PLL described
in [39].

D. Remarks on PLL Design for TCSC Control

Based on the simulation results discussed so far, the follow-

ing concluding remarks are relevant.

• The impedance of the TCSC is strictly related to the

architecture of the controller. The synchronization of the

controller with the line current is a crucial aspect of the

controller. Thus, the PLL is a key element of the whole

TCSC design.

• If the PLL is unable to correctly drive the TCSC controller,

at sub-harmonics the equivalent impedance of the TCSC

is of resistive/capacitive type and makes the design less

robust.

• The PLL should be as fast and as immune from pollution

of line current as possible. Any phase or time shifting of

the reference signal generated by the PLL with respect to

the line current impacts on the delay time used to suitably

trigger the thyristors in the TCSC. This delay modulates

the effects of the Lr inductor and largely modifies the

impedance of the TCSC.

V. CONCLUSIONS

The paper exploits recently developed analytic and numer-

ical techniques for the analysis of hybrid dynamic systems

such as shooting analysis (SH) and periodic small signal

analysis (PAC) to study the behavior of thyristor controlled

series compensator (TCSC) devices. The paper shows that the

TCSC equivalent impedance at sub-harmonics is consistently

different from the impedance at the fundamental frequency.

The paper also thoroughly discusses the impact of the design

of the PLLs on the dynamic response of the TCSC controller

and indicates the features that PLL should have to minimize

such impact.

Future work will focus on the definition of a TCSC model

that is both accurate enough to take into account the impact

of sub-harmonics and PLL devices and adequate for transient

stability analysis of power systems. Such a model will allow

to study accurately the effect of TCSC devices when coupled

with large power systems models.
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