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Abstract

This paper presents an approach for improving, through practical assumptions, the
stability of power systems subjected to large disturbances. The proposed method
is composed of two steps, solved iteratively. The first step solves an optimal bifur-
cation control problem that guarantees the small-signal stability of the equilibrium
point. The proposed optimal bifurcation control addresses saddle-node and Hopf bi-
furcations. The second step is an N-1 contingency analysis computed through time
domain simulations. The second step guarantees the large-disturbance stability of
the equilibrium point. The WSCC 9-bus and New England 39-bus systems are used
to illustrate and test the proposed technique.

Key words: Optimal bifurcation control, small-signal stability analysis, large
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1 Introduction

Transient stability, or more in general, large-disturbance stability has always
been a key topic of power system analysis [1–6]. However, there are still several
issues, ranging from stability analysis methods to control schemes, that need
to be addressed. Nowadays research studies face mainly two bottlenecks. (i)
A huge amount of calculations, especially time domain simulations, is needed
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for large-disturbance stability studies. New generation computers and paral-
lel processing can help in speeding up calculations. (ii) It is mathematically
challenging to determine the stability region of a set of nonlinear differential
algebraic equations such as the power system model [3]. This paper addresses
the latter point.

Time domain simulation (TDS) and energy function (EF) methods are the
traditional approaches to study large-disturbance stability [3, 4]. Some new
results about TDS and EF methods can be found in [7] and [8], respectively.
The TDS approach can be applied to any level of detail of power system
models and gives a visual information about state variables. One of the main
disadvantages of the TDS approach, except for being time-consuming, is that
it does not provide information about the stability margin of the system.
Therefore, the TDS approach is not effective for stability control. On the
contrary, the EF approach is able to provide an index that measures the system
stability. However, EF methods can be applied only to power system for which
the energy function is known and only work for first-swing stability analysis.
Due to these limitations, EF methods are typically used in conjunction with
TDS methods [9, 10]. In this vein, in this paper, the TDS analysis is used in
conjunction with a small signal stability constrained optimization problem.

Small signal stability analysis techniques, based on bifurcation theory, has
been proposed in [11–13]. The “feasibility region” or, in other words, the small
signal stability region, was presented in [12] to identify the stability region
in the parameter space. This paper uses this concept of small signal stability
region for the formulation of an optimization problem. In particular, this paper
addreses saddle-node and Hopf bifurcations.

The proposed optimization problem is based on a variety of stability con-
strained OPF problems that have been presented in the literature, such as the
maximization of the distance to voltage collapse [14–17]. The computation of
the maximum loading condition is only a part of the information that can be
used for avoiding instability. One can be interested in determining how control
variables affect the loading margin [18]. Clearly this is useful both to deter-
mine the most critical variables and to design an effective corrective action
to avoid the collapse [19]. This paper proposes an optimization problem that
allows finding the critical stability condition of a power system.

It has to be noted the relevance of the variations of control parameters and
their sensitivities with respect to the stability margin in several practical ap-
plications. For example, in [17,20,21], the stability region for the most critical
contingency is determined through a sensitivity analysis, while in [22] and [23]
parameter sensitivities are used to properly set up primary and secondary
voltage regulation, respectively. In [24], voltage and transmission line thermal
limits are used to determine the feasibility region of inter area power transfers.
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Based on these results, this paper proposes an optimization problem to find
the optimal control variable profile that ensures an adequate stability region
with inclusion of an N-1 contingency criterion.

The optimization problem proposed in this paper is able to optimize system
control parameters in order to ensure an adequate stability margin of the op-
timal equilibrium point. However, large-disturbance stability cannot be taken
into account by the optimization problem. It is well known that dynamic
bifurcations can be triggered by large-disturbances [25, 26]. In [27, 28], N-1
contingency analysis is obtained through extensive time domain simulations.
In this vein, this paper proposes an iterative technique that combines the sta-
bility constrained optimization problem and simulation-based N-1 contingency
analysis. The proposed iterative method leads to the definition of a control
parameter set that guarantee both small and large-disturbance stability.

In summary the novel contribution of the paper are as follows:

(1) Proposal of a stability constrained OPF for optimizing control parame-
ters. The solution of this OPF problem ensures the small-signal stability
of the system. Stability constraints take into account saddle-node and
Hopf bifurcations.

(2) Proposal of an iterative method that computes repeatedly the OPF prob-
lem and time domain simulations following contingencies. The result of
this procedure is an equilibrium point that is stable for both small-signal
stability and large-disturbance stability.

The paper is organized as follows. Section 2 provides outlines of differential-
algebraic equations of power systems, bifurcation analysis and the definition
of small signal stability region. Section 3 presents the proposed optimal bi-
furcation control model and Section 4 presents the approach for taking into
account N-1 contingency analysis and improving large disturbances stability.
In Section 5, the proposed technique is illustrated and tested through the
WSCC 9-bus and the New England 39-bus test systems. Finally, in Section 6,
conclusions are duly drawn.

2 Outlines of Power System Stability Analysis

2.1 Differential Algebraic Equations

Power electric systems can be represented as a set of differential algebraic
equations (DAE) [29]:
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ẋ = f(x, y, µ, p) (1)

0 = g(x, y, µ, p)

where (f : R
n × R

m × R
k × R

l → R
n) is the vector of differential equations;

x ∈ R
n is the vector of state variables associated with generators, loads and

system controllers; (g : R
n × R

m × R
k → R

m) is the vector of algebraic
equations; y ∈ R

m is the vector of algebraic variables; µ ∈ R
k is the vector

of uncontrollable variables; and p ∈ R
l is the vector of control variables. It is

assumed that algebraic variables can vary instantaneously, i.e. their transients
are assumed to be “infinitely” fast.

Equations (1) can be linearized at an equilibrium point (x0, y0, µ0, p0), as fol-
lows:
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where Atot is the full system Jacobian matrix, and fx = ∂f/∂x|0, fy =
∂f/∂y|0, gx = ∂g/∂x|0 and gy = ∂g/∂y|0 are the Jacobian matrices of the
differential and algebraic equations with respect to the state and algebraic
variables, respectively. If it is assumed that gy is nonsingular, the vector of
algebraic variables ∆y can be eliminated from (2), as follows:

∆ẋ = (fx − fyg
−1
y gx)∆x = Asys∆x (3)

Thus the DAE can be implicitly reduced to a set of ordinary differential equa-
tions (ODE). Observe that if gy is singular, the model of the system has to be
revised as the dynamics of some algebraic equations cannot be neglected [30].
Thus it is always possible to formulate a set of DAE for which gy is not sin-
gular.

In order to give a rigorous definition of the bifurcations discussed in this paper,
let us assume that the uncontrollable variables are scalar, i.e. µ ∈ R. In our
formulation, µ is the loading factor that multiplies load powers as follows:

P µ
L = µ P 0

L (4)

Qµ
L = µ Q0

L

where P 0
L and Q0

L are the base case or initial load profile (µ = 1 at the base
case).

The loading factor is commonly used in stability studies to determine the
maximum loading condition that can be either associated with [25,26,30]:

(1) voltage stability limit (collapse point) corresponding to a system singu-
larity (saddle-node bifurcation);
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(2) system controller limits such as generator reactive power limits (limit-
induced bifurcation).

(3) frequency stability (Hopf bifurcation).

2.2 Bifurcations Analysis

In this paper, bifurcation points are identified through the eigenvalue loci of
the state matrix Asys.

For the sake of definition, let us define the vector of functions F as follows:

ẋ = F (x, µ) = f(x, y(x, µ), µ) (5)

i.e. F is the set of differential equations where the algebraic variables y have
been substituted for their explicit function of x and µ. Thus, one has:

Asys = ∂F/∂x|0 (6)

Observe that, from the practical point of view, it is not necessary to know
explicitly the function y(x, µ) since the state matrix Asys can be computed
from (3).

The bifurcations discussed in this paper are the saddle-node bifurcation and
the Hopf bifurcation. The definitions of these bifurcations are as follows [11].

Saddle-Node Bifurcation (SNB): a SNB point is an equilibrium point (x0, µ0)
at which the state matrix presents one zero eigenvalue. SNB are associ-
ated with a pair of equilibrium points, one stable (s.e.p.) and one unstable
(u.e.p.) that coalesce and disappear. The following transversality condi-
tions hold:
(1) The state matrix Asys has a simple and unique eigenvalue with right

and left eigenvectors v and w such that Asysv = AT
sysw = 0;

(2) wT ∂F/∂µ|0 = 0;
(3) wT [∂2F/∂x2]v 6= 0.

Hopf Bifurcation (HB): a HB point is an equilibrium point (x0, µ0) at which
the state matrix presents a complex conjugate pair of eigenvalues with
zero real part. The following transversality conditions hold:
(1) The state matrix Asys has a simple pair of purely imaginary eigen-

values λ(µ0) = ±jβ and no other eigenvalues with zero real part;
(2) dℜ{λ(µ)/dµ|0} 6= 0.

The HB gives a birth to a zero-amplitude limit cycle with initial period
T0 = 2π/β. If the limit cycle is stable the HB is “supercritical”; if the
limit cycle is unstable the HB is “subcritical”.

Observe that Limit-Induced Bifurcations (LIBs) [30] are not discussed since,
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control limits of AVRs and of other system regulators are implicitly taken into
account in the optimization problem that is proposed in Section 3.

2.3 Direct Method for Bifurcation Analysis

The following direct method can be used to identify both SNB and HB [26].
Let us define λ = α + jβ and ux as one eigenvalue and its associated right
eigenvector, respectively, of the matrix Asys. Then:

Asysux = λux (7)

Let us also define u = [uT
x uT

y ]T , where uy = −g−1
y gxux, thus (7) can be

rewritten as:




fx fy

gx gy






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ux

uy



 = (α + jβ)


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ux

0



 (8)

where

ux = uxR + juxI (9)

uy = uyR + juyI

where uxR, uxI ∈ R
n and uyR, uyI ∈ R

m. By substituting equation (9) in equa-
tion (8), one has:

0 = fxuxR + fyuyR − αuxR + βuxI (10)

0 = fxuxI + fyuyI − αuxI − βuxR

0 = gxuxR + gyuyR

0 = gxuxI + gyuyI

Finally, considering the system DAE, (10) and imposing a non-trivial for the
eigenvectors, one obtains the following set of equations:

0 = f(x, y, µ, p) (11)

0 = g(x, y, µ, p)

0 = fxuxR + fyuyR − αuxR + βuxI

0 = fxuxI + fyuyI − αuxI − βuxR

0 = gxuxR + gyuyR

0 = gxuxI + gyuyI

1 = uT
xRuxR − uT

xIuxI

0 = uT
xRuxI − uT

xIuxR

Observe that (11) is valid for both SNB and HB points, as follows:

6



• at SNB points, uxR = ux, uyR = uy, uxI = uyI = 0, and α = β = 0;
• at HB points, α = 0 and β 6= 0.

Observe also that (11) is seldom used for computing bifurcation points because
obtaining a solution highly depends on a good initial guess of the eigenvectors
[30]. However this formulation is useful if used within an optimization problem,
as discussed in Section 3.

2.4 Stability Manifold

A definition of “small signal stability region”, say ΩSSSR, also called “feasibility
region”, was given in [12, 13]. According to that definition, ΩSSSR is “the sta-
bility region in the variable space, which is composed of all equilibrium points
that can be reached quasi-statically from the current operating point without
loss of local stability”. If singularity-induced bifurcations are not a concern
(i.e. gy is non-singular), the small-signal stability region can be rewritten as
ΩSSSR = {BSNB ∪ BHB ∪ BLIB}, where BSNB is the unstable region identified
by SNB points, BHB is the unstable region identified by HB points, and BLIB

is the unstable region identified by LIB points.

Observe that there is no general technique to obtain the entire stability region
of a set of DAE, except for solving several computationally expensive time
domain simulations with negative time [11]. Furthermore, time domain tech-
niques are effective only for a reduced number of state variables x and control
variables p.

3 Optimal Bifurcation Control

The Optimal Bifurcation Control (OBC) can be defined as the optimal con-
figuration of control variables p so that the solution is within the small signal
stability region ΩSSSR. In the OBC analysis, one has to minimize a control
“cost” that is a function of control variables.

The OBC approach proposed in this paper is a nonlinear optimization prob-
lem, as follows:
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Min. C(p) (12)

s.t. 0 = f(x, y, µ, p)

0 = g(x, y, µ, p)

0 = fxuxR + fyuyR + βuxI

0 = fxuxI + fyuyI − βuxR

0 = gxuxR + gyuyR

0 = gxuxI + gyuyI

1 = uT
xRuxR − uT

xIuxI

0 = uT
xRuxI − uT

xIuxR

µ ≥ µmin

h(x, y, µ, p) ≤ 0

where C(p) is the objective function that represents the “cost” of changing
control variables p. In this paper the following structure will be used:

C(p) =
∑

i

ci(pi − p0
i )

2 (13)

where p0
i and ci are the standard or default value and the weight, respectively,

of the control variable pi. The inequalities h (h ∈ R
ℓ) represent physical and

security constraints such as voltage limits, regulators limits, etc.

The loading factor constraint µ ≥ µmin imposes that the solution has to present
a minimum loading level. If µ > 1, the system can be overloaded with respect
to the base case. Observe that increasing µmin typically leads to increase the
objective function.

For a given minimum value of the loading factor µmin, the solution of (12)
provides the bifurcation point that minimizes the control variable variation.
Observe that the proposed model is able to find both SNB and HB points.
LIB points are also taken implicitly into account through inequalities h.

Observe that changing regulator gains and/or other controller parameters p
can highly impact the overall system stability. At this aim, (12) takes into
account the differential-algebraic equations f and g of the system. Differential
equations f include machine models and regulator control loops. Thus the
solution of (12) ensures the local stability of the dynamic system at the optimal
equilibrium point.

Observe also that (12) guarantees the best set of control parameters p only for
local stability. This is because the contingency analysis is not directly included
in (12). There is currently no well-assessed and efficient method that allows
including large-disturbance stability constraints (which basically implies the
use of time domain simulations) in an OPF problem.

8



In this paper the inclusion of contingencies is obtained through an iterative
method that is described in Section 4.

4 N-1 Contingency Analysis

The solution of (12) is within the small signal stability region as defined in
[12]. However, it is possible that a contingency (e.g. a line outage) triggers
a bifurcation. It is thus necessary to take into account an N-1 contingency
analysis.

We make the following practical assumptions to guarantee the large-disturban-
ce stability and, in turn, to include the N-1 contingency analysis in the optimal
bifurcation control.

(1) The post-contingency large-disturbance stability region in the variable
space is a subset of the small signal stability region under the same con-
tingency. This is a conservative assumption.

(2) The lower the loading margin, the higher the stability margin of the sys-
tem. Thus it is always possible to find a post-disturbance stable condition.
This assumption can be easily proved since a system with no load and
with no generation (µ = 0) is certainly stable.

(3) The sensitivity of the loading factor with respect to a control variable,
say dµ/dp, at a solution point maintains its sign after the occurrence
of a large perturbation. This assumption is not true in general, however
it holds for a variety of typical control variables and can thus be used
to approximate the large-disturbance stability based on the small signal
stability region.

In our approach, the uncontrollable variable µ is used to define the frontier of
the stability region ΩSSSR, as follows. If the system shows a bifurcation point
for a given value of the loading factor µ = µcrit, then all the equilibrium points
are stable for µ < µcrit. We assume that if µcrit is sufficiently high, and thus
the small signal stability region ΩSSSR sufficiently big, then the system is also
stable for large disturbances.

Problem (12) is then used to find the optimal profile of the control variables
p that leads to the desired stability margin (i.e. µ ≥ µmin) for a given contin-
gency. However, since (12) only guarantees a local stability, one has to check
that the system is stable for a large perturbation (e.g. line outages) by means
of time domain simulations. If the system is not stable, one has to increase
the stability margin µmin, thus increasing ΩSSSR.

It is relevant to note that the use of time domain simulations also allows ex-
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Contingency 
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     Check for bifurcations  
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Solve OBC problem (12) 

Is time domain simlulation 

stable?

Yes

No 

Yes 

No 

µµ (n+1) (n)
min min 

with worst contingency

Fig. 1. Flow chart of the proposed optimal bifurcation control for improving post-dis-
turbance stability.

cluding the occurrence of transient instabilities. Thus the proposed technique
is also suitable for transient stability control.

This approach can be summarized as follows:

(1) Initialization of the stability margin µmin
0 = 1. This step imposes that the

base case solution is feasible and stable.
(2) The base case solution undergoes a contingency ranking technique. One

line outage is considered at a time and the stability of the post-contingency
equilibrium is evaluated. The contingency that leads to the minimum
value of µ is considered the worst contingency. If no contingency pro-
duces bifurcations go to step (5), otherwise go to step (3).

(3) Set µmin
(n+1) = µmin

(n) + ∆, where ∆ is a given increment of the stability
margin. This step imposes that the base case solution has a stability
margin µmin > 1, thus enlarging the stability region of the system.

(4) Solve (12). The nonlinear programming technique optimizes the values
of the control parameters in order to enlarge the stability region of the
system.
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(5) Check the stability of the system through a time domain simulation with
the inclusion of the worst contingency. This step is necessary since (12)
only guarantees local stability. The time domain analysis check for global
stability of the system with the parameter set obtained at step (4). If the
system reaches a stable equilibrium point, go to step (6). Otherwise, go
to step (3).

(6) End.

Fig. 1 depicts the flowchart of the proposed technique for large-disturbance
stability control.

Observe that the algorithm performance depends on the value of ∆. If ∆ is
high, the algorithm solves (12) for a reduced number of times; however it is
possible that the final result is too conservative. On the other hand, if ∆ is
small, the procedure can be time consuming, though more precise results are
achieved. Based on several test cases, ∆ = k(µ′−1), where µ′ is the value of the
critical loading condition without contingencies and k ∈ [0.01, 0.1] depending
on the severity of the fault.

Problem (12) is highly non-linear and can be badly conditioned at the bifur-
cation points. Thus the SQP method can fail to converge for large systems if
it is not properly initialized. At this aim, if it is needed, we use a continuation
method to determine a good initial guess. The continuation analysis allows
getting a solution close to the bifurcation point of (12). The tangent vector of
the state matrix is also a good initial guess for the eigenvectors ux and uy [30].

As a final remark, it has to be noted that determining the occurrence of an HB
point is not trivial. Roughly speaking, if the system presents an undamped
oscillations after the contingency, a Hopf bifurcation has likely occurred. How-
ever, an accurate bifurcation point tracing method is used in this paper to
detect the occurrence of Hopf bifurcation points [11].

5 Cases Studies

The proposed technique for large-disturbance stability control is applied to the
WSCC 9-bus test system [31] and New England 39-bus test system [32]. The
optimization problem (12) was solved using a Sequential Quadratic Program-
ming (SQP) algorithm, while time domain simulations and eigenvalue analyses
were carried out using the Matlab-based toolbox PST [33]. Finally, for the in-
terested reader, a detailed description of all static and dynamic models used
in the case studies can be found in [33].
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Fig. 2. WSCC 9-bus test system.

Table 1
OBC Settings for the WSCC Test System with Vref Control

AVR Reference Voltage, [Vref1, Vref2, Vref3]

Objective Functions C(Vref) = ((Vref − V 0
ref)

2)T cVref
,

cVref
= [1, 1, 1]

Inequality Constraints h 0.95 ≤ Vi ≤ 1.15 and regulator limits

Step Size ∆ = 0.0064

5.1 WSCC 9-bus Test Case

Fig. 2 depicts the WSCC 9-bus test system. All system data are depicted
in [31], except for the gains of AVR, that are chosen as follows: KA1 = KA2 =
KA3 = 100.

5.1.1 Optimal Hopf Bifurcation Control with Vref

It is assumed that the current load level is 110% with respect to the data used
in [31]. The loading margin that corresponds to this load profile is µ′ = 1.32.
The worst case contingency is the line 7-8 outage, which leads to a Hopf
bifurcation.

Table 1 depicts the objective function, the control variables, the inequality
constraints and the step size ∆ that are used to set up the OBC problem (12).

Table 2 illustrates the steps of the proposed OBC technique. The procedure
ends in three steps for µ = 1.0192. The results indicate that only the reference
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Table 2
Steps of the OBC Technique for the WSCC 9-bus Test System (variable Vref)

Variable First Step Second Step Third Step

µ 1.0064 1.0128 1.0192

Vref1 1.0508 1.0508 1.0508

Vref2 1.0445 1.0463 1.0485

Vref3 1.0390 1.0390 1.0390
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Fig. 3. Time domain simulation for the WSCC 9-bus test system with the line 7-8
outage, without control and with AVR reference voltage control (Vref2 = 1.0485).

voltage of the generator 2 needs to be adjusted, as follows Vref2 = 1.0485.

Fig. 3 depicts the time domain simulation results for the line 7-8 outage with-
out OBC (Vref2 = 1.0429) and with OBC (Vref2 = 1.0485), respectively. Ob-
serve that, without control, the system presents a frequency instability. Using
the OBC, the system remains stable, though close to critical oscillations.

5.1.2 Optimal Hopf Bifurcation Control with KA

In this case, we set the load level to 120% and all the AVR gains to 150. The
loading margin that corresponds to the given load level is µ′ = 1.346. We
use AVR gains as control variables. Table 3 illustrates the complete control
information for the case study.
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Table 3
OBC Settings for the WSCC Test System

Gains of AVR, [KA1, KA2, KA3]

Objective Functions C(KA) = ((KA − K0
A)2)T cKA,

cKA = [1, 1, 1]

Inequality Constraints h 0.95 ≤ Vi ≤ 1.15 and regulator limits

Step Size ∆ = 0.1 ∗ (1.346 − 1) = 0.0346

Table 4
Steps of the OBC Technique for the WSCC 9-bus Test System (variable KA)

Variable First Step Second Step Third Step Fourth Step

µ 1.0346 1.0692 1.1038 1.1384

KA1 150 150 150 150

KA2 161.8 176.47 191.62 207.4

KA3 150 150 150 150

Table 4 illustrates the steps of the proposed OBC technique. The procedure
ends in four steps for µ = 1.1384. The results indicate that only the gain of
AVR of the generator 2 needs to be adjusted, as follows KA2 = 207.4.

Fig. 4 depicts the time domain simulation results for the line 7-8 outage with-
out OBC (KA2 = 150) and with OBC (KA2 = 207.4), respectively. Without
control, the system presents a frequency instability, while using the OBC, the
system remains stable.

It has to be noted that the main goal of this paper is to provide the “minimum”
variation of control variables that lead to a stable system. The equilibrium
point after the contingency is close to the bifurcation point, which results in
a low-damped oscillation (see Fig. 3 and Fig. 4). The inclusion of new devices
or controllers such as PSS, could help in damping the oscillations. However,
the design of this kind of corrective actions is beyond the scope of this paper.

The results of the WSCC system clearly indicate that AVR control gains are
more effective than reference voltages for damping oscillations and avoiding
the occurrence of Hopf bifurcations.

5.2 New England 39-bus Test Case

Fig. 5 depicts the New England 39-bus test system. Static and dynamic data
of this case study can be found in [32].
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Fig. 4. Time domain simulation for the WSCC 9-bus test system with the line 7-8
outage, without control and with AVR gain control (KA2 = 207.4).
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Table 5
Steps of the OBC Technique for the New England Test System (HB control)

Variable First Step Second Step Third Step

µ 1.0065 1.013 1.0195

KA5 35.8 31.4 28.3

KA10 40 40 40

5.2.1 Optimal Hopf Bifurcation Control with KA

We set the current load level to 105%. The loading margin that corresponds
to this load profile is µ′ = 1.13. The line 15-16 outage is the worst contingency
and leads to a Hopf bifurcation. Thus the OBC technique is used to ensure
the N-1 contingency stability of the system.

In this case, we use AVR gains KA as controllable parameters. Furthermore,
in order to reduce the computational burden, we select only a few AVR gains
through a model analysis, as explained below.

In the New England test system, all generator damping torques are zero. Thus
generator rotor speeds always present an undamped oscillation. However, this
has not to be confused with Hopf bifurcations.

Fig. 6 depicts the time domain simulation results for the line 15-16 outage
without control. The system shows an oscillatory instability triggered by a
Hopf bifurcation. The frequency of the unstable oscillation is about 0.5 Hz.
AVR gains KA5 and KA10 are selected as the strong-correlative control pa-
rameters because of the higher participation factor to the unstable complex
eigenvalue pair. The OBC settings is the same as Table 3 except for the control
parameters ([KA5, KA10]) and the step size (∆ = 0.05 ∗ (1.13 − 1) = 0.0065).

For the solution of this test case, a continuation technique was used to get a
good initial guess for (12). Simulation results show that the iterative process
converges in a few iterations if using a good initial guess.

Table 5 reports the steps of the proposed OBC technique. The overall proce-
dure ends in three steps for µ = 1.0195. Furthermore, the results indicate that
only the gain of the AVR of the generator 5 needs to be adjusted.

Fig. 7 depicts the time domain simulation results for the line 15-16 outage
with OBC (KA5 = 28.3). Observe that, using the OBC, the system remains
stable.
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Fig. 6. Time domain simulation for the New England test system with the line 15-16
outage and without control.

0 5 10 15 20 25 30 35
2

3

4

5

6

7

8

9

10

11

12

Time (s)

G
en

er
at

or
 E

le
ct

ric
al

 P
ow

er
 (

p.
u.

)

Fig. 7. Time domain simulation for the New England test system with the line 15-16
outage and with AVR gain control.
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Table 6
OBC Settings for the New England 39-bus Test System

AVR reference set-point Vref

Objective Functions C(Vref) = ((Vref − V 0
ref)

2)T cVref
,

cVref
= [1, 1, · · · , 1]

Inequality Constraints 0.95 ≤ Vi ≤ 1.15 and regulator limits

Step Size ∆ = 0.01

Table 7
Steps of the OBC Technique for the New England 39-bus Test System (SNB control)

Pre-optimization Post-optimization

µ 1.025 1.045

Bus Number AVR reference voltage Vref

30 1.2451 1.2451

31 1.3720 1.3720

32 1.3338 1.4038

33 1.3429 1.4451

34 1.6703 1.7534

35 1.4137 1.4137

36 1.4027 1.4027

37 1.3316 1.3316

38 1.3754 1.3838

39 1.2060 1.2060

5.2.2 Optimal Saddle-node Bifurcation Control with Vref

For this case study, two banks of 50 MVAr capacitors are connected at buses
12 and 15, respectively. Loads at buses 4, 12 and 15 are modeled as induction
motors, while a constant impedance model is used for the other load buses. It
is assumed that the current load level is 114% with respect to the data used
in [32]. The loading margin that corresponds to this load profile is µ′ = 1.96.
The worst case contingency is the line 15-16 outage, which leads to a saddle-
node bifurcation.

Table 6 depicts the objective function, the control variables, the inequality
constraints and the step size ∆ that are used to set up the OBC problem
(12). In this case, defining a good initial guess is not an issue, since the size of
(12) in the case of saddle-node bifurcation control is the half the size of Hopf
bifurcation control. Thus, all AVR reference voltages Vref can vary.

Table 7 illustrates the steps of the proposed OBC technique. The procedure
ends in two steps for µ = 1.045. The results indicate that only a few AVR
reference voltages need to be adjusted.
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Fig. 8. Time domain simulation for the New England 39-bus test system with the
line 15-16 outage and without control.

Fig. 8 and Fig. 9 depict the time domain simulation results for the line 15-16
outage without and with OBC, respectively. Observe that, without control, the
system presents a monotonic instability. Using the OBC, the system remains
stable, though close to voltage stability limits. The inclusion of new devices or
controllers such as SVC, could help in recovering the voltage profile. However,
the design of this kind of corrective actions is beyond the scope of this paper.

As a final remark, observe that the AVR references are effective parameters
for saddle-node bifurcation control, as expected, since increasing generator
voltages allows increasing the network loadability [30].

6 Conclusion

A novel approach for large-disturbance stability control is proposed and dis-
cussed in this paper. The proposed optimal bifurcation control addresses in
particular saddle-node and Hopf bifurcations and is tested through two bench-
mark case studies.

The advantages of the proposed method are as follows.

(1) It provides an approximate loading margin that is a measure of system
stability.
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Fig. 9. Time domain simulation for the New England 39-bus test system with the
line 15-16 outage and with AVR voltage reference control.

(2) It works for both saddle-node and Hopf bifurcations, i.e. for voltage and
frequency instability.

(3) The use of time domain simulations also allows excluding the occurrence
of transient instabilities and avoid bifurcations triggered by contingencies.

Future works will concentrate on finding a simple criterion to find adequate
values for the step increment ∆, whose evaluation is currently based on off-line
analyses. The authors are currently testing the proposed method on large-scale
case studies.
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