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Abstract
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stochastic differential equations (SDEs). The resulting models produce stochastic
processes with a given probability distribution and exponentially decaying autocor-
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models obtained from several probability distributions used in the literature to de-
scribe different wind speed behaviors. All models are validated through numerical
simulations. Finally, the proposed procedure is applied to model the wind speed ob-
served at a meteorological station in New Zealand. A comparison of the statistical
properties of the wind speed measurements and of the stochastic process generated
by the SDE model is also provided.
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1 Introduction1

1.1 Motivation2

Wind speed models are used in the analysis of many aspects related to power3

systems, for example, in power system economics and operation (e.g., [1–3]),4

generation capacity reliability evaluation (e.g., [4–6]), and dynamic studies and5

control of wind turbines (e.g., [7–10]). The types of models traditionally used6

in the different research fields include time series, four-component composite7

models, and models based on Kalman filters. Independently of the type of the8

model, the appropriate characterization of the wind behaviour is a key mod-9

eling aspect, since the reliability of the results obtained in the above studies10

depends on it. In this paper, we develop a novel method based on stochastic11

differential equations, the regression theorem, and the Fokker-Planck equation,12

to construct wind speed models.13

1.2 State of the art14

From a statistical point of view, the wind speed is characterized by its proba-15

bility distribution and autocorrelation. Therefore, to be adequate, wind speed16

models should be able to reproduce such characteristics. The type of prob-17

ability distribution that best describes the wind variability depends on the18

particular location and on the time frame [11–14]. With regard to the au-19

tocorrelation of the wind speed, this has been usually characterized by an20

exponentially decaying function, either for hourly wind speed measurements21

in the time frame of hours [15], or for wind speed measurements on a one-22

second basis in the time frame of minutes [14]. However, other studies have23

identified scaling properties in the wind speed measurements at different sites24

where the autocorrelation is better described by means of power-law decay-25

ing functions [16, 17]. This paper focuses on the development of wind speed26

models for locations where the autocorrelation observed in the wind speed is27

of exponential type. Therefore, the validity of the proposed models is limited28

to cases for which such a condition is satisfied.29

The application of stochastic differential equations (SDEs) to the modeling of30

stochastic processes occurring in power systems is gaining interest in recent31

years (e.g, [18–20]). A SDE is composed of two terms: the drift term and the32

diffusion term. The specific formulation of each term determines the statistical33

properties of the phenomenon under consideration. With this regard, SDEs34

have been successfully applied to wind speed fluctuation modeling when such35

fluctuations show an exponentially autocorrelated Gaussian behaviour [14].36
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However, the construction of SDEs to model exponentially autocorrelated non-37

gaussian phenomena, as it can be the case of hourly wind speeds, is still an38

open task.39

In a previous work, [21], we proposed to overcome this difficulty by trans-40

forming a well-known SDE widely used to model exponentially autocorrelated41

Gaussian processes. For that, translation techniques are applied in order to42

obtain another SDE that reproduce a given non-gaussian probability distri-43

bution. The resulting model is able to reproduce such probability distribution44

but it cannot guarantee a good reproduction of the autocorrelation of the45

process.46

1.3 Contributions47

The method proposed in this paper relies on basic stochastic calculus concepts48

(such as the Regression Theorem) to derive an expression for the drift term49

of the SDE that ensures an exponentially autocorrelated process. Then, the50

stationary Fokker-Planck equation is solved to obtain the expression of the51

diffusion term that guarantee a given probability distribution. Therefore, the52

models that result from applying the proposed method are able to exactly re-53

produce both the probability distribution and the exponential autocorrelation54

for which they are designed.55

The proposed method is systematically applied to construct SDE-based mod-56

els from different probability distributions proposed in the literature to de-57

scribe the wind speed behaviour. As a result, together with the detailed de-58

scription and justification of the proposed method, the paper provides a col-59

lection of SDE-based models ready to be used in different studies related to60

wind power. Although the development of the method is motivated by wind61

speed modeling, the proposed technique is general, and it can applied to model62

phenomena other than wind speed.63

1.4 Paper organization64

The remainder of the paper is organized as follows. Section 2 describes and65

justifies the procedure that leads to the mathematical formulation of the wind66

speed models. Examples of SDEs that generate exponentially autocorrelated67

stochastic process for several different probability distribution functions are68

given in Section 3, while Section 4 illustrates the statistical properties of these69

examples through numerical simulations. In Section 5, the proposed procedure70

is applied to construct a wind speed model based on wind speed measurements71

recorded at a meteorological station located in New Zealand. Finally, Section72
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6 provides relevant conclusions. In addition, Appendix A provides a brief de-73

scription of the key theorem on which the developing of the proposed model74

is based.75

2 Proposed Building Method of the SDE Model76

A one-dimensional Itô Stochastic Differential Equation (SDE) has the general77

form78

dx(t) = a(x(t), t) · dt+ b(x(t), t) · dW (t), t ∈ [0, T ], (1)

x(0) = x0,

where the initial value x0 can be a deterministic or a random value, and W (t)79

is a standard Wiener process, also loosely called Brownian motion [22,23]. The80

integral form of equation (1) is81

x(t)− x0 =
∫ t

0
a(x(u), u) · du+

∫ t

0
b(x(u), s) · dW (u), t ∈ [0, T ], (2)

where the first integral is an ordinary Riemann-Stieltjes integral and the sec-82

ond one is a stochastic integral interpreted in the Itô’s sense. The solution83

of (1) or (2) is a stochastic process so-called diffusion process, and functions84

a(x(t), t) and b(x(t), t) are referred to as the drift and the diffusion terms85

of the Itô SDE, respectively. Diffusion processes are continuous-time Markov86

processes with almost surely continuous sample paths [23].87

Our goal is to build a SDE model to generate an exponentially autocorrelated88

stochastic process with a given probability distribution. In other words, we89

look for the form of the drift and diffusion terms of equation (1) so that the90

solution of the resulting SDE is a process with those statistical properties.91

Inspired in the approach of [14], our method is based on the relation that the92

drift and the diffusion terms should satisfy in order to get a given probabil-93

ity distribution. This relation is obtained from the stationary Fokker-Planck94

equation. For stationary processes, a(x(t), t) = a(x(t)), b(x(t), t) = b(x(t)),95

and p(x(t), t) = p(x(t)), and the stationary Fokker-Planck equation is96

0 = −a(x(t)) · p(x(t)) +
1

2
· ∂

∂x(t)

[
b2(x(t)) · p(x(t))

]
(3)
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By solving (3) for a(x(t)) we obtain97

a(x(t)) = b(x(t)) · ∂b(x(t))

∂x(t)
+

1

2
· b2(x(t)) · ∂ ln p(x(t))

∂x(t)
(4)

and, by solving (3) for b2(x(t)) we obtain98

b2(x(t)) =
2

p(x(t))
·
∫ x(t)

−∞
a(z(t)) · p(z(t)) · dz(t) (5)

for p(x(t)) 6= 0, and b(x(t)) = 0 if p(x(t)) = 0. Therefore, for a given probabil-99

ity density function p(x(t)), if one of the functions b(x(t)) or a(x(t)) is known,100

the other function can be obtained by solving (4) or (5), respectively.101

In reference [14] the diffusion term b(x(t)) is fixed to a constant value accord-102

ing to Kolmogorov’s theory of local isotropy [24], and the drift term a(x(t))103

is obtained by solving (4) for different probability distributions. With this ap-104

proach, the resulting SDE provides a stochastic process with the given proba-105

bility distribution, but the empirical exponential decay of the autocorrelation106

is not guaranteed for non-gaussian processes. We proceed in a different way:107

first, we obtain a drift term a(x(t)) that ensures an exponential autocorrela-108

tion function with a given decay rate. Second, we obtain the diffusion term109

b(x(t)) by solving (5) for the given probability density function p(x(t)).110

To identify the desired drift function, we base on the Regression Theorem (see111

Appendix A). According to this theorem, an exponentially decaying autocor-112

relation is obtained if the autocovariance of the stochastic process obeys a113

linear differential equation of the type of (A.2). With that in mind, a differen-114

tial equation of the stationary autocovariance of a process modeled with (1) is115

developed on the basis of the Itô formula. For an arbitrary function g(·) of the116

stochastic variable x(t) defined by (1), the Itô formula gives the differential of117

g(·), as follows:118

dg(x(t), t) =[
∂g(x(t), t)

∂t
+ a(x(t), t) · ∂g(x(t), t)

∂x(t)
+

1

2
· b2(x(t), t) · ∂

2g(x(t), t)

∂x2(t)

]
· dt

+ b(x(t), t) · ∂g(x(t), t)

∂x(t)
· dW (t) (6)
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where a(x(t), t) and b(x(t), t) are the drift and the diffusion terms of (1),119

respectively [22,23]. For our purpose, function g(·) is selected to be120

g(x(t), t) = g(x(t)) = (x(s)− µ) · (x(t)− µ) (7)

where s < t. The derivatives involved in (6) are as follows:121

∂g(x(t))

∂t
= 0 (8)

∂g(x(t))

∂x(t)
= x(s)− µ (9)

∂2g(x(t))

∂x2(t)
= 0 (10)

Observe that, in the previous derivations, we have used the fact that x(s)122

is independent of x(t) due to the Markov property [23], and that the chosen123

function g(x(t)) does not explicitly depend on time. From (6) and (8)-(10),124

the resulting SDE is125

d[(x(s)−µ) · (x(t)− µ)] =

a(x(t)) · (x(s)− µ) · dt+ b(x(t)) · (x(s)− µ) · dW (t) (11)

with initial condition (x(s)− µ)2. The integral form of the previous SDE is126

(x(s)− µ) · (x(t)− µ)− (x(s)− µ)2 =∫ t

s
a(x(u)) · (x(s)− µ) · du+

∫ t

s
b(x(u)) · (x(s)− µ) · dW (u) (12)

where we perform the integration over the interval [s, t]. By applying the127

expectation operator E[·] to equation (12), and taking into account that the128

expectation of an Itô stochastic integral is zero [25], i.e.,129

E
[∫ t

s
b(x(u)) · (x(s)− µ) · dW (u)

]
= 0 (13)

we obtain the following expression130
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E [(x(s)− µ) · (x(t)− µ)]−E
[
(x(s)− µ)2

]
=∫ t

s
E [a(x(u)) · (x(s)− µ)] · du (14)

where the first term of the right hand side of equation (14) is the autocovari-131

ance function c(s, t). The differential form of (14) is132

dE [(x(s)− µ) · (x(t)− µ)]

dt
= E [a(x(t)) · (x(s)− µ)] (15)

In order to obtain an equation similar to (A.2) it is clear that133

a(x(t)) = −α · (x(t)− µ) (16)

and (15) can be expressed as134

dc(s, t)

dt
= −α · c(s, t) (17)

For stationary processes, the autocovariance only depends on the time lag135

τ = t − s, therefore equation (17) reduces to (A.2), and the autocovariance136

and the autocorrelation of the stochastic process x(t) follow the decaying137

exponential expressions (A.3) and (A.4), respectively.138

Observe also that as the drift term (16) is linear, the requirement of a linear139

evolution equation for the mean value expressed in the regression theorem is140

also satisfied. This can be shown from the integral version of a generic SDE141

with the computed drift term, i.e.,142

x(t)− x0 =
∫ t

0
−α · (x(u)− µ) · du+

∫ t

0
b(x(u)) · dW (u) (18)

By applying the expectation operator to equation (18), and taking into account143

that the expectation of an Itô stochastic integral is zero, we obtain144

E[x(t)]− E[x0] =
∫ t

0
−α · E [(x(u)− µ)] · du (19)

and, recovering the differential form,145
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dE[x(t)]

dt
= −α · E[x(t)] + α · µ (20)

with initial condition E[x0]. Observe that equation (20) expresses a linear law146

similar to (A.1).147

In summary, to model a stationary stochastic process with given probability148

distribution function p(x(t)) and exponential autocorrelation with a SDE, it149

is a sufficient condition to define a drift term in the form150

a(x(t)) = −α · (x(t)− µ) (21)

where µ is the mean of the particular probability distribution p(x(t)), and a151

diffusion term computed by solving152

b2(x(t)) =
2

p(x(t))

∫ x(t)

−∞
−α · (z(t)− µ) · p(z(t)) · dz(t) (22)

3 Examples153

In this section, we apply the proposed method to construct SDE-based wind154

speed models for different probability distributions that have been proposed155

in the literature to describe the wind speed variability. In Subsections 3.1156

and 3.2 we use the Normal distribution and the Gram-Charlier expansion157

proposed in [14], respectively to fit wind speed fluctuations around a mean158

value measured on a one-second basis. In Subsections 3.3-3.10 we use a variety159

of probability distributions analyzed in [11] to fit hourly mean wind speeds160

recorded at different meteorological stations. To simplify the notation, the161

explicit dependency of variable x on time is removed. All models have the162

following structure:163

dx = a(x) · dt+ b(x) · dW (t) (23)

where a(x) and b(x) are defined according to (21) and (22), respectively.164

3.1 Normal distribution165

The probability density function pN(x) of the Normal distribution is166
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pN(x) =
1

σ ·
√

2 · π
· exp

(
−(x− µ)2

2 · σ2

)
(24)

where µ is the mean, and σ is the standard deviation.167

By applying the proposed method, the drift term is168

a(x) = −α · (x− µ) , (25)

and the diffusion term is169

b(x) =
√

2 · α · σ (26)

Observe that, for the normal distribution, the resulting model is the well-170

known Ornstein-Ulhenbeck process.171

3.2 Gram-Charlier III-order expansion172

The Gram-Charlier expansions are generally used to describe deviations from173

the Normal distribution by means of the incorporation of the skewness and174

kurtosis factors to the distribution. In particular, the Gram-Charlier III-order175

expansion has the following probability density function:176

pGC(x) =
(

1 +
S

6
· He3

(
x− µ
σ

))
· pN(x) (27)

where pN(x) is the Normal probability density function (24), S is the skewness177

factor, and178

He3

(
x− µ
σ

)
=
(
x− µ
σ

)3

− 3
(
x− µ
σ

)
(28)

is the Hermite polynomial of order 3.179

For the standard Normal distribution N(0, 1) the probability density function180

pGC(x) is181

pGC(x) =
(

1 +
S

6
·
(
x3 − 3 · x

))
· 1√

2 · π
exp

(
−1

2
· x2

)
(29)

9



By applying the proposed method, the drift term is182

a(x) = −α · x (30)

and the diffusion term is183

b(x) =

√√√√ 2 · α · (S · x3 + 6)

S · x · (x2 − 3) + 6
(31)

3.3 Three-parameter Beta distribution184

The probability density function pB(x) of the three-parameter Beta distribu-185

tion is186

pB(x) =


1

λ3 ·B (λ1, λ2)
·
(
x

λ3

)λ1−1
·
(
λ3 − x
λ3

)λ2−1
if x > 0

0 if x ≤ 0

where B(·, ·) is the Beta function, λ1 and λ2 are shape parameters, and λ3 is187

a noncentrality parameter.188

By applying the proposed method, the drift term is189

a(x) = −α ·
(
x− λ1 · λ3

λ1 + λ2

)
(32)

and the diffusion term is190

b(x) =

√
2 · α · (λ3 − x) · x

λ1 + λ2
(33)

3.4 Two-parameter Gamma distribution191

The probability density function pG(x) of the two-parameter Gamma distri-192

bution is193
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pG(x) =


1

λ2
λ1 · Γ (λ1)

· xλ1−1 · exp
(
− x

λ2

)
if x > 0

0 if x ≤ 0

where Γ(·) is the Gamma function, λ1 is a shape parameter, and λ2 is a scale194

parameter.195

By applying the proposed method, the drift term is196

a(x) = −α · (x− λ1 · λ2) (34)

and the diffusion term is197

b(x) =
√

2 · α · λ2 · x (35)

3.5 Three-parameter Generalized Gamma distribution198

The probability density function pGG(x) of the three-parameter Generalized199

Gamma distribution is200

pGG(x) =


1

λ2 · Γ (λ1)
· λ3 ·

(
x

λ2

)λ1·λ3−1
· exp

(
−
(
x

λ2

)λ3)
if x > 0

0 if x ≤ 0

where Γ(·) is the Gamma function, λ1 and λ3 are shape parameters, and λ2 is201

a scale parameter.202

By applying the proposed method, the drift term is203

a(x) = −α ·

x−
λ2 · Γ

(
λ1 +

1

λ3

)
Γ(λ1)

 (36)

and the diffusion term is204

b(x) =
√
b1(x) · b2(x) (37)
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with205

b1(x) = 2 · α · λ2 · x ·
(
x

λ2

)−λ1·λ3
· exp

((
x

λ2

)λ3)
(38)

and206

b2(x) =

Γ (λ1) · Γ
(
λ1 +

1

λ3
,
(
x

λ2

)λ3)
− Γ

(
λ1 +

1

λ3

)
· Γ
(
λ1,

(
x

λ2

)λ3)
λ3 · Γ (λ1)

(39)

where Γ(·, ·) is the Incomplete Gamma function.207

3.6 Two-parameter Inverse Gaussian distribution208

The probability density function pIG(x) of the two-parameter Inverse Gaussian209

distribution is210

pIG(x) =


1√
2 · π

·
√
λ

x3
· exp

(
−λ (x− µ)2

2 · µ2 · x

)
if x > 0

0 if x ≤ 0

where µ is the mean, and λ is a scale parameter.211

By applying the proposed method, the drift term is212

a(x) = −α · (x− µ) (40)

and the diffusion term is213

b(x) =

√√√√√√√√√√√√√√√
2 ·
√

2 · π · α · µ · exp

(
λ · (x+ µ)2

2 · µ2 · x

)
· erfc


√
λ

x
· (x+ µ)
√

2 · µ


√
λ

x3

(41)
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where erfc(·) is the Complementary Error function.214

3.7 Two-parameter Lognormal distribution215

The probability density function pLN(x) of the two-parameter Lognormal dis-216

tribution is217

pLN(x) =


1√

2 · π · σ · x
· exp

(
−(log (x)− µ)2

2 · σ2

)
if x > 0

0 if x ≤ 0

where µ and σ are the mean and the standard deviation of the natural loga-218

rithm of variable x, respectively.219

By applying the proposed method, the drift term is220

a(x) = −α ·
(
x− exp

(
µ+

σ2

2

))
(42)

and the diffusion term is221

b(x) =
√
b1(x) · b2(x) (43)

with222

b1(x) =
√

2 · π · α · σ · x · exp

(
µ+

σ2

2
+

(log (x)− µ)2

2 · σ2

)
(44)

and223

b2(x) = erf

(
µ+ σ2 − log (x)√

2 · σ

)
− erf

(
µ− log (x)√

2 · σ

)
(45)

where erf(·) is the Error function.224
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3.8 One-parameter Rayleigh distribution225

The probability density function pR(x) of the one-parameter Rayleigh distri-226

bution is227

pR(x) =


x

λ2
· exp

(
− x2

2 · λ2

)
if x > 0

0 if x ≤ 0

where λ is a scale parameter.228

By applying the proposed method, the drift term is229

a(x) = −α ·
(
x−

√
π

2
· λ
)

(46)

and the diffusion term is230

b(x) =

√√√√α · λ2
x
·
(

2 · x+
√

2 · π · λ ·
(

exp

(
x2

2 · λ2

)
erfc

(
x√
2 · λ

)
− 1

))
(47)

where erfc(·) is the Complementary Error function.231

3.9 Two-parameter Truncated Normal distribution232

The probability density function pTN(x) of the two-parameter Truncated Nor-233

mal distribution is234

pTN(x) =



√
2

π
·

exp

(
−(x− µ)2

2 · σ2

)

σ ·
(

1 + erf

(
µ√
2 · σ

)) if x > 0

0 if x ≤ 0

where erf(·) is the Error function, and µ and σ are, respectively, the mean and235

the standard deviation of the Normal distribution before truncation.236

By applying the proposed method, the drift term is237
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a(x) = −α ·

x− µ−
σ ·
√

2

π
· exp

(
− µ2

2 · σ2

)

1 + erf

(
µ√
2 · σ

)
 (48)

and the diffusion term is238

b(x) =

√√√√√√√√√2 · α · σ2 ·

1 +

exp

(
(x− 2 · µ) · x

2 · σ2

)(
erfc

(
µ− x√

2 · σ

)
− 2

)

1 + erf

(
µ√
2 · σ

)
 (49)

where erfc(·) is the Complementary Error function.239

3.10 Two-parameter Weibull distribution240

The probability density function pW(x) of the two-parameter Weibull distri-241

bution is242

pW(x) =


λ1
λ2
·
(
x

λ2

)λ1−1
· exp

(
−
(
x

λ2

)λ1)
if x ≥ 0

0 if x < 0

where λ1 is a shape parameter and λ2 is a scale parameter.243

By applying the proposed method, the drift term is244

a(x) = −α ·
(
x− λ2 · Γ

(
1 +

1

λ1

))
(50)

and the diffusion term is245

b(x) =
√
b1(x) · b2(x) (51)

with246
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b1(x) = 2 · α · λ2
λ1

2 · x ·
(
λ2
x

)λ1
(52)

and247

b2(x) = λ1 · exp

((
x

λ2

)λ1)
· Γ
(

1 +
1

λ1
,
(
x

λ2

)λ1)
− Γ

(
1

λ1

)
(53)

where Γ(·) is the Gamma function, and Γ(·, ·) is the Incomplete Gamma func-248

tion.249

4 Numerical Results250

In this section, we test the statistical properties of the processes generated251

by the SDE-based wind speed models developed in Section 3. The values of252

the parameters of the different SDEs have been taken from references [11]253

and [14]. In particular, all parameters of the models developed in Subsections254

3.1 and 3.2 are taken from [14] and correspond to the analysis of wind speed255

fluctuations around a mean value measured on a one-second basis. The pa-256

rameters related to the probability distributions used to develop the models257

of Subsections 3.3-3.10 are taken from [11] and are the result of the analy-258

sis of hourly-mean wind speed data. Specifically, we have taken the values of259

the parameters corresponding to the application of the maximum likelihood260

estimation method to the data recorded at La Palma meteorological station.261

Since reference [11] does not include any study related to the autocorrelation262

of wind speeds we have chosen an autocorrelation coefficient of 0.25, which is263

a reasonable value according to the wind speed autocorrelation studies per-264

formed by using hourly wind speed data in [15, 21]. Table 1 summarizes the265

data used in the simulations, classified according to the probability density266

function used to construct the SDE-based model.267

The generation of the stochastic processes modeled by SDEs implies the nu-268

merical integration of these equations. For that, we used the multiprocessor269

stochastic integration tools available in the software Dome [26]. Specifically,270

we applied the implicit Milstein integration scheme in [21]. Other stochastic271

integration schemes can be found in [27].272

To obtain the statistical properties of the processes generated by the SDE-273

based models, 2000 trajectories were simulated. In order to illustrate the ex-274

ponential decay of the autocorrelation function, a time frame of 200 seconds275

was used for the simulations of the models developed in Subsections 3.1 and276
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pN pGC pB pG pGG

µ = 0.0 µ = 0.0 λ1 = 3.671 λ1 = 4.383 λ1 = 2.817

σ = 1.0 σ = 1.0 λ2 = 16.729 λ2 = 1.06 λ2 = 3.95

− S = −0.94 λ3 = 25.788 − λ3 = 1.812

α = 0.083 α = 0.029 α = 0.25 α = 0.25 α = 0.25

pIG pLN pR pTN pW

µ = 4.644 µ = 1.417 λ = 3.605 µ = 4.48 λ1 = 2.343

λ = 14.748 σ = 0.519 − σ = 2.272 λ2 = 5.244

α = 0.25 α = 0.25 α = 0.25 α = 0.25 α = 0.25

Table 1
Parameters of the simulated SDE models.

3.2, whereas a time frame of 24 hours was used for the simulations of the277

models of Subsections 3.3-3.10.278

To illustrate the ability of the developed models to reproduce the statistical279

properties for which they are designed, we compare the histograms and au-280

tocorrelations computed from the trajectories generated by the models to the281

corresponding probability density and decaying exponential autocorrelation282

functions. Figures 1-10 depict the results of such comparisons. In all figures,283

values computed from the processes generated by SDE-based models are rep-284

resented in gray, whereas theoretical values are represented in black.285
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Fig. 1. Normal distribution. Model (25)-(26).

5 Case Study286

In this section, we consider wind speed measurements collected at Baring Head287

meteorological station, located in the Wellington region of New Zealand. The288
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Fig. 2. Gram-Charlier expansion. Model (30)-(31).
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Fig. 3. Three-parameter Beta distribution. Model (32)-(33).
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Fig. 4. Two-parameter Gamma distribution. Model (34)-(35).

data set consists of hourly mean values of the wind speed recorded for the289

whole year 2014, i.e., it contains 8760 values. This data set is available in [28].290

In order to construct a wind speed model for this site, the probability distri-291

bution and the autocorrelation of the wind speed are analyzed based on the292

available data set. Figure 11.(a) shows a table that contains the values of the293
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Fig. 5. Three-parameter Generalized Gamma distribution. Model (36)-(39).
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Fig. 6. Two-parameter Inverse Gaussian distribution. Model (40)-(41).
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Fig. 7. Two-parameter Lognormal distribution. Model (42)-(45).

negative log likelihood function obtained when each probability density func-294

tion considered in Section 3 for hourly mean wind speed values is fitted to the295

histogram of the data. It can be observed that the probability density function296

of the three-parameter Generalized Gamma distribution (pGG) represents the297

best fit according to the value of the negative log likelihood function. Figure298

11.(b) depicts the normalized histogram of the data set and the probability299
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Fig. 8. One-parameter Rayleigh distribution. Model (46)-(47).
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Fig. 9. Two-parameter Truncated Normal distribution. Model (48)-(49).
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Fig. 10. Two-parameter Weibull distribution. Model (50)-(53).

density function fit. The parameters of this probability distribution function300

are λ1 = 0.4603, λ3 = 3.2992, and λ2 = 15.6672.301

Figure 12.(a) represents the analysis of the autocorrelation of the wind speed302

data set for time lags up to 240 hours (10 days). The solid black line is the303

autocorrelation computed from data, while the dashed and the dotted lines304
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Fig. 11. (a) Negative log likelihood value of the PDFs parameter estimation; (b)
Generalized Gamma PDF fit to the data histogram and histogram of the simulated
process.
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Fig. 12. (a) Autocorrelation analysis of data and autocorrelation of the simulated
process; (b) Power spectral density of data and of the simulated process.

are the exponential (A.4) and power law (k · τ−β) fits to this autocorrelation,305

respectively. It is apparent that, for the considered data set, the exponential306

function constitutes a better approximation to the autocorrelation of the wind307

speed than the power law function. Therefore, the procedure proposed in this308

paper to model the wind speed applies. The parameter of the exponential fit309

in this case is α = 0.0722.310

According to the previous statistical analysis of the data set, the wind speed311

is modeled by means of a SDE where the drift and the diffusion terms are312

defined by equations (36)-(39), particularized for the values of parameters λ1,313

λ2, λ3, and α specified above. In order to carry out a direct comparison with314

the statistical properties of the data set, a single simulation of the SDE model315

is performed. In this simulation the SDE is integrated by using a time step of316

one hour for a total simulation time of 8760 hours. Figures 11.(b) and 12.(a)317

include, respectively, the histogram and the autocorrelation corresponding to318

the values obtained in this simulation. These statistical properties are similar319
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to those observed in the data set. Finally, Figure 12.(b) shows the log-log320

plot of the power spectral density computed from both the data set and the321

simulated values. It can be observed the similarity of both results.322

6 Conclusions323

In this paper, we develop a systematic method to construct wind speed models324

based on stochastic differential equations. We apply a novel, analytically exact325

approach to define the formulation of the drift and diffusion terms of a stochas-326

tic differential equation in order to reproduce the given stationary probability327

distribution and exponential autocorrelation characterizing the wind speed.328

This new approach accurately reproduces both the probability distribution329

and the autocorrelation of the wind speed, as opposed to existing methods330

that are approximated. The application of the proposed method is straight-331

forward and can be carried out systematically. Proof of that is the collection332

of models developed in the paper for different probability distributions pro-333

posed in the literature to describe the wind speed behaviour. The analysis of334

the numerical simulation of all models demonstrates their ability to generate335

stochastic processes with the required statistical properties. Finally, the pro-336

posed method is general and can be applied to model any stationary process337

with exponential autocorrelation. Future work will focus on the definition of338

SDE-based models for processes with autocorrelation other than exponential339

as, for example, power-law or sinusoidal.340
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A Regression Theorem348

In the theory of stochastic processes, the regression theorem states that if the349

mean value of a Markov process obeys linear evolution equations of the type350
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dE[x(t)]

dt
= −α · E[x(t)] (A.1)

then, in the stationary state, the autocovariance function c(τ) can be obtained351

by solving352

dc(τ)

dτ
= −α · c(τ) (A.2)

with initial condition c(0) = σ2, where σ2 is the variance of the process [22].353

The result of solving (A.2) is354

c(τ) = σ2 · e−α·τ (A.3)

showing that the autocovariance function of such processes is an exponential355

decaying function. As a consequence, the autocorrelation r(τ) is356

r(τ) = e−α·τ (A.4)

which is also an exponentially decaying function.357
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