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ABSTRACT

Power systems contain randomness and uncertainty. The sources of stochastic

variations are for example loads and non-dispatchable renewable energy sources,

such as wind and solar. Such variations impact the dynamics and stability of

power systems. This thesis addresses the modeling of these sources of stochastic

perturbations in the system, speci�cally for dynamic analysis of power systems.

The fundamental mathematical object utilized in this thesis are Stochastic

Di�erential Equations (SDEs). Systematic methods to build SDEs that can be

used to model the stochastic variations are discussed. The thesis focuses on the

stochastic modeling of a wide range of statistical properties seen in measurement

data, including jumps and correlated processes. Speci�cally, the objective is to

systematically generate SDE models based on the Autocorrelation Function (ACF)

and Probability Density Function (PDF) of measurement data. SDE-based models

for wind speed, solar irradiance, tidal current speed and load consumption based on

measurement data are thoroughly discussed. It is shown that the proposed SDE

modeling methods can be used to accurately reproduce the di�erent stochastic

properties of these sources of volatility.

The modeling of the aggregated farms of variable renewable energy sources

(wind, solar, tidal) and their inclusion into power systems, modeled as Di�erential

Algebraic Equations (DAEs), are discussed. Thus, the full stochastic power system

models are a set of Stochastic Di�erential Algebraic Equations (SDAEs). A

method is proposed for initializing the SDAE power system model. It is shown that

the proposed initialization method has a lower computation time and requires less
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disc space when compared to other initialization methods used in the literature

for SDAE-based power systems.

Several SDAE power system case studies are presented. The case studies are

all built around the all-island Irish system. Cases where the system includes

stochastic loads, wind, tidal and solar generation are studied and compared. The

case studies show that the �uctuations introduced by the various sources impact

the dynamic response of the system in a non-negligible way. Simulation results

highlight the importance of stochastic models and the key role of measurement

data to accurately model the sources of volatility.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Environmental concerns have lead to a surge in the research and installation of

renewable energy sources, mainly wind and solar power. This has resulted in

new challenges in the planning, operation and stability analysis of power systems

including such renewable resources. These challenges are partially driven by the

variability and uncertainty of the energy sources.

Multiple other sources of random variations can be found in power systems,

e.g. stochastic load variations and measurement errors in control devices. All these

uncertainties can a�ect the dynamics and stability limits of power systems. As

early as in the 1960s the modeling of these random variations using probabilistic

analysis has been discussed [1]. In [2], the importance of considering the random

�uctuations in power system stability studies is highlighted speci�cally through

probabilistic analysis. Multiple probabilistic analysis methods have been proposed

in the literature and a review of those is provided here [3]. In probabilistic analysis

the probability distribution of the sources of random variations are considered and

their e�ect on the system variables are studied. However, these analysis typically

do not consider how the sources of volatility vary over time. In [4], it is shown that

for system stability studies this type of analysis might not always be su�cient and
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that it is important to model the volatility as stochastic processes evolving with

time.

Stochastic Di�erential Equations (SDEs) can be used to model stochastic

processes in power systems. They are continuous with time and therefore well

equipped for modeling transient random �uctuations. Since power system models

are typically formalized as a set of Di�erential Algebraic Equations (DAEs), SDEs

can be readily incorporated into the system model. The resulting model is a set

of Stochastic Di�erential Algebraic Equations (SDAEs).

Research between 1980-2000 where SDEs are used for dynamic analysis of

power systems mostly focused on modeling random load �uctuations. Several

publications proposed utilizing variations of the Ornstein-Uhlenbeck (OU) SDE

model for modeling these �uctuations [5, 6, 7] and highlighted how these stochastic

�uctuations in the loads can a�ect the stability limits of power systems [8, 9].

Discussion on the use of SDEs in dynamic analysis of power systems since then

has regularly popped up but their use has not become common practice. However,

in the last �ve years there has been a boom in SDE-based power system research.

The work being done includes using SDEs for forecasting [10, 11], for modeling the

individual sources of uncertain variations [12, 13, 14, 15, 16, 17] and for dynamic

stability analysis of power systems [18, 19, 20, 21, 22, 23, 24].

In Table 1.1, the SDE-based modeling attempts in the literature for stability

analysis of power systems are categorized. Purely Wiener SDE processes that

have a Gaussian Probability Density Function (PDF) and are uncorrelated over

time have in multiple publications been used for modeling stochastic random

perturbations in power systems [18, 19, 21, 22, 23, 25]. In cases where the

stochastic variations of loads or wind are considered speci�cally it is more common

to use OU SDEs [13, 26, 27] and using the memoryless transformation or the

Fokker-Planck equation in cases where the stochastic variations modeled are non-

Gaussian [17, 20, 28, 29, 30]. The OU SDE is a better option than a purely

Wiener SDE for modeling physical processes due to its mean reverting properties.

It has an Autocorrelation Function (ACF) that is exponentially decaying with

time which enables modeling how the stochastic �uctuations evolve with time.
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Table 1.1: The SDE methods used in the literature. In the table NC stands for
"Not Considered" and ED for "Exponentially Decaying". In the table, correlation
refers to modeling correlated SDEs.

Reference PDF ACF Jumps Correlation
[18, 19, 21, 22, 23, 25] Gaussian NC NC NC
[13, 26, 27] Gaussian ED NC NC
[17, 20, 28, 29, 30] Any ED NC NC
[12] Any Not only ED NC NC
[14, 16] NC NC Yes NC

However, stochastic processes in power systems can be a combination of faster

and slower dynamics. In those cases, more complex ACFs need to be modeled. In

[12], an SDE modeling method is presented that captures a wide range of PDFs

and ACFs based on measured data. However, this method does not present a

systematic way to de�ne which type of SDE model to use depending on the data.

Finally, modeling stochastic jumps in the system variables is a topic that has not

been discussed extensively but has a lot of potential for modeling jumps in solar

generation and loads for example [14, 16].

Thus, the existing literature does not provide a general method to synthesize

SDEs to model sources of volatility based on measured data for dynamic analysis

of power systems. This makes the topic of this thesis very timely as this research

is focused on using measurement data to build SDE-based models for the speci�c

sources of stochastic variations in power systems. These models are built and

utilized for dynamic analysis of power systems. This thesis discusses the stochastic

modeling of wind, solar and tidal generation as well as loads. Further literature

review for the speci�c sources is provided in the thesis where their modeling is

discussed.

1.2 Thesis overview and contributions

This thesis discusses the modeling and inclusion of stochastic processes in dynamic

power system studies. To this aim the following topics are addressed:
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• The data-driven modeling of volatile renewable energy sources. Speci�cally,

wind, solar and tidal.

• The initialization of dynamic power system models including stochastic

processes.

• The inclusion of stochastic processes in time-domain simulations of power

systems.

The thesis has two major parts. Chapter 2 and 3 present SDE modeling

methods for modeling stochastic variations in power systems and examples

how these methods can be used to model speci�c sources of randomness using

measurement data. Chapter 4 and 5 present how the SDE models built can be

integrated into conventional power system models for dynamic analysis, discuss

the initialization of such a stochastic system model and present power system case

studies including the stochastic variations.

The speci�c chapters of this thesis are organized as follows:

Chapter 2 outlines the theory behind the stochastic models utilized in this

thesis. This chapter starts of with an introduction of the statistical properties

of stochastic processes that are relevant through out this thesis in Section 2.1.

Then, a brief introduction to Stochastic Di�erential Equations (SDEs) is presented

in Section 2.2. In Section 2.3, the four di�erent speci�c modeling methods

utilized in this thesis are outlined. These are presented in an order that

corresponds to the time-line of this thesis work. The �rst two methods aim

to capture the speci�c Autocorrelation Function (ACF) and Probability Density

Function (PDF) of continuous stochastic processes so that measured data may be

conveniently modeled. Both Method I and II presented in Subsections 2.3.1 and

2.3.2 respectively utilize the memoryless transformation to impose an arbitrary

PDF. Thus, the two methods can be distinguished in the way the ACF is

imposed. Method I, presented in Subsection 2.3.1 builds continuous-time SDEs

that are equivalent to discrete-time Autoregressive Moving Average (ARMA)

models. These SDEmodels are termed Continuous-TimeARMA (CARMA). This

method utilizes the fact that ARMA models are well-known and can capture a
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wide range of ACFs. Method II, outlined in Subsection 2.3.2 captures the ACF of a

stochastic process through the superposition of the SDE Ornstein-Uhlenbeck (OU)

processes. This method can model any ACF that can be modeled as a weighted

sum of exponentially decaying and/or sinusoidal functions. The third method,

presented in Subsection 2.3.3 discusses the inclusion of jumps. Speci�cally, jump

di�usion SDEs. Finally, in Subsection 2.3.4 the modeling of the correlation of two

SDEs is discussed.

In Chapter 3, the stochastic modeling methods outlined in Chapter 2

are utilized to model the sources of uncertain variations of several renewable

energy sources. The renewable energy sources discussed in this thesis are wind

(Section 3.1), solar (Section 3.2) and tidal (Section 3.3). All the modeling e�orts

made in this chapter are supported by measurement data. For each renewable

source the necessary background and literature review is presented in the beginning

of the respective section. The modeling of wind is discussed in Section 3.1 and

both Method I and II (Subsections 2.3.1-2.3.2) are utilized to model wind speed,

as presented in Subsection 3.1.2 and 3.1.3 respectively. The modeling of solar is

outlined in Section 3.2. For modeling the jumpy behavior seen in the measured

solar irradiance Method III (Subsection 2.3.3) is used. Section 3.3 compares the

modeling of tidal current speed variations to the modeling of the more well-known

volatility seen in wind speed. Then, Method II (Subsection 2.3.2) is applied to

model the short-term �uctuations seen in the tidal current speed both due to

turbulence and waves. Finally, a combination of Method III (Subsection 2.3.3)

and Method IV (Subsection 2.3.4) is used to model the active and reactive power

consumption of loads as stochastic with jumps and correlated. This model is

outlined in Section 3.4.

Chapter 4 discusses the inclusion of SDE models into dynamic power system

models. Typically, power systems are modeled as a set of Di�erential Algebraic

Equations (DAEs). The full stochastic power system model is then a set of

Stochastic Di�erential Algebraic Equations (SDAEs) as presented in Section 4.1.

The initialization of such system models is discussed in Section 4.2. The two

initialization methods that have been used in the literature are presented and
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their drawbacks highlighted. An alternative way to initialize the system modeled

as a set of SDAEs is proposed. Finally, in Section 4.3 the modi�cations made to

the stochastic models of the renewable energy sources (presented in Chapter 3)

to include them in dynamic power system models are outlined. The modi�ed

stochastic processes provide the stochastic variations of the aggregated output

of the full renewable energy plant. The One-Machine In�nite-Bus (OMIB) test

system is used to demonstrate the initialization method and to compare the e�ect

of the di�erent modeled sources of renewable energy in Subsections 4.2.2 and 4.3.4,

respectively.

Chapter 5 includes four case studies where stochastic power system models are

studied. In Section 5.1, the 1, 479 bus all-island Irish transmission system model is

presented. This is system is used in all of the case studies presented in this chapter.

The initialization methods for power systems modeled as SDAEs, presented in

Section 4.2 are compared and tested for the Irish system in Section 5.2. Section 5.3

outlines a case study of the Irish system where the short-term e�ect of installing

tidal generation on the system is studied in reference to wind generation. Several

scenarios where waves are present in the tidal current are studied and frequency

control for the tidal turbines is tested to mitigate the frequency �uctuations that

the tidal generation introduces. In a similar manner, the e�ect of including

solar generation in the Irish system is studied in Section 5.4. Two scenarios are

compared, that is a case where the renewable energy in the system is purely

supplied by wind and a case where both wind and solar are used. Finally, in

Section 5.5, the e�ect of the correlation in the active and reactive power of loads

on the voltage stability of power systems is studied. Two systems are used, that

is both the 3-machine, 9-bus system and the Irish system.

Finally, in Chapter 6 conclusions are drawn and future work outlined.
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CHAPTER

TWO

STOCHASTIC MODELS

Multiple stochastic models have been proposed and utilized in the literature,

such as Autoregressive Moving Average (ARMA) and Markov chains. Another

prominent class of stochastic models are Stochastic Di�erential Equations (SDEs).

SDEs are intrinsically continuous in time. Thus, they can capture the transient

�uctuations of the stochastic process being modeled. The stochastic models

proposed in this thesis are intended to be included in power system models used for

dynamic analysis. Typically, power systems are formalized as a set of Di�erential

Algebraic Equations (DAEs). These models can readily incorporate stochastic

processes modeled as SDEs. Thus, the main focus of the stochastic modeling done

in this thesis is on SDEs.

This chapter presents the stochastic models and theory used in this thesis.

First, in Section 2.1, some background on stochastic processes is presented. A

brief introduction to SDEs is presented in Section 2.2 as they are the main building

block in all the modeling done in this thesis. In Section 2.3, the di�erent stochastic

modeling methods used in this thesis are outlined.

2.1 The properties of stochastic processes

A random variable X is a real function de�ned on a sample space. For every

real number x there exists a probability FX(x) = P[X ≤ x] (Note that FX is
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termed the Cumulative Distribution Function (CDF) of the random variable X).

x denotes a value of the random variable X, that is x is an outcome of the random

phenomenon X. A random variable X has mean value:

µX = E[X], (2.1)

and variance:

ζX = E[(X − µX)2], (2.2)

and standard deviation σX =
√
ζX , where E is the expected value operator or

expectation. A random variable X is characterized by its Probability Density

Function (PDF). The PDF describes all the possible values and likelihoods that

the values of the random variable can take within a given range. A continuous

PDF, f(x) for the value x, is a function that satis�es the following properties:

1. The probability that x is between two points a and b is:

P [ a ≤ x ≤ b ] =

∫ b

a

f(x)dx. (2.3)

2. The PDF is non-negative for all real variables x.

3. The integral of the PDF is:

∫ ∞

−∞
f(x)dx = 1. (2.4)

An important probability distribution is the normal (or Gaussian) distribution.

A random variable that is normally distributed with the mean µ and standard

deviation σ (often referred to as N(µ, σ)) has the PDF:

fN(x) =
1

σ
√

2π
exp

(
− 1

2

(x− µ
σ

)2
)
. (2.5)

In Figure 2.1, an example of a Gaussian distributions PDF and CDF is shown. In

this case the mean is µ = 4 and the standard deviation is σ = 1. The Gaussian

PDF has a distinctive bell shape around the mean and gives the probability of each
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value x of the random variable. The CDF on the other hand gives the cumulative

probability of values equal to or smaller than each value x of the random variable.
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Figure 2.1: PDF and CDF of a Gaussian distribution with the mean µ = 4 and
standard deviation σ = 1.

The Gaussian distribution is the most widely used probability distribution as

it gives a good �t in many cases, e.g. for measurement errors. However, other

probability distribution shapes are also common. Wind speed for example has a

probability distribution that is shifted to the left and tails heavily to the right.

This is because lower wind speeds are typically more common than extreme wind

speeds. The Weibull distribution PDF is de�ned as:

fW(x) =





λ1
λ2

(
x

λ2

)λ1−1
exp

[
−
(
x

λ2

)λ1]
if x ≥ 0

0 if x < 0,

where λ1 is a shape parameter and λ2 is a scale parameter. An example of the

Weibull distribution is shown in Figure 2.2.

In some cases, e.g., steady-state analysis [31], it is enough to only use random

variables and thereby only consider the PDF. This type of analysis is called

probabilistic analysis. However, for dynamic time-domain simulations of power
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Figure 2.2: PDF and CDF of a Weibull distribution with λ1 = λ2 = 2.

systems, stochastic processes need to be considered. A stochastic process is a

family of values from a random variables {x(t) : t ∈ T}, where in our case t

denotes time. That is, at every time t in the set T , a random value x(t) is

observed. A way to model stochastic processes in continuous time is to use SDEs

as presented below.

2.2 Stochastic di�erential equations

Stochastic Di�erential Equations (SDEs) are continuous-time stochastic processes.

They are a prominent mathematical modeling technique employed in areas such as

�nance for modeling stock prices or interest rates and physics to model particles in

�uids. This section only presents a brief introduction to SDEs. A more extensive

presentation of SDEs can be found in [32, 33, 34].

A generic multi-dimensional SDE has the form:

dη(t) = a(t,η)dt+B(t,η)dW (t), (2.6)

where a (a : Rnη × R+ 7→ Rnη) and B (B : Rnη × R+ 7→ Rnη) are continuous

functions and are referred to as the drift and di�usion term of the SDE,
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respectively. W represents the nw-dimensional vector of stochastic components

driving the SDE. This vector is composed of nw independent scalar Wiener

processes, {W (t), t > 0}, which is a random function characterized by the following

properties:

1. W (0) = 0, with probability 1.

2. The function t 7→ W (t) is continuous in t.

3. If t1 6= t2, then W (t1) and W (t2) are independent.

4. For ∀ti ≥ 0, all increments, ∆Wi = W (ti+1) − W (ti), are normally

distributed, with mean 0 and variance h = ti+1 − ti, i.e., ∆Wi ∼ N (0, h).

Examples of Wiener processes are shown in Figure 2.3. Wiener processes cannot

be integrated in the conventional Riemann-Stieltjes sense as they are not bounded,

i.e., the limit limx→0(W (t+ ∆t)−W (t))/∆t does not exist. Therefore, the correct

mathematical formulation of the solution of (2.6) is the integral form:

η = η(t0) +

∫ t

t0

a(η, s)ds+

∫ t

t0

b(η, s)dW (s), t ∈ [t0, tf ], (2.7)

where the �rst integral is an ordinary Riemann-Stieltjes integral and the second

one is a stochastic integral. There are several di�erent ways to interpret stochastic

integrals. Mainly, Itô's approach, Stratonovich's approach or the backward

integral. In this thesis, the most widely used approach is used, namely, the Itô

integral.

In most cases SDEs cannot be analytically solved. Thus, numerical methods

are used to solve the SDEs. The most common numerical integration schemes

for SDEs are the Euler and Milstein schemes. In this work the stochastic Euler

scheme is most often used to solve the the SDEs, or at least the di�usion part of

the integral in (2.7). Reference [33] provides extensive details on the numerical

integration schemes for SDEs.

A stationary stochastic processes is characterized by a PDF that does not

change with time. An example of a non-stationary process is the Wiener processes.
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Figure 2.3: Ten simulated sample paths of Wiener processes, illustrating their
great variability.

Its mean is constant but its standard deviation,
√
t, changes with time. In this

thesis only stationary stochastic processes are considered, even though some non-

stationary stochastic processes a�ect power systems. For example, wind speed

with an hourly resolution or bigger may be modeled more accurately with non-

stationary models [35]. This is due to the daily, and seasonal variations in the wind

speed. However, for the purpose of simulating wind speed within a 10 minute time

frame, non-stationary models do not perform better than stationary ones [35].

This is typically, the case for short-term analysis of stochastic processes within

the seconds to minutes time frame, which is the time frame considered in dynamic

analysis of power systems. Thus, considering non-stationarity is outside the scope

of this thesis.

A stationary stochastic process is characterized by its Probability Density

Function (PDF) and Autocorrelation Function (ACF). The Autocorrelation

Function (ACF) is a measure of how the process changes over time. That is,

the ACF gives a measure of the relationship between the current process value

and past process values. Its mathematical de�nition for a stationary stochastic
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process x(t) is:

Rx(τ) =
E[(x(t)− µx)(x(t+ τ)− µx)]

ζx
, (2.8)

where τ stands for the time lag. µx and ζx are the mean of and variance of the

stochastic process x(t). The autocovariance function of the stochastic process x(t)

is de�ned as Rx(τ)ζx.

The Ornstein-Uhlenbeck (OU) process is a popular building block in SDE

modeling. It is stationary, with a Gaussian PDF which exhibits mean reversion,

i.e., it drifts towards its mean value at an exponential rate. It is considered as

a modi�cation of the Wiener process, with a bounded standard deviation which

makes it suitable to model physical processes, such as wind and load �uctuations

[13, 36, 37]. The general form of an OU SDE process is:

dX(t) = α(µ−X(t))dt+ σdW (t), (2.9)

where α, σ > 0. α is the mean reversion speed of the process, X(t), which

de�nes the slope of its exponentially decaying ACF. The process X(t) is Gaussian

distributed with the mean µ and variance σ2/(2α). In Figure 2.4, examples of

simulated OU process trajectories for the OU SDE X1(t) are shown where α =

0.01, µ = 0 and σ = 1. This shows that this modi�cation to the Wiener process

enables the modeling of bounded mean-reverting stochastic processes.

In Figure 2.5, examples of simulated OU process trajectories for another SDE

X2(t) are shown. However, in this case α = 0.001. α de�nes the ACF of the OU

process. Thus, by comparing Figure 2.4 and 2.5 the di�erence in the ACF makes

can be observed. That is for a smaller α the processes varies slower over time.

The ACFs of X1(t) and X2(t) are shown in Figure 2.6.

The starting point of this thesis work is the SDE-modeling method presented

in [17]. This method enables modeling SDEs with a certain analytically de�ned

PDF and an exponentially decaying ACF. This method has been used to model

wind speed based on measured data with a hourly resolution. However, stochastic

processes sampled more frequently, for example every second or minute will

typically not have an exponentially decaying ACF, as is shown for wind speed
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Figure 2.4: Ten simulated sample paths of an OU SDE where α = 0.01, µ = 0
and σ = 0.14.
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Figure 2.5: Ten simulated sample paths of an OU SDE where α = 0.001, µ = 0
and σ = 0.04.

data in [38]. In these cases the stochastic processes are often a combination of

fast and slow dynamics. Then, the ACF is better described as a weighted sum

of exponentially decaying functions. Thus, models that capture a wider range of

both PDFs and ACFs are needed.
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Figure 2.6: ACFs of OU processes X1(t) and X2(t).

2.3 Stochastic modeling methods

The starting point is SDE-based models with an exponentially decaying ACF.

Thus, the �rst objective of this thesis work is to be able to build SDE models

with more complex ACFs. Autoregressive Moving Average (ARMA) models have

been widely used in the literature to model and forecast both load consumption

[39, 40] and wind generation [41, 42, 43]. They can model a wide range of ACFs.

However, these models are discrete. Method I, presented in Subsection 2.3.1,

enables building an equivalent SDE for an ARMA model, called a CARMA model.

2.3.1 Method I - Continuous-Time ARMA models

Autoregressive Moving Average (ARMA) models are the class of stochastic models

that have been the most widely studied and utilized in the literature. They

are well-established and o�er comprehensive tools to �t the model to data [44].

However, ARMA models are discrete and have a �xed time step that must match

the sampling interval of the available data. Therefore, ARMA models are not

suitable for dynamic analysis of power systems as they typically have a smaller

time step than the available data and/or require a varying time step.
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This modeling method enables the use of ARMA models in continuous-

time which facilitates their use in time-domain simulations of power systems for

dynamic analysis. The proposed approach is based on the observation that if an

ARMA model is stationary then it has an equivalent SDE, termed a Continuous-

Time ARMA (CARMA) [45].

Method I includes two or four steps to produce the CARMA-SDE model

depending on the PDF of the stochastic process being modeled. The four steps of

the method are shown in Figure 2.7. Step 2 and 3 enable building a SDE-based

model with the desired ACF. In Step 1 and 4 the desired PDF is imposed. If

the stochastic process being modeled is normally distributed Step 1 and 4 can be

skipped. Further details on each step are provided here below.

Memoryless
Transformation

Step 1

Measured
Data

Gaussian
Distributed

Measurements

Maximum
Likelihood
Method

Step 2

ARMA
Parameters

CARMA
Conversion

Step 3

Gaussian
Distributed

CARMA Model

Inverse
Memoryless

Transformation

Step 4

CARMA
Model

Figure 2.7: Four steps to construct the SDE-based CARMA stochastic models
using Method I.

Step 1: Memoryless transformation

ARMA and CARMA models require the data to be normally distributed.

Therefore, the measured data being modeled must be �tted to the Gaussian

distribution. This is achieved using a memoryless transformation.

The memoryless transformation �ts non-normally distributed data to the

Gaussian distribution while retaining its original stochastic properties. This is

achieved by applying the inverse Gaussian CDF to the CDF of the measured

data, as follows:

xdata(t) = Φ−1(F (Xdata(t))) , (2.10)
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where Φ−1 is the inverse CDF of the imposed Gaussian distribution and F is the

CDF of the probability distribution of the measured data [46]. Xdata(t) is the

measured data time-series. The resulting time-series xdata(t) represents modi�ed

normally distributed measured data that can be used to build an ARMA model.

Step 2: ARMA modeling

ARMA models can model and forecast variations of a stochastic processes based

on historical data. There are well-established estimation techniques available that

simplify the building of custom ARMA stochastic models based on measured data

[47].

ARMA models can be divided into two components, namely, Autoregressive

(AR) and Moving Average (MA):

• Autoregressive: relates the current value of the stochastic process to past

values.

• Moving Average: relates the current value of the stochastic process to past

error values.

The ARMA(p, q) model is given by

Xt =

p∑

i=1

φiXt−i

︸ ︷︷ ︸
AR

+

q∑

i=1

θiεt−i

︸ ︷︷ ︸
MA

+εt , (2.11)

where εt is white noise with a standard deviation σa, φi are the autoregressive

parameters, θi are the moving average parameters and both φp and θq are non-

zero.

ARMA models of second order or higher have been widely used to model for

example wind speed [41, 42, 43]. The ARMA(2,1) model is used as an example

here. However, ARMA models of other higher orders can also be utilized in this

method as shown in [45]. The ARMA(2,1) model can be written as

φ(B)Xt = θ(B)εt , (2.12)
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where B is the backward operator such that BXt = Xt−1 and

φ(B) = 1− φ1B − φ2B
2, (2.13)

θ(B) = 1 + θ1B . (2.14)

Several well-known methods are available to estimate ARMA parameters

directly from data such as the Least Squares method, the Method of Moments

and the Maximum Likelihood method [44]. In this research, the Maximum

Likelihood method has been used. The method �nds the parameter values of

the ARMA model which maximizes the Likelihood Function of the sampled data.

The Likelihood Function is based on the Gaussian CDF of the sampled data. The

estimated ARMA parameters are used to �nd the equivalent CARMA parameters.

Step 3: CARMA modeling

Stochastic phenomena a�ecting power systems are continuous-time processes.

However, measured data are sampled and thus are discrete. For this reason,

ARMA models are popular for modeling measured data. CARMA models are the

continuous-time counterparts of the discrete-time ARMA models. While ARMA

models are limited to using the �xed time step of the sampled data, CARMA

models enable the use of smaller and/or variable time steps. Hence, CARMA

models can be used to interpolate between sampling points.

A CARMA(p, q) model denoted by x(t) is a SDE of the form

dpx

dtp
+cp−1

dp−1x

dtp−1
+. . .+c1

dx

dt
+c0(x(t)−µ) = b0dW (t)+b1

dz

dt
+. . .+bq

dqz

dtq
, (2.15)

where W (t) is the standard Wiener process, ci are the autoregressive coe�cients,

bi are the moving average coe�cients and both ci and bi are real and bq 6= 0

[48, 49, 50].

Generally, a stationary CARMA(p, q) model sampled regularly can be written

as an ARMA(p, p − 1) model with q < p [45]. The simplest example is the
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Ornstein-Uhlenbeck (OU) process i.e. CARMA(1,0)

dXt + c0Xt = dW (t) , (2.16)

which is equivalent to an ARMA(1,0) model viewed with a �xed time step h

Xt = exp(−c0h)Xt−1 + εt . (2.17)

The autoregressive parameter of the discrete-time ARMA, φ1 = exp(−c0h), cannot

be negative.

The CARMA(2,1) model can be written as

c(D)x(t) = b(D)dW (t) , (2.18)

where D is the di�erential operator and

c(z) = z2 + c1z + c0, (2.19)

b(z) = b0 + b1z . (2.20)

An equivalent discrete-time ARMA(2,1) model, presented in (2.12) can be found

if the CARMA(2,1) model is stationary. The CARMA(2,1) model is stationary if

the real parts of the roots of (2.19), α1 and α2, are negative. The autoregressive

parameters of the continuous-time model, c1 and c0, can be directly connected to

the autoregressive parameters of the discrete-time model, φ1 and φ2, using the

Z-transformation.

φ1 = eα1h + eα2h, (2.21)

φ2 = −e(α1+α2)h . (2.22)
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The theoretical autocovariance function of a discrete-time ARMA(2,1) model is

de�ned as

γARMA(k) =





φ1γ(1) + φ2γ(2) + θ1(φ1 + θ1)σ
2
a + σ2

a if k = 0

φ1γ(0) + φ2γ(1) + θ1σ
2
a if k = 1

φ1γ(k − 1) + φ2γ(k − 2) if k > 1 ,

(2.23)

where k is the time lag and γ = γARMA. The theoretical autocovariance function

of a CARMA(2,1) model is

γCARMA(h) = eα1h
b(α1)b(−α1)

c′(α1)c(α1)
+ eα2h

b(α2)b(−α2)

c′(α2)c(α2)
. (2.24)

The moving average parameter of the continuous-time model, b1, is set so

that the autocovariance of the discrete-time model, γARMA, is equal to the

autocovariance of the continuous-time model, γCARMA. This method can be

extended to map the parameters from any CARMA(p, q) model, where p > q,

to �nd the equivalent ARMA(p, p− 1) parameters [48].

The resulting CARMA model is normally distributed. Hence, if the desired

probability distribution is non-Gaussian it has to be imposed. This is achieved

using the inverse memoryless transformation.

Step 4: Inverse memoryless transformation

The inverse of the memoryless transformation in Step 1 is used to impose the true

PDF of the measured data being modeled. The inverse CDF of the measurement

data is applied to the Gaussian CDF of the CARMA model

y(t) = F−1(Φ(x(t))) . (2.25)

This obtains the desired PDF of the measurement data [46]. The memoryless

transformation and its inverse enable the use of ARMA and CARMA models to

model data with any probability distribution that has a de�ned CDF and inverse

CDF.
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A relevant advantage of this approach based on the memoryless transformation,

is that it can be used with any analytical or numerical PDF that has been �tted

to the probability distribution of the data.

Thus, Method I enables the modeling of SDE stochastic processes with an

arbitrary PDF and a wider range of ACFs as compared to [17]. In Subsection 3.1.2,

it is shown how this method can be used to model wind speed. This method

works well in cases where an ARMA model has already been determined and

a continuous-time equivalent is required. Otherwise, having to �nd the ARMA

model �rst and then build the SDE model based on the ARMA model makes

the modeling procedure time consuming and complex when compared to Method

II. Method II, presented in Subsection 2.3.2, proposes a more straightforward

way to build SDE models with a wide range of ACFs. It is based on using the

superposition of Ornstein-Uhlenbeck (OU) processes to model any ACF that can

be �tted as a weighted sum of exponential and/or sinusoidal functions. It uses the

memoryless transformation to impose an arbitrary PDF.

2.3.2 Method II - Ornstein-Uhlenbeck-based models

The following 2-dimensional OU is utilized as the building block for this method:

(
dX(t)

dY (t)

)
=

(
−α −ω
ω −α

)(
X(t)

Y (t)

)
dt+

(
σ

0

)
dW (t). (2.26)

where α > 0, σ > 0, ω ≥ 0 andW (t) is a standard Wiener process. The correlation

matrix of the SDE in (2.26) is:

R(τ) = E

((
X(t+ τ)

Y (t+ τ)

)(
X(t), Y (t)

)
)

= exp(−ατ)

(
cos(ωτ) − sin(ωτ)

sin(ωτ) cos(ωτ)

)
.

(2.27)

The process X(t) has the ACF:

RX(τ) = exp(−ατ) cos(ωτ), (2.28)

24



In stationary conditions, X(t) is Gaussian distributed with zero mean and variance

σ2/(2α).

For ω = 0, X(t) and Y (t) are decoupled and X(t) becomes a conventional

1-dimensional Ornstein-Uhlenbeck (OU) process:

dX(t) = −αX(t)dt+ σdW (t), (2.29)

with an exponentially decaying ACF:

RX(τ) = exp(−ατ). (2.30)

The main idea behind this method is to use a summation of a set of SDEs

of the form (2.26) to impose the target ACF. The memoryless transformation

in (2.25) is used to impose the desired PDF. The resulting compound stochastic

process is build in such a way that it has the same PDF and ACF as the given

measured data.

The steps to build the desired compound stochastic process are twofold: Step

1, a superposition of SDEs that captures the desired ACF is de�ned; and Step

2, an analytical or numerical memoryless transformation that imposes the desired

PDF is applied to the SDEs determined in the previous step.

Step 1: Impose the autocorrelation

In [51], a superposition of OU processes is used for imposing an ACF represented

with a weighted sum of exponentially decaying functions. We generalize the

technique in [51] with the 2-dimensional OU in (2.26) instead of the conventional

OU process. In this way, Method II is able to reproduce not only exponentially

decaying ACFs but also periodical behaviors.

Let Z(t) be a stochastic process obtained as the weighted sum of n SDE

processes, as follows:

Z(t) =
n∑

i=1

√
wiXi(t), (2.31)
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where Xi(t), i = 1, . . . n, are SDE processes with ACFs RXi(τ), wi > 0 and

n∑

i=1

wi = 1. (2.32)

If all n processes have an identical Gaussian PDF N (µX , σX), the stochastic

process Z(t) has the same Gaussian PDF, N (µX , σX), and an ACF which is a

weighted sum of the ACFs of the n SDE processes, that is:

RZ(τ) =
n∑

i=1

wiRXi(τ). (2.33)

If the n SDE processes in (2.31) are X(t) processes as in (2.26), the resulting

ACF of Z(t) is a weighted sum of damped sinusoidal and decaying exponential

functions and (2.33) can be rewritten as:

RZ(τ) =
n∑

i=1

wiexp(−αiτ) cos(ωiτ). (2.34)

Hence, the superposition of SDE processes allows capturing any ACF that can

be modeled as a weighted sum of exponential and/or sinusoidal functions. If the

ACF does not show a periodic behavior than ωi = 0, ∀i = 1, . . . , n.

Step 2: Impose the probability distribution

The sum of the SDE processes in (2.31) resulting in the compound process Z(t) has

a Gaussian probability distribution. If the stochastic process being modeled has a

non-Gaussian PDF the memoryless transformation, presented in Subsection 2.3.1

is used. The transformation in (2.25) is imposed on Z(t) from (2.31). The resulting

process is the target SDE with the desired PDF and ACF.

Thus, this method enables the straightforward modeling of SDEs based on

data. All that is required is the ACF and the PDF of the data. The ACF is

�tted to a weighted sum of exponential and/or sinusoidal functions and the �tted

parameters de�ne the SDE. In Sections 3.1 and 3.3, it is demonstrated how this

method can be used to model both wind speed and tidal current speed.
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However, certain processes in power systems will not only be stochastic but

also have faster variations, termed as jumps. These are for example seen in

load consumption and solar generation. Method III presents SDE jump di�usion

models that can be used to model stochastic process with jumps [52].

2.3.3 Method III - SDEs with jumps

A general one-dimensional jump di�usion model, i.e. SDE with jumps is de�ned

as:

dηJ(t) = a(t, ηJ)dt+ b(t, ηJ)dW (t) + c(t, ηJ)dJ(t). (2.35)

Here c(t, ηJ) is the jump coe�cient which determines the jump size and {J(t), t >

0} is the Poisson process. The Poisson process with intensity λ > 0 is de�ned as a

type of stochastic process called a counting process which is characterized by the

following properties:

1. J(0) = 0, with probability 1.

2. It has stationary independent increments.

3. The number of events (or points) in any given time interval of length t is a

Poisson random variable with the mean λt.

4. Its PDF is:

f(k, λ) =
λk

k!
exp(−λ), (2.36)

where k ∈ N.

Jump di�usion SDEs have been used in the literature to model both loads [16]

and solar irradiance [14]. Sections 3.2 and 3.4 present examples of jump di�usion

SDEs modeling solar irradiance and loads, respectively.

Finally, not all stochastic processes seen in power systems are fully indepen-

dent. Certain variables are typically correlated, such as the active and reactive

power consumption of a load, the wind speed and wind direction at a certain

location or even two renewable energy sources located in close proximity.
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2.3.4 Method IV - Correlated SDEs

The methods presented here enables modeling the correlation between two Wiener

process and the two Poisson jump processes. The modeling of the correlation of

multiple stochastic processes is outside the scope of this thesis but is included in

future work.

Correlated Wiener processes

The Wiener process is the stochastic driving component of a SDE. The correlation

of two Wiener processes, say W1(t) and W2(t), can be achieved by de�ning a

third Wiener process, say V (t), which is independent from W1(t). The correlation

between W1(t) and W2(t) is de�ned through a parameter ρW (t). This can be

constant or time varying. In the latter case, ρW (t) is modeled as another stochastic

process. In this work, ρW is assumed to be constant as in [53]. Then W2(t) is

de�ned as the following adapted Wiener process:

dW2(t) = ρWdW1(t) +
√

1− ρ2WdV (t). (2.37)

In Figure 2.8, three example OU SDE processes are shown. Processes X1(t)

and X2(t) are correlated with the correlation ρW = 0.8. Thus, similar trends can

be seen in X1(t) and X2(t). X3(t) is uncorrelated from both X1(t) and X2(t).

Correlated Poisson jump processes

The jump times of two jump di�usion SDEs as presented in (2.35) can also be

correlated. To model the correlation between two Poisson distributed jumps, J1(t)

and J2(t), three Poisson distributed jumps n1(t), n2(t) and n3(t), with jump rates

λ1, λ2 and λ3 are used [54]. J1(t) and J2(t) are de�ned as:

J1(t) = n1(t) + n3(t), (2.38)

J2(t) = n2(t) + n3(t). (2.39)
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Figure 2.8: Three OU SDE processes. X1(t) and X2(t) are simulated with
correlated Wiener processes, where ρW = 0.8. X3(t) is independent from the
other two processes.

Thus, the mean of the two Poisson jump processes is:

(λi + λ3)dt, i = 1, 2. (2.40)

Their covariance is λ3 and their correlation is:

ρJ =
λ3√

(λ1 + λ3)(λ2 + λ3)
. (2.41)

Figure 2.9 shows three example OU SDE processes with jumps. Processes

X1(t) and X2(t) are simulated with the jumps correlated with the correlation

ρJ = 0.5. Thus, some of the jumps in the two processes occur at the same time.

X3(t) is independent from X1(t) and X2(t).

In Section 3.4, this method to correlate both two Wiener and two Poisson jump

processes is utilized to model the correlation between the active and reactive power

consumption of loads.
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Figure 2.9: Three example OU SDE processes. X1(t) and X2(t) are simulated
with correlated Poisson processes, where ρJ = 0.5. X3(t) is independent from the
other two processes.
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CHAPTER

THREE

APPLICATIONS

Randomness and uncertainty has always been present in power systems. However,

it is usually not considered in conventional power system models. With increasing

integration of intermittent renewable energy, the uncertain variations in power

system can no longer be neglected and have to be modeled.

In this section the stochastic modeling methods, presented in Chapter 2, are

utilized to model a few of the potential sources of volatility in power systems. All

modeling e�orts are supported by measured data. The modeling of wind speed

is discussed in Section 3.1, solar irradiance in Section 3.2, tidal current speed in

Section 3.3 and loads in Section 3.4.

3.1 Wind generation

During the 20th century wind plants from small scale plants, for farm use, upto

large utility scale plants were developed and deployed. However, it wasn't until

in the 21st century that serious development focus was put into wind generation,

sparked by the increasing demand for renewable energy. In the last few years

onshore wind power has become one of the most important sources of renewable

power generation. Meanwhile, o�shore wind power is only taking o� and is

expected to grow rapidly in the next few years. For example, in Ireland the

instantaneous wind generation can be up to 65 % of the total demand and the
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system operator is planning to increase this limit to 95 % by 2030 [55]. However,

this growth comes with drawbacks. The power generated by a wind turbine

depends on the weather conditions which makes it a highly volatile power source.

In order to ensure a reliable and secure operation of the grid, it is essential to

model the source of such a volatility, i.e., the wind speed. The existing literature

does not provide a general method to synthesize continuous dynamic wind speed

models that are adequate for the transient stability analysis of power systems.

The work presented here aims to address this issue by developing continuous-time

wind speed models that precisely reproduce the statistical properties of actual

measurement data.

3.1.1 Literature review

The Probability Density Function (PDF) and Autocorrelation Function (ACF)

that best describe the wind speed variability depend on the location and the time

frame [56, 57, 58, 59, 60, 61, 62]. Commonly, wind speed has a PDF that is shifted

to the left and tails heavily to the right. This is because, in most areas, strong

extreme winds are rare, while moderate winds are quite common. The most widely

used PDF for wind speed is the two-parameter Weibull distribution. However, a

wide range of distributions have been proposed in the literature to �t the PDF of

wind speed at a speci�c location [56, 57, 58].

The ACF of wind speed is characterized as an exponentially decaying function

over the �rst 12 hours for hourly averaged data and then settles to zero or a value

bigger than zero or shows damped periodic �uctuations due to daily variations

[61, 62, 17]. However, if the data is sampled more frequently and/or not averaged,

fast wind speed variations change the shape of the ACF. Such short-term wind

speed variations, e.g., turbulence and gusts, typically occur within a 10 minute

time frame and result in the ACF initially decreasing rapidly before settling to the

same slope as the hourly data [38, 63]. This kind of ACF can be well described as

a weighted sum of decaying exponential functions.

A wide range of wind speed models are available in the literature. Most of

the literature has focused on the forecasting of wind speed and the modeling
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of the forecast error. Discrete Autoregressive Moving Average (ARMA) models

are the most common type found in the literature. These models have been

widely used for wind speed forecast error modeling and short-term forecasting

[41, 42, 43, 64, 65]. They are well-established and o�er comprehensive tools to

�t the model to data and reproduce both the PDF and ACF of wind speed data.

Markov chains of �rst order and higher have also been widely used to model wind

speed [66, 67]. Additionally, physical models that use meteorological information

have been widely used to predict the long-term wind speed [68]. Both ARMA

models and Markov chains are discrete and have a �xed time step that must match

the sampling interval of the available data. This constraint prevents using such

models for transient stability analysis, for which continuous wind speed models

are required.

In recent years, the use of SDEs for wind speed modeling has gained popularity.

SDEs appear more suitable than classical discrete time-series approaches as

they are intrinsically continuous with respect to time and thus, they can better

reproduce the transient �uctuations of wind speed. More importantly, SDEs are

not constrained to use the sampling time step of the original measurement data.

Finally, power systems are typically formalized as a set of di�erential algebraic

equations which allow readily incorporating SDEs.

In the literature, SDEs have been used for wind speed forecasting [10, 11];

modeling the volatility of wind power generation [19, 69, 25]; and power system

stability analysis [20]. However, the SDE-based wind speed models that have been

presented so far in the literature fail to capture either the PDF, the ACF, or both

[19, 20, 25, 70]. In [15, 17, 71], SDEs with an arbitrary PDF are presented but

are limited to a strictly exponentially decaying ACF.

To address this, two attempts at modeling wind speed are presented in this

thesis. First, as presented in [38], Method I presented in Subsection 2.3.1 is used

to build wind speed models. This is discussed in Subsection 3.1.2. This work

is followed up by Method II proposed in [72]. This method is an improvement

compared to Method I as it is more systematic and straight forward. The use of

Method II to model wind speed is discussed in Subsection 3.1.3.
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3.1.2 Wind speed modeled with Method I

In [38], Method I is used to model wind speed with a hourly and minutely

resolution. In this section a part of the results published in [38] are presented.

A comparison is provided of hourly and minutely wind speed data and it is

demonstrated that a construction method that can produce wind speed models

with a non-exponentially decaying ACF is necessary. It is established that the

Continuous-Time ARMA (CARMA) construction approach (Method I) presented

in Subsection 2.3.1 can accurately capture the properties of hourly and minutely

sampled wind speed data.

Wind speed data

The wind speed measurement data used in this section were provided by

Met Éireann [73]. The wind speed measurements were gathered at Valentia

Observatory in Kerry. The data consist of minutely and hourly averaged samples

over a one month period.

The PDFs for the hourly and minutely data are shown in Figure 3.1. The lower

wind speeds are slightly more prevalent in the hourly data while the minutely

sampled measurement data has a �atter PDF. An hourly sampling is su�cient

to capture the PDF of the wind speed as the di�erence between the two PDFs is

minimal.

Hourly sampled data does not capture fast variations in the wind speed that are

visible in the minutely data. These short term variations in the wind speed result

in a fast drop in the ACF within the �rst few minutes. After the �rst 20 minutes,

the ACF settles to the same slope as the ACF of the hourly data (see Figure 3.2).

Models based on hourly data generate processes with lower �uctuations than those

that are observable in the actual wind speed.

Simulation results

The wind speed is modeled to �t the data presented here above using Method I

presented in Subsection 2.3.1. The PDFs presented in [17] are �tted to the data
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Figure 3.1: Comparison of PDFs of the wind speed data gathered hourly and
minutely in the Valentia Observatory, Kerry, Ireland [73]. The CARMA model
PDF is the average of 1, 000 simulations of the wind speed model based on the
minutely data.
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Figure 3.2: Comparison of ACFs of the wind speed data gathered hourly and
minutely in the Valentia Observatory in Kerry, Ireland [73].

sets and the Kolmogrov-Smirnov test is used to determine which of the PDFs best

�ts the data. The best �tting PDF is the Gamma distribution with the parameters

presented in Table I in [38]. The model is simulated 1, 000 times producing one

month of minutely data. The resulting PDF for the 1, 000 simulations is shown

in Figure 3.1. The CARMA-based model has a PDF where low wind speeds are

marginally more likely.
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The average ACF of the 1, 000 generated processes and the ACF of the minutely

data are shown in Figure 3.3. The CARMA(2,1) model captures the ACF of the

minutely data for lags of up to 20 minutes. Its ACF diverges from the ACF of

the data over longer time periods. This is su�cient if the wind speed model is

intended for angle and voltage stability analysis of power systems. A higher order

CARMA model is required to e�ectively capture the ACF for higher lags.
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Figure 3.3: Average ACF of the 1, 000 CARMA processes modeled based on
minutely data gathered at Valentia Observatory, Kerry, compared to the actual
ACF of the data.

This method is able to model more wind speed time-series then the method

presented in [17]. However, the conversion from ARMA to CARMA can become

more complex as higher order models are required. Additionally, having to always

�nd the ARMA model �rst makes the modeling procedure time consuming and

non-intuitive. Therefore, a more straight forward systematic method to build

SDE-based wind speed models based on measured data is proposed in [72].

3.1.3 Wind speed modeled with Method II

In [72], Method II as presented in Subsection 2.3.2, is used to model measured

wind speed time-series having sampling rates from 1 second to 1 hour. The data

sets modeled are presented in Table 3.1. Further details on the measured wind
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speed data can be found in [73, 74, 75] as all the data sets used are available open

source.

Table 3.1: The wind speed data sets modeled using Method II.

# Sampling rate Averaged Duration Location
1 1 hour Yes 3 years Mace Head, Galway, Ireland
2 1 hour Yes 3 years Malin Head, Donegal, Ireland
3 10 minute Yes 1 year Ashburnham, Massachussetts
4 10 minute Yes 1 year Orleans, Massachussetts
5 1 minute Yes 1 month Johnstown, Wexford, Ireland
6 1 minute Yes 1 month Oak Park, Carlow, Ireland
7 1 second No 1 month Tracy, California

The �tting procedure involves �tting the function in (2.34) to the ACF

of the data as well as identifying a PDF that best captures the probability

distribution of the data. Full advantage is taken of the �exibility of the memoryless

transformation as two methods to de�ne the PDF are utilized: (1) �t an analytical

PDF to the data; and (2) �nd a numerical estimated PDF.

ACF parameters

Figure 3.5 shows the autocorrelation for data set 1. To capture this ACF using

Method II presented in Subsection 2.3.2, (2.34) has to be �tted to the ACF. This

can be done with any typical curve �tting algorithm. In this work, a non-linear

least squares method, included in the Python package SciPy, is utilized. The

number of decaying exponential and/or damped sinusoidal functions used to �t

the ACF can most often be estimated visually or, if not, by trial and error. The

ACF of data set 1 can be captured with the weighted sum of two exponential

functions. Further details on the �tting procedure are provided in [72]. There,

in Table 4, the parameters for the �tted ACFs of all the data sets presented in

Table 3.1 are shown. In the table, it is implied that ωi = 0 if not provided.

PDF parameters

Figure 3.4 shows the PDF of data set 1. The PDF of the wind speed is imposed

using the memoryless transformation as discussed in Subsection 2.3.2. The PDF

37



can be de�ned in two ways, analytically or numerically. The latter approach is to

be preferred if the wind speed distribution is irregular or has two peaks. Further

discussion on these two approaches to de�ne the PDF are presented in [72], and

there in Table 4 the �tted analytical PDF parameters are presented.

Simulation results

Method II is coupled with the data-�tted parameters from Table 4 in [72].

Combined together, they make wind speed models for the data sets described in

Table 3.1. These models are used for generating synthetic wind speed trajectories

whose statistical properties accurately reproduce those of the actual wind speed

data sets.

Synthetic models are simulated to produce N data points with the time step

h (values for N and h are shown in Table B.1 in [72]). To illustrate the ability

of the models developed using Method II to reproduce the statistical properties

of the original data, the PDF and ACF of the synthetic processes are compared

with those of the data sets. First the results of such comparisons for data set 1

are discussed in detail and then an overview is provided of the results for data sets

2 to 7.

The PDF and ACF results for data set 1 are shown in Figure 3.4 and 3.5,

respectively. In Figure 3.4, the histogram of data set 1 (in gray) is compared to

the results for the generated process using the analytical PDF (solid line) and

numerical PDF (dashed line). Both the analytically and numerically de�ned PDF

are well captured by the SDE-based models. In this case the analytical PDF is

likely the best option.

Figure 3.6 compares analytical, numerical and data-based PDFs for data sets

2 to 7. For data set 6, the analytical PDF gives a good �t to the probability

distribution of the measurements. For the remaining PDFs, however, that is not

the case. For data sets 2-5 and 7, in fact, the top of the PDF is uneven, i.e., it is

wider or narrower than what can be reproduced through the analytical PDFs. In

these cases, the numerically de�ned PDFs provide better approximations. These

PDFs can, in principle, also be approximated through a combination of analytical
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Figure 3.4: Histogram of the data, �tted analytical and numerical PDFs and
histogram of the simulated SDE with the analytical and numerical PDF for data
set 1.
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Figure 3.5: ACF of the data, �tted theoretical ACF and ACF of the simulated
SDE model for data set 1.

PDFs, e.g., a superposition of Gaussian distributions. However, the numerical

approach is simple, general and yet very accurate.

Figure 3.5 shows the ACF of data set 1, the �tted theoretical function and the

ACF of the wind speed trajectory generated by the proposed SDE-based model.

39



The latter consists of the weighted sum of two decaying exponential functions and

captures well the ACF of the data.

Figure 3.7 compares analytical and data-based ACFs for data sets 2 to 7.

Results clearly show that the ACF is highly dependent on the sampling rate as

the ACFs have di�erent shapes for di�erent sampling rates. For example, data

sets 5 and 6 show two di�erent sections, one in the time lags that ranges from 0

to 5 minutes, and another one for time lags larger than 5 minutes. The ACF of

data set 2 shows a poorly damped sinusoidal mode with a period of 24 hours. The

proposed superposition approach is able to reproduce all these di�erent shapes of

wind speed ACFs as a weighted sum of exponential and sinusoidal functions.
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(b) Data set 3
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(c) Data set 4
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(d) Data set 5
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(e) Data set 6
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Figure 3.6: Histograms of the data, �tted analytical and numerical PDFs and
histograms of the simulated SDE with the analytical and numerical PDFs for data
sets 2-7.
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(b) Data set 3
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(c) Data set 4
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(d) Data set 5
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(e) Data set 6
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Figure 3.7: ACFs of the data, the �tted theoretical ACFs and the ACFs of the
simulated SDE model for data sets 2-7.

3.2 Solar generation

Various forms of solar energy have been utilized, e.g. solar heat, solar Photovoltaic

(PV) and solar thermal. The technology that has gained the most popularity is

solar PV. PV conversion is the direct conversion of sunlight into electricity without

any heat engine to interfere. The �st practical PV generator was installed in 1958

on the Vanguard satellite. In the last three years the installed capacity of solar
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PV generation has doubled. This makes solar PV one of the fastest growing

energy source in power systems worldwide [76]. Solar generation is renewable

and eco-friendly but also highly volatile due to the position of the sun and clouds

changing [77]. The impact of solar generation �uctuations on the dynamic behavior

of power systems has not been thoroughly investigated and remains a relevant

research question. Accurate models are required to represent the solar irradiance

�uctuations in power system simulations. This modeling need is addressed in this

section and the results presented in [78] highlighted.

3.2.1 Literature review

The output of PV solar power plants naturally changes throughout the day because

of the daily path the sun follows across the sky. During sunrise and sunset the

output of the PV plant will change by about 10 % in just 15 minutes. The daily

sun path can be easily and accurately predicted. On the other hand, PV power

plants are also a signi�cant source of intermittency due to cloud coverage. The

change in solar irradiance caused by cloud movement can be over 60 % of the peak

irradiance within a few seconds [79]. These variations can be smoothed and their

transient e�ects minimized if a large PV power plant or if an aggregated model

of several geographically distributed plants is considered [77]. However, if a single

PV power plant covers a relatively small area, e.g., in micro-grid applications, its

power output �uctuations have to be properly modeled [14].

Based on the discussion above, solar irradiance variations can be divided into

a deterministic component and a stochastic one. The deterministic component is

the variations at a minutely or hourly scale due to the daily apparent movement

of the sun. This trajectory can be accurately predicted based on location, time of

year and day using clear-sky irradiance models [80, 81]. The stochastic variability

is dependent on the cloud coverage and can be expressed using the clear-sky

index (the ratio between the global solar radiation and the corresponding clear-sky

radiation).

In the dynamic analysis of power systems with PV generation, the solar

irradiance is either assumed to be constant [82, 83] or to vary with random steps
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[84, 85, 86]. These models do not capture the actual intermittency of the solar

irradiance. Measurement data has to be utilized to build more accurate models.

In [87], the solar irradiance variability is modeled by combining a Poisson

jump process and an ARMA model. SDEs with jumps are de�ned in [14] for

modeling the clear-sky index. Both these methods de�ne model parameters based

on measurements. However, these models do not adequately capture the volatility

of the solar irradiance in the seconds to minutes time scale.

In this section a novel SDE model coupled with two jump di�usion processes

is presented for modeling the jumps in the solar irradiance caused by cloud

movements. This model is also compared to three models from the literature

[14, 86, 87]. Before presenting the modeling approaches in Subsection 3.2.3 some

background on the modeling of solar irradiance is discussed in Subsection 3.2.2.

3.2.2 Modeling of solar irradiance

This section presents the procedure to identify the deterministic and stochastic

part of the solar irradiance from measurement data. With this aim and for the

analysis done here, the solar irradiance data collected by the National Renewable

Energy Laboratory (NREL), gathered in Kalaeloa, Hawaii, are used [88]. This

data set consists of one year of measurements gathered with a 1 Hz sampling

frequency from April 2010 to March 2011. Each day consists of measurements

from 5am to 8pm.

Irradiance is a measure of the power of sunlight (W/m2). The power output of

a PV panel is proportional to the solar irradiance that hits the panel. Figure 3.8

shows the solar irradiance measurements over three whole days, with di�erent

clouding conditions. The e�ective Global Horizontal Irradiance (GHI) on the

solar panel can be modeled in two parts. The deterministic part, which is the

estimated clear-sky irradiance based on the position of the sun and the stochastic

part, dependent on the cloud movement.

The temporal variability of solar irradiance, due to cloud coverage, can be

modeled through the clear-sky index, k. This is de�ned as the ratio between the
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Figure 3.8: Measured solar irradiance [88] for three days and the estimated
clear-sky global solar irradiance using (3.2).

measured GHI, G, and the estimated global horizontal clear-sky irradiance, GC :

k =
G

GC

. (3.1)

The clear-sky index for the three days in Figure 3.8 is shown in Figure 3.9.

The clear-sky global solar irradiance is the maximum irradiance arriving at the

earth's surface at a speci�c location and time, i.e., when no clouds are present.

The clear-sky irradiance depends on the site, the solar elevation angle and various

atmospheric conditions [81].

A number of models of varying complexity have been suggested in the literature

to model the clear-sky irradiance. In this work, a clear-sky model of the same form

as the Adnot-Bourges-Campana-Gicquel model is used [80]:

GC = a · cos(z)b, (3.2)

where z is the zenith angle, which is estimated based on the location and time

of day. The parameters a and b are determined by �tting equation (3.2) to the
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Figure 3.9: Clear-sky index found for the measured solar irradiance data shown
in Figure 3.8. In some cases, the clear-sky index becomes bigger than zero
during �ickering conditions. This is due to cloud enhancement, i.e., sunlight being
re�ected by surrounding clouds.

measured data for clear-sky days [81]. These coe�cients change day by day and

are thus found for each clear day of the data set. For the remaining days, a and b

coe�cients are estimated based on the parameters for the clear days.

The data sets of clear-sky indexes for one day are limited by the sunrise and

sunset, that is when GC(t) > 0. The low values of GHI occurring just after sunrise

and sunset result in higher uncertainties in the clear-sky index [89]. Because of

this, only solar irradiance data from 8am to 5pm are used.

3.2.3 Modeling the clear-sky index with Method III

This section presents four approaches to model the �uctuations of the clear-

sky index. The �rst three models have been presented in the literature to

represent solar irradiance �uctuations for the short-term (seconds-to-minutes time

scale) analysis of power systems. In [78], the fourth model is presented and the
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shortcomings of the available models are addressed. An overview of the results

presented in [78] are presented in Subsection 3.2.4.

Model I

This model is a simple way to represent the clear-sky index variations in simulation

[85, 86]. The variations are represented by a random signal between 1 and 0.4,

with 5 second steps. Figure 3.10 shows an example of a simulated clear-sky index

obtained with Model I. The range of the jump size and the waiting time between

jumps can be changed to �t di�erent locations. However, it is not possible to vary

the waiting time between consecutive jumps or to consider the correlation of jump

amplitudes.
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Figure 3.10: Clear-sky index generated with Model I.

Model II

This model, presented in [87], as well as the following two models, split the

representation of the clear-sky index into two parts:

1. The baseline of the clear-sky index varying around 1, which models the

clear-sky condition.

2. The jumps of the clear-sky index due to cloud coverage.
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Model II models the baseline using an ARMA model. Measured solar irradiance

data sampled every minute is used to de�ne the parameters of the model. In [87],

interpolation is used to convert the model from a time-step of one minute to one

second.

The number of cloud events E (jumps) are modeled using a Poisson random

variable, with the intensity λ as presented in Subsection 2.3.3. The inter-event

waiting time, i.e., the time between cloud events, is itself a random variable with

an exponential distribution with the mean µW :

fW (t) =
1

µW
exp(−t/µW ), (3.3)

where t ≥ 0. Finally, the duration TD of a cloud event is assumed to be

exponentially distributed with mean µD. A detailed description of how the

parameters for the cloud events are derived can be found in [87].

In this work, the ARMA model is substituted with a 1-dimensional Ornstein-

Uhlenbeck (OU) Stochastic Di�erential Equation (SDE), as presented in (2.29) to

illustrate the properties of this model. This substitution has no side e�ect as the

variations of the baseline are minimal in the considered time scale.

Figure 3.11 shows an example of a simulated clear-sky index, generated with

Model II and with the parameters of the jump process that represent the spring

data set, i.e., λ = 7.4178, µW = 46.5186 and µD = 54.0616 [87]. In this model,

the jump amplitude is the same for all cloud events, which is not realistic.

Model III

This model is presented in [14] and uses a jump di�usion processes as de�ned in

(2.35). In the following, for comparison, it is assumed that the �rst two terms on

the right-hand side of (2.35) represent a 1-dimensional OU process, as in (2.29).

c(t, ηJ) is assumed to be a constant ξ.

In [14], three scenarios are modeled: cloudy, �ickering and sunny. For the

cloudy and sunny scenarios, no jumps are considered (ξ = 0). Then, a non-

parametric estimation method is used for estimating the parameters of the model.
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Figure 3.11: Clear-sky index generated with Model II.

Figure 3.12 shows an example of a simulated clear-sky index in the �ickering state

obtained with Model III. The parameters de�ned in [14] for the �ickering state

are used, namely, λ = 0.01, σξ = 0.028 and µξ = 0.7. The number of times the

clear-sky index data crosses its mean value (∼ 0.7) is used for de�ning the jump

rate λ. This assumption clearly prevents modeling any jump that is smaller than

the threshold de�ned by the mean value.
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Figure 3.12: Clear-sky index generated with Model III.
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Model IV

If the clear-sky indexes generated using Models I - III above are compared with

measurement data, two limitations become apparent. Firstly, they are based on

the whole data set, not on the �ickering cloudy conditions solely. For this reason,

these models cannot capture the dynamics of fast variations in the time scale of

seconds to minutes. Secondly, small jumps of the clear-sky index are neglected.

Model IV is proposed in [78]. It is aimed at capturing clear-sky index variations

for �ickering clouding events over the time scale of seconds to minutes. The

proposed method utilizes the 1-dimensional OU SDE in (2.29) to represent the

clear-sky stochastic variations in the same way as is done in Method II and III.

For this model c(t, ηJ) in (2.35) is set as constant. Since the jumps do not depend

on the stochastic variable X(t) and are additive noise they are added directly to

the X(t), thus simplifying the numerical integration. The interested reader can

�nd the detailed procedure to integrate jump di�usion processes in [52].

The jumps are modeled as:

H(t) = mP (t), (3.4)

where m is the jump amplitude assumed to be a normally distributed random

number, namely, m ∼ N(µm, σ
2
m). P (t) is a step function that can get only 0/1

values, where the number of transitions per period are determined with Poisson

distribution with parameter λ. The duration of each jump is determined with a

normal distribution δ ∼ N(0, σ2
δ ). In turn, each time P (t) switches from 0 to 1

(or to 1 to 0), it remains constant for a time δ.

Visual inspection of the measured clear-sky index data allows identifying two

types of jumps of the clear-sky index:

• Jump model 1 (JM1): Big clouds passing over the PV that block most

of the solar irradiance.

• Jump model 2 (JM2): Small clouds that typically pass by more frequently

and only partially reduce the solar irradiance.
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The resulting proposed model of the clear-sky index is:

k(t) = X(t) + u(t)G(t), (3.5)

where X(t) is de�ned by (2.29) and u(t) is a function that de�nes the duration of

a clouding event:

u(t) =





1 if ustart ≤ t ≤ ustop

0 otherwise,
(3.6)

where ustart and ustop are the starting and ending times of the clouding event and

G(t) =




−H1(t) +H2(t) if H1(t) > 0

−H2(t) otherwise,
(3.7)

where H1(t) and H2(t) are JM1 and JM2, respectively.

The data set presented in Section 3.2.2 is used for evaluating the parameters

of the jump models. Five clouding events for each month, for a total of 60 events,

are analyzed. This analysis leads to the parameters shown in Table 3.2.

Table 3.2: Range of parameters for the jump models of Model IV de�ned based
on the analysis of 60 clouding events.

Parameters Jump model 1 Jump model 2
λ 0.005− 0.05 0.05− 0.1
µm 0.6− 0.8 0
σ2
m 0.0005− 0.005 0.01− 0.1
σ2
δ 10− 50 1− 5

3.2.4 Simulation results

A cloud event from the data set presented in Subsection 3.2.2 is considered in

this subsection to illustrate Model IV and compare its output with Models I to

III discussed above. The event occurred on the 1st of December 2010 and its

duration is 450 s. The measured clear sky index for this cloud event is shown

in Figure 3.13. The analysis of the behavior of the clear-sky index during this

event allows determining the parameters for the clear-sky index through Model
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Table 3.3: Parameters of Model IV for the clouding event shown in Figure 3.13.

Parameters Jump model 1 Jump model 2
λ 0.007 0.05
µm 0.7 0
σ2
δ 30 3

σ2
m 0.05 0.001

IV. Further details on how the parameters of Model IV are set for this cloud event

are presented in [78]. The �tted parameters from [78] are presented in Table 3.3.
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Figure 3.13: Clear-sky index obtained from measurement data [88] and clear-sky
model (3.2).

Using Model IV and the parameters of Table 3.3, one can generate synthetic

scenarios that are comparable with the measurement data clouding event shown in

Figure 3.13. Three sample processes are shown in Figure 3.14. Visual inspection

reveals that Model IV is able to reproduce the main features of the clouding event

of the measurement data in the time-domain.

In Figure 3.15, the probability distribution of the measured and simulated

clear-sky index is compared using histograms for the four di�erent models. Model

I does not capture the two peaks in the probability distribution, while Models

II and III capture the peaks but not the distribution between the peaks. Model

IV is able to better reproduce the clear-sky indexes probability distribution and

time-domain behavior when compared to Models I-III.
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Figure 3.14: Three sample synthetic clear-sky index processes, generated with
Model IV and based on the cloud event shown in Figure 3.13.
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Figure 3.15: Histogram of the clear-sky index during the clouding event in
Figure 3.13 and the histogram of the generated clear-sky index utilizing Model
I-IV.

3.3 Tidal generation

The potential of marine and tidal currents for electric power generation is widely

recognized [90, 91] although multiple techno-economic issues have still to be

solved [92]. Historical projects in this area include, for example, the SeaGen

project in Strangford Lough, Northern Ireland, the Deepgen project by Tidal

Generation Ltd. and a project by ANDRITZ HYDRO Hammerfest deployed

at the European Marine Energy Centre (EMEC) tidal test site. Notable recent

activities are ongoing within the MeyGen project (Pentland Firth, Scotland) [93]

and the Nova Innovation tidal array (Shetland, Scotland), along with operations

led by Orbital (Orkney, Scotland) and Sabella (Fromveur Passage, France). These

projects demonstrate that tidal stream generation is a viable source of renewable

energy.

Tidal currents have a high long-term predictability compared to other promi-

nent renewable energy sources, e.g. wind and solar. However, short-term
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�uctuations (seconds to minutes) in the current are less predictable. These short-

term �uctuations are caused by turbulence and waves and they can negatively

impact the power quality and the stability of power systems including tidal

generation. In [94], the �uctuations in the power output of the SeaGen tidal

generators are studied. There it is shown that the power output of a 600 kW

turbine can ramp up/down by 10 kW in a matter of seconds. Experience from the

ReDAPT tidal project (ETI, UK) shows levels of power �uctuations far greater,

with routine �uctuations, particularly during winter months, of 20−30 % of rated

power per wave-cycle. Thus, understanding and characterizing these �uctuations

is essential for the development, design and operation of tidal power plants.

3.3.1 Literature review

Several studies have aimed to characterize the current �uctuations due to

turbulance [95, 96, 97, 98, 99]. In [95], the turbulence intensity within the bottom

boundary layer at a height of 5 m is studied and is measured to be 12−13 % in the

tidal channel of the Sound of Islay, Scotland. A study conducted within the Puget

Sound, Washington state, USA reports the turbulence intensity at approximately

the same height as 10 % [96]. In [99], the turbulence intensity is shown to exhibit

strong dependence on tide direction (between �ood and ebb tides) and water

depth. In [97], the current �uctuations with and without waves present are studied

based on measurements from the English Channel, France. These studies provide

valuable understanding of the statistical properties of these current �uctuations.

In tidal system studies for their integration into power systems, the �uctuations

have typically been modeled as purely turbulent [100] or as dominated by waves, in

particular swell waves [101, 102, 103, 104]. Swell waves have been characterized as

the biggest cause of short-term �uctuations in the tidal power output and multiple

publications have addressed the damping of said �uctuations using storage or other

additional control [101, 102, 103, 104]. These publications model the swells using

the �rst-order Stokes model coupled with the JONSWAP spectrum [105, 106].

This model is widely used in ocean engineering for modeling wind and swell waves.

However, the model is not speci�cally built to model waves in sites with strong
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tidal �ows, that is where tidal turbines are likely to be installed. Additionally,

such models do not consider the coupling of the turbulence and waves. Therefore,

these studies might over- or under-estimate the e�ect of waves on the tidal current

and thereby the control/storage needed alongside the tidal turbine.

3.3.2 Tidal generation technology

This section provides some important background on tidal generation as ocean

renewable energy sources are generally not as well known as the two other

renewable sources discussed here above. Namely, wind and solar.

Various kinds of energy can be extracted from the ocean, e.g. tidal current

energy, wave energy and thermal energy. The technology used to harvest the

kinetic energy in tidal current is relatively mature compared to the other ocean

energy technologies. Tidal generators extract energy from the ocean movement

due to the tidal phenomenon. This phenomenon is a result of the changing

gravitational pull of the sun and moon in respect to the earth's oceans. It

causes large bodies of water to move towards and away from the shore. The tidal

movement is site speci�c. Each location will experience diurnal tides (one high,

one low in a tidal day), semi-diurnal tides (two high, two low in a tidal day) or a

mixture of the two. Tides can be predicted far in advance and with a high degree

of accuracy. This is one of the driving forces for tidal generation development,

as it makes tidal generation one of the more reliable sources of renewable energy

[107].

The world's �rst tidal power station opened in 1966, in the Rance river, France

[108]. This power plant is of the tidal barrage type, which is a dam-like structure

across a bay or a river that is subject to tidal �ows. Another form of tidal

power is tidal stream generation. It converts the energy of free �owing water into

electricity. This technology has gained popularity, over tidal barrages and other

tidal generation technologies because they are the cheapest and least ecologically

damaging [109]. Numerous types of tidal stream devices have been proposed in

the literature, such as horizontal- and vertical-axis turbines and tidal kites. The

main research and development focus has been on horizontal-axis turbines [110],
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with important tidal projects, such as SeaGen in Norther Ireland [111] and more

recently MeyGen in Scotland [93] utilizing those. A contributing factor to their

dominance is their similarity to wind turbines. This allows for much of the readily

available technology, for wind turbines to be reused for tidal turbines. Because

of this similarity tidal generation will, for the remainder of this section and in

Subsection 3.3.3, be discussed in comparison to wind generation.

The utilization of similar technology for tidal and wind generation systems is

not surprising, as both aim to capture kinetic energy from one kind of a �owing

mass. However, several important di�erences are between the two energy sources.

One of the main di�erences being the density of the �owing mass. The density

of air is about 1/800 of the density of water. This means the rated current speed

can be much lower, between 2-3 m/s, compared to the rated wind speed of a wind

turbine. Thus, to get similar power ratings, the tidal turbine rotor size is relatively

much smaller. This makes tidal turbines more compact than wind turbines. The

density di�erence between the two �owing masses also impacts the design of the

turbine blades.

Another di�erence is the direction of the �owing mass. For wind turbines, the

wind can hit the turbine from any direction. For tidal turbines, however, there

are only two possible directions of the current �ow, ebb or �ood. This a�ects the

design of the pitch angle control for tidal turbines.

In [112], di�erent generator types for tidal turbines are studied and compared.

There it is concluded that Permanent Magnet Synchronous Generatorss (PMSGs)

are better suited for tidal generation than Double Fed Induction Generatorss

(DFIGs). DFIGs are more lightweight and lower in cost, but would require more

regular maintenance of the gearbox and slip rings. This maintenance would be

more di�cult to conduct underwater, than is the case for wind turbines. However,

both PMSGs and DFIGs can be used for tidal generation.

This comes to show that the wind and tidal turbine technologies are in most

ways very similar. Thus, the main noticeable di�erence, when it comes to dynamic

analysis, is due to the di�erence in the input signals, that is wind speed and tidal

current speed. This subject is discussed in more detail in Subsection 3.3.3
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3.3.3 Comparison of tidal current and wind speed

If average values over some minutes are considered the current speed is highly

predictable many days or even years in advance. The mean current speed usually

has roughly four or eight peaks per day. This can be seen in Figure 3.16.a where

an example of measured current speed for Port Mantee, US is shown [113]. Wind

power on the other hand will vary with more uncertainty in that minutely to hourly

time frame. An example of hourly measured wind speed, collected in Mayo, Ireland

can be seen in Figure 3.16.b [73].
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Figure 3.16: Wind speed and tidal current speed measurements averaged every
10 minutes [73, 113].

Wind and tidal current speeds are variable on a shorter time scale as well.

In the case of wind speed these short-term variations can be due to gusts or

turbulence. The intensity of the turbulence depends on the terrain surrounding

the wind power plant. For a land-based wind turbine the normal turbulence

intensity would be close to 20 % for wind speed of around 12 m/s [114], while

for o�shore locations this percentage is expected to be slightly smaller. An

example of measured wind speed, with a sampling frequency of 1 Hz, is shown

in Figure 3.17.b, measured in Tracy, California [74]. Further details on how these
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short-term variations in the wind speed are modeled for power system analysis are

presented in Section 3.1 and Subsection 4.3.1.
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Figure 3.17: Wind speed and tidal current speed measurements with a 1 Hz
sampling frequency [74, 115].

The short-term variations in the tidal current are both due to the bottom and

side friction and the surface waves. These �uctuations are typically about 10 %

of the mean speed [114]. An example of measured tidal current, with a sampling

frequency of 1 Hz, is shown in Figure 3.17.a, collected in the European Marine

Energy Centre tidal test site in Orkney, UK [115]. In this case the �uctuations

are dominated by turbulence.

The tidal current speed can also be subject to wind waves and ocean swells.

Wind waves have a relatively short wave length and high frequency. These are

caused by local winds. Swells are long wavelength waves that originate in a remote

region of the ocean and propagate out of their area of generation. These are

considered to have the greatest disturbing e�ect on the tidal current speed in a

tidal turbine, as they travel deep under the ocean surface [102].
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3.3.4 Tidal current speed modeled with Method II

This section outlines results from [116] which focuses on modeling the short-term

�uctuations in the tidal current. The total tidal current speed is modeled as:

utidal(t) = u0 + η(t), (3.8)

u0 represents the averaged variations in the tidal current. This value is kept

constant in this work but could also be set to model the changes in the current

due to the tidal phenomenon. Method II, presented in Subsection 2.3.2 is used to

model the short term variations in the tidal current, η(t).

Data

This section presents the measured tidal current speed data used to validate the

use of Method II to model short-term �uctuations in the tidal current. The current

speed data were gathered during the Reliable Data Acquisition Platform for Tidal

project (ReDAPT) in the European Marine Energy Centre (EMEC) tidal test

site in Orkney, UK. The data is publicly available from [115]. The measurements

are collected using a single-beam acoustic Doppler pro�ler deployed at the nose

of the test Deep-Gen IV tidal turbine. It measures the velocity directly along

the stream-wise axis. The provided velocity pro�les have cell sizes of 0.5 m.

The measured data analyzed in this paper is the stream-wise tidal current speed

measured 10 m upstream from the turbine at hub height. Further information

on �eld measurement techniques and subsequent data processing are discussed in

[99].

Two sets of data are analysed, representing the two following scenarios:

• Scenario 1 : Short-term �uctuations are exclusively due to turbulence.

Waves are not considered.

• Scenario 2 : Fluctuations are both due to turbulence and waves. The most

signi�cant wave height is Hs = 1.9 m and the peak period is Tp = 9 s.

Further details on each scenario are provided in Table 3.4.
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Table 3.4: Details on the Scenario 1 and 2 data sets.

Scenario Dates Time Sampling rate Sea state
1 2014/08/09 14:00-18:40 2 Hz No waves
2 2014/11/11 21:00-08:55 4 Hz Waves

2014/11/12

An example of the measured time-series for Scenario 1 is shown in Figure 3.18.a

(grey line), where a trend in the tidal current is noticeable. This trend is due to

the tidal phenomenon. As the aim is to model the short-term variations (in the

seconds to minutes time scale) this trend is removed from the data. To identify

the trend the two-sided rolling mean of the time-series is used. The two-sided

rolling mean of a time-series yt is de�ned as:

zt =
1

2m+ 1

m∑

j=−m

yt−j, (3.9)

where m is the smoothing parameter that de�nes the window to average over.

In this case yt is the Scenario 1 time-series. The two-sided rolling mean of the

measured time-series where m is set to 10 minutes is shown in Figure 3.18.a (black

line). The measured stochastic process to be modeled is:

xt = yt − zt, (3.10)

which represents the measured tidal current speed where the trend has been

removed. In this way, the short-term �uctuations of the current speed are `isolated'

as it is shown in Figure 3.18.b. In Figure 3.18.b, it can be observed that the

standard deviation of the �uctuations is proportional to the average tidal current.

This has also been discussed in the literature where the tidal current turbulence

is studied [95, 96, 97, 98]. In Figure 3.18.c, the rolling standard deviation of the

current speed �uctuations (gray line) and the scaled down rolling mean (0.1zt) are

shown which demonstrates they are somewhat correlated.
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Figure 3.18: (a) Measured stream wise tidal current speed (Scenario 1) and the
rolling two-sided mean derived using (3.9). (b) Current speed �uctuations derived
using (3.10). (c) Rolling standard deviation and scaled rolling mean (0.1zt).
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ACF and PDF parameters

The Method II modeling procedure presented in Subsection 2.3.2 consists in �tting

the model to measurement data based on their statistical properties, that is the

ACF and PDF. The ACF parameters are found in the same way as presented in

Subsection 3.1.3 and in [116]. Table 3.5 shows the �tted parameters for the ACFs

for both scenario. In the table, it is assumed that ψi = 0 if not provided.

Table 3.5: The �tted ACF and PDF parameters for the current �uctuations
models of Scenario 1 and 2.

Scenario ACF Parameters Standard deviation
1 w1 = 0.23 κ1 = −5 σX = 0.09266u0

w2 = 0.32 κ2 = −0.2
w3 = 0.45 κ3 = −0.04

2 w1 = 0.28 κ1 = −5 σX = 0.09702u0
w2 = 0.18 κ2 = −0.2
w3 = 0.46 κ3 = −0.05
w4 = 0.08 κ4 = −0.06

ψ4 = 0.7

In this work, the PDF of the short-term tidal current �uctuations is modeled as

Gaussian. In Figure 3.18.c, it is shown that there is a correlation between the mean

tidal current speed and the standard deviation of the �uctuations. Hence, the

standard deviation is dependent on the magnitude of the tidal current speed. The

higher the tidal current speed the higher the standard deviation of the �uctuations

in the current [95, 96, 97, 98]. To determine this relationship the mean of the rolling

standard deviation as a function of the rolling mean is found as follows:

σX
u0

=

∑n
i σri/µri
n

, (3.11)

where µri and σri are the rolling mean and standard deviation respectively for

the i-th time frame of the n time frames of data. In this case, the time frame

is 10 minutes. In this way, (3.11) can give the relation between the tidal current

magnitude u0 an the standard deviation σX . The standard deviation for each

measured scenario is shown in Table 3.5. In both cases the standard deviation is
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slightly less than 10 % of the tidal current magnitude. This value can be subject

to the tidal conditions (�ood/ebb tides) or the date. This topic is outside the

scope of this thesis work.

Simulation results

For Scenario 1 the ACF can be captured through the superposition of three OU

processes. In this scenario, the �uctuations are primarily due to turbulence. Thus,

no periodicity is identi�ed in the ACF. In Figure 3.19.a, the ACF of the data for

Scenario 1 is shown, as well as the �tted ACF function and the ACF of the

simulated synthetic time-series derived from the model.
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Figure 3.19: ACFs of the data set, the �tted ACF and the ACF of the simulated
SDE model for: (a) Scenario 1 and (b) Scenario 2.

For Scenario 2, periodic behavior driven by the waves in the tidal current is

observable in the ACF. Thus, in this case, an additional OU process is needed
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to capture the periodicity. The ACF of the data for Scenario 2, the �tted ACF

function and the ACF of the simulated process are shown in Figure 3.19.b.

The behavior of the ACF for Scenario 2 indicates that the waves are periodic

with a frequency around 0.1 Hz. In the model built using Method II, the

periodicity is set through the parameter ψ4 = 0.7 rad/s presented in Table 3.5. In

particular, for Scenario 2, a frequency of 0.11 Hz, which corresponds to a period of

9 s, has been determined. This matches the speci�ed peak period of the measured

data.

For both scenarios the model is able to capture the desired ACF. By capturing

the ACF the model ensures that the generated stochastic trajectories evolve in

time in the same way as the measured time-series.

The power spectral density of a time-series measures the time-series power

content versus frequency. It is de�ned as the Fourier transform of the autocovari-

ance and can be viewed as the frequency-domain equivalent of the autocovariance.

Figures 3.20.a-b show the power spectral densities of the two scenarios measured

and simulated. The power spectral densities for both scenarios look similar for

most frequencies except around 0.1 Hz, where a spike is visible for Scenario 2. This

is the contribution of the waves in the power spectral density of the measured time-

series. For both scenarios the simulated processes have spectral densities that have

a very similar trend to those shown by the measurement data.

The similarity of the two scenarios can be observed also in the �tted ACF

parameters in Table 3.5. The weights wi di�er, but the �rst three κi parameters

are very similar. The fourth process component for Scenario 2 is modeling the

contribution of the wave. Thus, the �rst three process components can be said to

be capturing the turbulence contribution.

3.4 Load

Load power consumption is not fully deterministic. This has led to the proposal

of a variety of stochastic load models in the literature. In this section a load

model for short-term analysis of power systems, proposed in [117] is presented. Its
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Figure 3.20: Power spectral density for the measured data and the SDE
simulated time-series for: (a) Scenario 1, (b) Scenario 2.

novelty is modeling the correlation in the active and reactive power consumption

of a load.

3.4.1 Literature review

In power system stability studies loads have traditionally been modeled as

deterministic using either static or dynamic models [118, 119]. However, loads

often vary in an uncertain manner. Speci�cally, in the frame of seconds to minutes.

Recent relevant studies that consider the short-term uncertainty of loads are as

follows.

In [120], the e�ect of load uncertainty on voltage stability is considered using

trajectory sensitivity analysis. Other such probabilistic analysis considering the
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e�ect of load uncertainty on the system stability are presented in [121, 122]. In

[4] it is shown that important information is lost when only probabilistic analysis

of the system is considered for stability analysis. For this reason it is important

to model the load uncertainty as a stochastic processes evolving with time.

Load uncertainty can be modeled as a stochastic process in time using SDEs.

Several studies have used SDEs for load modeling. A modi�ed exponential

recovery model, with a purely di�usion term SDEs, modeling the load uncertainty

is utilized in [123]. In [13, 37, 124], Ornstein-Uhlenbeck (OU) SDE processes are

used to model the load variations and in [16] OU processes including jumps are

proposed for load modeling. However, none of these stochastic models consider

the correlation in the active and reactive power.

Figure 3.21 shows an example of active and reactive power measurements

obtained with a Phasor Measurement Unit (PMU). The data indicate that there

is a clear correlation between the stochastic component and the jump component

when it comes to jump time and size in the measured active and reactive power.

Thus, the active and reactive power of the load are, at least in some cases,

correlated and their correlation needs to be modeled.
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Figure 3.21: Active and reactive power consumption of a load measured with a
PMU.
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3.4.2 Load modeling with Methods III and IV

The load model presented here, proposed in [117], utilizes both Method III to

model jumps in the load consumption and Method IV to model the correlation

between the active and reactive power consumption of a load. The SDE-based

model, presented in [16], models the load variations using an OU SDE model with

jumps. This load model is developed based on the well-known voltage dependent

load model. However, it models the active and reactive power independently.

The updated load model proposed in [117] utilizes the model proposed in [16] but

enables the stochastic and jump component of the active and reactive power to be

correlated by using Method IV as presented in Subsection 2.3.4. Thus, the load

model is:
pL(t) = (pL0 + ηp(t))(v(t)/v0)

k,

qL(t) = (qL0 + ηq(t))(v(t)/v0)
k,

dηp(t) = αp(µp − ηp(t))dt+ σpdW1(t) + ςp(t)dJ1(t),

dηq(t) = αq(µq − ηq(t))dt+ σqdW1(t) + ςq(t)dJ2(t),

(3.12)

where pL(t) and qL(t) are the active and reactive power of the load, respectively,

and pL0 and qL0 are parameters representing active and reactive load powers at

t = 0. v(t) is the voltage magnitude at the bus where the load is connected and

v0 is the value of this voltage magnitude at t = 0.

The model in (3.12) can, through the exponent k de�ne whether the load is

a constant power load (k = 0), a constant current load (k = 1) or a constant

impedance load (k = 2). The stochastic variability of the load is modeled through

the stochastic processes ηp(t) and ηq(t) which are formulated as SDE jump di�usion

processes as presented in Subsection 2.3.3, where α is the mean-reversion speed,

µ is the mean and σ is the di�usion component of the OU process (2.29).

The jump amplitudes ςp(t) and ςq(t) are normally distributed random numbers,

namely ςp(t) ∼ N(0, σςp) and ςq(t) ∼ N(0, σςq). They are modeled to have

a correlation ρJs in the same way as the Wiener process, as presented in

Subsection 2.3.4. The correlation in the Wiener (W1(t) and W2(t)) and Poisson

processes (J1(t) and J2(t)) are modeled as presented in Section 2.3.4.
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Examples of the load consumption of a load modeled using (3.12) are shown

in Figure 3.22-3.25. In Figure 3.22-3.23, the loads are modeled without jumps,

that is ςp(t) = ςq(t) = 0. By comparing these two �gures two scenarios can be

compared. That is what the load consumption looks like without correlation and

with a correlation of ρW = 0.8.
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Figure 3.22: Active and reactive power of a load modeled without jumps with
no correlation.
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Figure 3.23: Active and reactive power of a load modeled without jumps with
correlation (ρW = 0.8).

Figures 3.24 shows load consumption modeled with jumps where there is no

correlation in the jump times or size. This results in the active and reactive power

trajectories being very di�erent from one and other and for example at the end of
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the simulation it can be seen that while the active power is dropping the reactive

power is increasing. In Figure 3.25, an example is shown where both the jump

times and jump amplitudes are correlated, that is ρJ = ρJs = 0.8. In this case we

can see that the two trajectories are following the same trend and in many cases

the jumps are proportionally similar in the active and reactive power consumed.
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Figure 3.24: Active and reactive power of a load modeled with jumps with no
correlation.
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Figure 3.25: Active and reactive power of a load modeled with jumps with
correlation (ρJ = 0.8, ρJs = 0.8).

The e�ect of considering this correlation in loads on the dynamics of power

systems is studied in [117]. This case study is presented in Section 5.5 and further

extended to a larger system.
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CHAPTER

FOUR

STOCHASTIC POWER SYSTEM MODELS

In this chapter, power system models are formulated as a set of SDAEs. In

particular, Section 4.1 discusses the inclusion of stochastic processes modeled

as SDEs into DAE power system models. Then, Section 4.2 discusses the

initialization of such power system models and a novel initialization method is

presented. Finally, in Section 4.3, it is discussed how the stochastic models

presented in Chapter 3 can be utilized and modi�ed to capture the aggregated

output of a whole renewable energy farm.

4.1 Power system modeling

Traditionally, the transient behavior of power systems is described through the

following set of Di�erential Algebraic Equations (DAEs):

ẋ = f(x,y, t) , (4.1)

0m = g(x,y, t) ,

where f (f : Rn × Rm × R+ 7→ Rn) are the di�erential equations; g (g : Rn ×
Rm × R+ 7→ Rm) are the algebraic equations; x (x ∈ Rn) are the state variables,

e.g., rotor speeds and rotor angles of synchronous machines, the dynamic states

71



of loads and system controllers; y (y ∈ Rm) are the algebraic variables, e.g., line

outages and faults, switching operation of tap-changers; t ∈ R+ is the time.

Equations (4.1) do not model the e�ect of stochastic perturbations on the

systems transient behavior. Such stochastic perturbations can be originated in

variable renewable energy sources, as discussed in Chapter 3, stochastic variations

of loads, measurement errors of control devices and more. In the general case,

these stochastic perturbations depend on the system variables. Thus, stochastic

perturbations can be modeled as a set of SDEs, as presented in Section 2.2:

η̇ = a(x,y,η, t) + b(x,y,η, t)ξ, (4.2)

where the stochastic perturbations are η (η ∈ Rp) and ξ (ξ ∈ Rq) is the vector of

white noise processes that represent the time derivatives of the Wiener processes.

Each of the SDEs is characterized by its drift a (a : Rn × Rm × Rp × R+ 7→ Rp)

and di�usion term b (b : Rn × Rm × Rp × R+ 7→ Rp × Rq).

These stochastic perturbations can lead to stochastic behavior in the main

system variables, such as the voltage and frequency, described through (4.1). Thus,

the updated power system model including the stochastic perturbations is modeled

as a set of Stochastic Di�erential Algebraic Equations (SDAEs):

ẋ = f(x,y,η, t) , (4.3)

0m = g(x,y,η, t) ,

η̇ = a(x,y,η, t) + b(x,y,η, t)ξ ,

where the functions f (f : Rn×Rm×Rp×R+ 7→ Rn) and g (g : Rn×Rm×Rp×
R+ 7→ Rm) are updated to include the e�ect of the stochastic term η.
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4.2 Initialization of stochastic power system mod-

els

This section discusses the initialization of the SDAE power system model in (4.3).

The initialization method presented here and the case study outlined in Section 5.2

are presented in [125].

The initialization of deterministic power system models, described through the

DAEs in (4.1), consists in �nding a (stable) equilibrium point (xo,yo) that satis�es

the condition:

0n = f(xo,yo) , (4.4)

0m = g(xo,yo) .

The initial values of the deterministic state and algebraic variables are then set as

x(0) = xo and y(0) = yo, respectively.

Initializing the stochastic power system model (4.3), on the other hand, is not

as straightforward. In the literature, two methods are commonly used, as follows.

• Method 1: The SDAEs are initialized in a deterministic way. That is the

deterministic state and the algebraic variables are initialized as shown in

(4.4) and the initial values of the stochastic processes are set equal to their

expectation, i.e. η(0) = ηo.

• Method 2: The initialization of the DAEs in (4.1) is the same as in Method

1, thus leading to x(0) = xo and y(0) = yo, which are obtained using η = ηo.

Once this step is completed, the stochastic processes η are initialized in a

probabilistic way. That is, the initial value of the stochastic processes are

selected at random based on their probability distributions, say ηs. The

complete initial point is thus represented by x(0) = xo, y(0) = yo and

η(0) = ηs.

Neither of these two methods provide the correct initialization of the whole SDAE

system. The method, presented below, proposes an alternative and e�cient way to
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initialize the SDAE system as a whole. Note also that, in general, the initial point

obtained with Method 2 yields g(xo,yo,ηs) 6= 0m. This, however, is not an issue

as, at the �rst step of the time domain simulation, the condition g(xo,y(0),ηs) =

0m is recovered by means of the internal loop of the numerical integration scheme.

4.2.1 Proposed Method 3

The starting point of the proposed initialization method is the set of SDAEs

linearized at the equilibrium point (xo,yo,ηo) as per Method 1 above. The

linearization of (4.3) gives:




˙̃x

0m

˙̃η


 =




fx fy fη

gx gy gη

0p,n 0p,m aη







x̃

ỹ

η̃


+




0n,q

0m,q

b(ηo)


 ξ , (4.5)

where fx, fy, fη, gx, gy, gη, aη are the Jacobian matrices of the system

calculated at (xo,yo,ηo). x̃ and η̃ represent the deterministic and the stochastic

states of the linearized system. Eliminating the algebraic variables from (4.5) and

de�ning z = (x̃, η̃) leads to a set of linear SDEs, as follows:




˙̃x

˙̃η


 =


fx − fyg

−1
y gx fη − fyg−1

y gη

0p,n aη




x̃
η̃


+


 0n,q

b(ηo)


 ξ

= Ao z + Bo ξ . (4.6)

Based on the Fokker-Planck equation, as presented in Chapter 5 of [126], the

probability distribution of all state variables in stationary condition satisfy:

P(z) = (det | 2πC |)−1/2 · exp

(
− 1

2
zTC−1z

)
, (4.7)

where C is the covariance matrix of the state variables in (4.6). This matrix is

symmetric and satis�es the Lyapunov equation:

AoC + CAT
o = −BoB

T
o , (4.8)
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which is a special case of the Riccati equation. This equation can be solved

numerically for systems of arbitrary size.

The covariance matrix can be clustered as:

C =


Cxx Cxη

Cηx Cηη


 , (4.9)

where Cxx and Cηη are the covariance matrices of x̃ and η̃, respectively. The two

remaining sub-matrices Cxη and Cηx = CT
xη represent the covariance between the

deterministic x̃ and stochastic η̃ state variables.

The proposed method, Method 3, to initialize the SDAE power system model

in (4.3) begins with the initialization of the stochastic state variables, η. The

initial stochastic state variables are set independently at random, based on their

probability distribution, i.e. η(0) = ηs. That is, in the same way as in Method

2. Then, the state variables x are initialized using the mean of the conditional

distribution of x, given η [127], that is:

xs = x0 + CxηC
−1
ηη ηs . (4.10)

Thus, in this way the initial value of x, set using Method 1 is modi�ed to

consider the e�ect of the random stochastic state initial value ηs, considering

their correlation.

As discussed for Method 2, there is no need to update the algebraic variables

as they will be determined by the time integration routine. Hence, the resulting

initial point is x(0) = xs, y(0) = yo and η(0) = ηs.

In Subsection 4.2.2, the OMIB test system is used to compare the proposed

Method 3 to Method 1 and 2. Furthermore in Section 5.2 the Irish system model

is used to demonstrate that Method 3 scales well for larger systems.
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4.2.2 Test case

The test system used in this part is the simple three bus OMIB system where the

machine is a wind power plant. The OMIB test system utilized in this section is

shown in Figure 4.1.

bus

3

Wind Infinite
Load

1 2

power plant

Figure 4.1: One-Machine In�nite-Bus (OMIB) test system.

The wind speed input for the wind power plant is modeled as the following

Ornstein-Uhlenbeck (OU) stochastic process.

η̇(t) = α(µ− η(t))dt+ βξ, (4.11)

where µ = 9.67 m/s is the mean wind speed, α = 0.01 is the mean reversion speed

and β = 0.05 is the di�usion constant of the process.

The OMIB system is utilized to test the three initialization methods, namely

Method 1, 2 and 3. For each method, 1, 000 Monte Carlo simulations are solved for

60 s with a time step of 0.1 s. As an example, the active power �ow from Bus 2 to

3 is shown in Figure 4.2-4.4. The system base is 100 MW. In these �gures, µ and σ

represent the mean and standard deviation of the 1, 000 simulated time series. The

process is said to have reached stationarity when the standard deviation becomes

constant. At this point, the simulations represent the full probability distribution

of the variable.

Figure 4.2 shows that the standard deviation of the active power is still growing

at the end simulation time when Method 1 is utilized. Thus, it has not reached

stationarity. The time it takes the system variables to reach stationarity for

Method 1 is dictated by the ACF of the stochastic processes in the system. In this

case the ACF of the single stochastic process in (4.11) is exp(−αt). Therefore,

76



0 10 20 30 40 50 60

Time [s]

0.192

0.194

0.196

0.198

0.2

0.202

0.204

0.206

A
ct
iv
e
P
ow

er
B
u
s
2
[p
u
]

µ

µ± 3σ

Figure 4.2: Illustration of Method 1. In this case the stochastic processes have
not reached stationarity as the standard deviation is still continuously growing at
time 60 s.

this particular system needs to be simulated for at least 2/α = 200 s to reach

stationarity, which requires a relatively large computing time.

To reduce the computing time required to reach stationarity, an option is to

increase the time step. However, in general, this is not a feasible solution for

power systems. The transient stability model, in fact, is sti�, i.e., it combines fast

and slow dynamics. Fast dynamics quickly reach stationarity but need a small

time step. On the other hand, slow dynamics dictate when the system trajectories

reach stationarity.

Figure 4.3 shows the behavior of Method 2. In this method, the slowest

dynamics of the di�erential equation f (in this case, wind power plant dynamics)

determine how long the system takes to reach stationarity. This occurs, in this

case, in approximately 20 s of simulated time. Thus, if the stochastic processes

have a slow aACF, Method 2 requires less computing time than Method 1 to reach

stationarity. Note that, for systems with slow dynamics, Methods 1 and 2 have

an equivalent computational burden.

The results of the Monte Carlo simulations obtained with the proposed method

are shown in Figure 4.4. In this case, the initial conditions are stationary as

con�rmed by the fact that the standard deviation is constant along the whole
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Figure 4.3: Illustration of Method 2. In this case the processes reach stationarity
at time 20 s. From there on the standard deviation is practically constant.

simulation. This method signi�cantly reduces the required computation time as

no part of the simulated processes need to be discarded.
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Figure 4.4: Illustration of the proposed Method 3.

4.3 Inclusion of renewable energy sources in the

power system model

The models presented in Sections 3.1-3.3 capture the stochastic variability of the

source, e.g. wind speed, solar irradiance and tidal current speed. In most power
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system models for dynamic analysis the individual turbines or PV panels are not

modeled. Thus, an average model is used to model the aggregated output of the

whole plant. For example as presented in [128] for a wind farm. In this section

the modeling of the aggregated e�ect of the energy sources variability on a plant

is discussed for the sources modeled in Sections 3.1 to 3.3.

4.3.1 Wind generation

The aggregated wind speed model considered for the dynamic studies in this thesis

consists of two parts: a constant-mean wind speed, vc, and a Gaussian stochastic

process, ρw(t). The wind is modeled in this way since the wind speed variations

within a 10 minute time frame can be assumed to be normally distributed around

a certain mean vc [129]. The wind speed model used for each wind farm is:

vwind(t) = vc + ρw(t), (4.12)

where vwind(t) is the modeled wind speed time-series and ρw(t) is a stochastic

process modeled as a SDE. The aggregated wind speed model considers both the

�ltering across the blade are of a single turbine and the aggregation e�ect across

the whole wind farm.

Wind speed is not uniform across the rotor blade area. For example, wind

speed at the tip, center and hub can di�er [130]. However, these variations even

out over the blade area. This damping e�ect by the rotor blades is modeled as a

low-pass �lter, shown in Figure 4.5. The input is the model in (4.12) generating

wind speed at hub height of the wind turbine. The output is the equivalent wind

speed that produces the same torque as the actual wind �eld [131].

1
1+τs

Wind Speed
Model [m/s]

Equivalent
Wind Speed

[m/s]

Figure 4.5: Low-pass �lter that represents the damping e�ect of the blades of a
wind turbine.
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The time constant, τ [s], of the low-pass �lter is proportional to the rotor

radius, R [m], and the average wind speed at the hub height, vc [m/s]. The time

constant of the low-pass �lter is:

τ =
γR

vc
, (4.13)

where γ is the decay factor over the disc [130].

The stochastic processes ρw(t) is de�ned using Method II, presented in

Subsection 2.3.2. Thus, ρw(t) has the probability distribution N (µρw , σ
2
ρw) and

an ACF as in (2.34). The standard deviation of the process is set to be 20 % of

the mean wind speed vc as supported by [114] and analysis of the data set in [74].

The aggregated wind speed is de�ned through the σρw parameter:

σρw = 0.2 · vc/
√

2nturb, (4.14)

where nturb is the number of turbines in the wind farm. Thus, the standard

deviation of the modeled wind speed decreases in proportion to the number of

turbines, as the variability of wind speed averages out over a spread wind farm.

The power output of an example wind farm is shown in Figure 4.6. It shows

two cases. The �rst case is when the wind speed is modeled as for one turbine. The

second case is where the aggregated wind speed model presented in this section is

used. The number of turbines for the aggregated case is 20. The parameters used

for the wind speed model are those presented in [132].

4.3.2 Solar generation

The solar irradiance measured at a single PV panel is known to be very jumpy

during mixed clouding conditions. The aggregation of a whole plant of PV panels

smooths the e�ect of the most rapid jumps [77]. This smoothing e�ect is dependent

on the area the plant covers. The aggregated irradiance for a PV plant can be

modeled as a low pass �lter, as shown in Figure 4.7 [133]. The single PV clear-sky

index is modeled as presented in Section 3.2.
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Figure 4.6: Generated power of a single wind turbine and an aggregated wind
farm of 20 turbines.
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Figure 4.7: Low-pass �lter that represents the smoothing e�ect of a PV plant.

The cut-o� frequency for the �lter is directly dependent on the square root of

the plant area S, measured in Ha.

In Figure 4.8, the generated power of a farm of PV panels is shown. There

the output power is compared for when the irradiance is modeled as presented in

Section 3.2 for a single point to a case where the aggregated solar irradiance is

considered, using the low-pass �lter presented in Figure 4.7. In this case S = 2 Ha.

The parameters used for the solar model are those presented in [78].
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Figure 4.8: Generated power by a single PV panel and aggregated power output
of a PV park covering an area of 2 Ha.

4.3.3 Tidal generation

The aggregated tidal current speed model used in this thesis consists of three

parts. The �rst two parts are modi�cations of the model presented in Section 3.3.

The third part allows to model the e�ect of multiple di�erent wave scenarios. The

three parts of the tidal current model are:

a. The variations in the tidal current due to the tidal phenomenon are very

slow and relatively small in the time-frame of seconds to minutes. Thus, the

predicted tidal current speed is modeled as a constant, vct.

b. The stochastic turbulence, ρt(t), in the current speed is modeled using a

stochastic process as de�ned in (2.31). It is de�ned in the same way as

for the wind speed (see Subsection 4.3.1). The only di�erence is that the

standard deviation of the tidal current speed is set to be 10 % of the current

speed, vct, and the ACF parameters are set based on measured tidal current

speed data [116].
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c. The third part represents the e�ect of waves on the tidal current, vwaves(t).

The resulting tidal current speed model is the following:

vtide(t) = vct + ρt(t) + vwaves(t). (4.15)

The ocean sea state is a�ected by a range of waves at the same time. These

waves are generally modeled using the �rst order Stokes model representing a

random sea-state [134]:

vwaves(t) =
N∑

i=1

aiωi
cosh[ki(h+ d)]

sinh(kid)
cos[ωit− kix+ φi], (4.16)

where h is the vertical distance from the sea surface to the hub height of the tidal

turbine, positive upwards, and d is the sea depth. φi are random phases, uniformly

distributed between 0 and 2π, ωi is the frequency of the i-th frequency component,

ki is the wave number of the i-th frequency component. Finally

ai =
√

2S(ωi)∆ωi (4.17)

is the amplitude of the i-th frequency component, de�ned from the frequency

spectrum, S(ω), of the waves.

The frequency spectrum considered is the JONSWAP spectrum [134]. The

wave angular frequency, ωi, is within the frequency band, ∆ωi, and N di�erent

frequency components are considered to represent the random sea-state. The

JONSWAP spectrum is de�ned as:

S(ω) =
mg2

ω5
exp

(
− 1.25

(ωp
ω

)4)
γY , (4.18)

where g is the acceleration due to gravity, ωp is the peak frequency of the spectrum

and γ is the peak enhancement factor which controls the sharpness of the peak.

m is the intensity of the spectrum and can be de�ned for North Sea applications

83



[134] as:

m = 5.058

(
Hs

T 2
p

)2

(1− 0.287lnγ), (4.19)

where Hs is the signi�cant wave height, Tp = 2π/ωp is the peak wave period.

The aggregation model for the wave component of the tidal current, presented

in [135] is utilized.

Waves can be thought of as an intermittent disturbance. They are not always

present and are not likely to a�ect the di�erent locations at the same time, with the

same intensity. Thus, the Stokes model, coupled with the JONSWAP spectrum,

can be set to represent di�erent wave scenarios, as discussed and demonstrated in

Section 5.3.

Figure 4.9 shows the e�ect of the variations in the tidal current on the power

output of a tidal farm. Two cases are considered: (i) the current is assumed

to be as measured in a single turbine; and (ii) the tidal current is obtained by

aggregating 20 turbines. In the latter case, the parameters for the small wave

scenario presented in [132] are used.
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Figure 4.9: Output generated power of a single tidal turbine subject to waves
and aggregated power output of a 20 turbine tidal farm.
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4.3.4 Test case

This subsection considers the test system presented in Figure 4.1. Three cases are

considered: wind, solar and tidal generation. The stochastic variations of each

source are modeled using the aggregated models presented in Subsections 4.3.1 to

4.3.3.

As a metric to compare the di�erent cases, it is convenient to compute ramp

rates, de�ned as:

∆hxt = xt − xt−h (4.20)

where xt is the system variable at time t. ∆hxt is a new stochastic variable that

gives the probability of the sizes of ramps in the system variable in a time step

h. The ramp rates are computed for time lags h = 0− 100 s. Then, the standard

deviation of the ramp rates, ∆hxt, for each time step h is computed. In this way,

the ramp rates give information on how the ramps in the system variable evolve

with time. Thus, the e�ect of the PDF and ACF of the sources of stochastic

�uctuations in the system can be visualized in a single plot.

In Figure 4.10, the standard deviation of the ramps in the active power at Bus

2 in the OMIB system for the three cases is shown. In this comparison the fastest

ramps within the 10 second time frame are seen for tidal generation. For time

steps h bigger than 10 seconds the tidal generation results in smaller ramps in the

active power than the solar and wind generation. Solar generation results in the

biggest ramps in the active power.

The comparison of the standard deviation in the ramps in the voltage at Bus

2 in the OMIB system, shown in Figure 4.11 gives a very di�erent picture. In this

case, the ramps in the voltage for solar generation are the smallest and the biggest

for wind generation.

It is important to note that only a single scenario for wind, tidal and solar

generation are considered here. The results could be very di�erent if the tidal

scenario considered included no waves or bigger waves. Also the solar scenario

modeled is one mixed clouding scenario. The jumps in the solar generation are
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Figure 4.10: Standard deviation of the ramps in the active power at Bus 2 in
the OMIB test system. Ramp rates are computed as in (4.20).
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Figure 4.11: Standard deviation of the ramps in the voltage at Bus 2 in the
OMIB test system. Ramp rates are computed as in (4.20).
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not present for a clear sky scenario and could be even bigger for other mixed

clouding scenarios.
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CHAPTER

FIVE

SYSTEM STUDIES

This chapter presents a variety of case studies that are aimed at testing the

stochastic models discussed in the previous chapters of this thesis. All case studies

utilize the 1, 479 bus Irish system model, presented in Section 5.1.

In the �rst case study, outlined in Section 5.2 and published in [125], the

initialization methods discussed in Section 4.2 are tested. Then a case study,

presented in [132] of the Irish system including wind and tidal generation is

presented in Section 5.3. Similarly, Section 5.4, compares scenarios for the Irish

system with wind and solar generation. Finally, in Section 5.5, a case study,

published in [117] considering the e�ect of modeling the correlation of the active

and reactive power of loads on the system dynamics is presented.

All simulations are carried out using Dome, a Python-based software tool

for power system analysis [136]. Dome solves the SDEs using the Itô integral.

It supports solving the SDEs using either the Euler-Maruyama or Milstein

integration method. For this work the Euler-Maruyama is used [33].

5.1 All-island Irish transmission system

The Irish system is an isolated and relatively small transmission system. It consists

of two 50 Hz grids which are AC interconnected and operated by independent

TSOs: System Operator for Northern Ireland and Eirgrid Group. The current
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transmission peak of the system is about 5, 500 MW and the demand is expected

to grow between 22 % and 53 % by 2030 [137]. The system has two HVDC

interconnections, to Scotland and Wales, both with a capacity of 500 MW, �owing

in both directions. The all-island Irish transmission system is shown in Figure 5.1.
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Figure 5.1: Map of the all-island Irish transmission system [138].

The installed wind generation in the system has increased rapidly for the last

10 years. At present, the record of produced wind power in the Irish system is

approximately 3, 500 MW and the system is able to handle upto 65 % renewable

energy, primarily composed of wind power [139].
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The Irish transmission system model utilized in this chapter consists of 1, 479

buses, 1, 851 transmission lines and transformers, 245 loads, 22 conventional

synchronous power plants, modeled with 6th order synchronous machine models,

with AVRs and turbine governors, 6 PSSs, and 169 wind power plants, of which 159

are DFIGs and 10 are CSWTs. In the system used for the case studies presented

in this chapter the total load of the system is 2, 215 MW and 25 % of the total

generated power is supplied by wind.

5.2 Initialization of SDAE-based power system

models - case study

The initialization method presented in Subsection 4.2.1 is compared with Methods

1 and 2, in the case study outlined in this section. In Subsection 4.2.2, the

initialization methods are tested for the OMIB system. In this section, the

Irish system model, presented in Section 5.1, is utilized to demonstrate that the

proposed Method 3 scales well and can be applied to large systems.

All simulations are solved exploiting parallelism on a 8 core 3.60 GHz Intel

Xeon with 12 GB of RAM [136]. Equation (4.8) in the proposed initialization

method is solved using the open-source library SLICOT.

5.2.1 Irish system model

In this case the only source of uncertainty in the Irish system model is the wind,

modeled as presented in Subsection 4.2.2. The Irish test system is simulated using

a Monte Carlo method, i.e. 1, 000 simulations with a simulated time of 60 s with

a time step of 0.1 s using the three di�erent initialization methods discussed in

Section 4.2. Figure 5.2 shows the standard deviation of the voltage at a centrally

located bus (Athlone in county Westmeath) in the Irish system. Method 1 does

not reach stationarity within the 60 s time frame. Method 2 reaches stationarity

in approximately 10 s.
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Figure 5.2: Standard deviation of voltage at a centrally located bus in the all-
island Irish transmission system.

As expected the proposed initialization method, namely Method 3, allows

starting the time domain simulations with points that are in stationary conditions.

Only a very short and, e�ectively, negligible transient of the standard deviation

can be observed due to the approximations introduced by the linearization and

the solution of (4.8) obtained with the SLICOT library.

Table 5.1 shows the computing time for the three initialization methods,

de�ned as the time that each method takes to reach a stationary condition, for

both the OMIB system (Subsection 4.2.2) and the Irish system. For example, for

the OMIB system, the computing time for Method 1 is the time required to solve

1, 000 simulations for 200 s. Similarly, the computing time of Method 2 for the

OMIB system is the time required to simulate 1, 000 trajectories for 20 s. On the

other hand, the computational burden of Method 3 is largely driven by the time

required to solve (4.8). However, the Lyapunov equation needs to be solved only

once for all Monte Carlo simulations of a given scenario.
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Table 5.1: Computing time for each initialization method

Computation time [s]
OMIB Irish system

Method 1 28.38 1317.77
Method 2 7.00 76.50
Method 3 0.08 16.05

5.2.2 Remarks

The speedup of using the proposed Method 3 as apposed to Method 1 and 2

depends on a trade-o� between the number of trajectories simulated with the

Monte Carlo approach and the size of the system. If the number of trajectories

is su�ciently high the proposed method will always safe time compared to the

conventional methods.

Another bene�t of Method 3, besides saving time is that less disc space is

required. This is because the initial non-stationary part of the Monte-Carlo

simulations for Method 1 and 2 are typically discarded as the full probability

distribution of the variables is not simulated. With the proposed approach,

Method 3, the whole trajectories are meaningful.

Finally, when using Method 1 and 2, the slowest processes in the system need to

be identi�ed to be able to know before-hand how long a simulation time is needed

to reach stationarity. This can be involved and time consuming for large systems.

With the proposed method, on the other hand, this analysis is not required.

5.3 Irish system with inclusion of wind and tidal

generation

The renewable energy currently generated in the Irish system is almost entirely

supplied by wind power plants. However, in the sea around Ireland there is a

signi�cant tidal energy potential. This section includes an Irish system case study

presented in [132], considering both wind and tidal generation.
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5.3.1 Irish system model

Ireland had the world's �rst large scale commercial tidal stream generators in

operation from 2003 until 2017. Those turbines were a part of the SeaGen tidal test

project and are located in Northern Ireland's Strangford Lough, producing 1.2 MW

[111]. This project has provided valuable information for further development of

tidal generation in Irish waters and has shown that tidal generation is a viable

energy source for the Irish system. In [140], Ireland's tidal resources are assessed.

Eleven practical resource sites for tidal generation are identi�ed. The four sites

with the greatest estimated capacity are shown in Figure 5.3. Table 5.2 shows the

potential energy of the four locations.

Location 1

Location 2

Location 3

Location 4

Figure 5.3: Top four locations of potential tidal generation as identi�ed in [140].

The tidal power plants are assumed to be installed in the four locations shown

in Figure 5.3. The combined generation of these four locations is set to be 10 %

93



Table 5.2: The potential energy and installed power at the four modeled tidal
power locations [140].

Location Name
Potential
Energy [GWh/y]

Installed
Power [MW]

1 Inishtrahull Sound 514 67
2 Shannon Estuary 367 34
3 Tuskar Rock 420 47
4 Codling 791 69

of the total generation in the system. The local wind generation in each location

is substituted with tidal generation. The set power of the tidal generation at each

location is based on their potential energy and is shown in Table 5.2.

5.3.2 Scenarios

Five scenarios for the Irish power system model are studied:

• Scenario 1: The load is stochastic and modeled as presented in Section 3.4

with no correlation and no jumps. This serves as a base scenario. Thus, the

same stochastic load models are used in the remaining scenarios.

• Scenario 2: The onshore wind, 25 % of generation, is stochastic, modeled

as presented in Subsection 4.3.1.

• Scenario 3: Stochastic onshore wind, 15 % of generation, and stochastic

o�shore wind, 10 % of generation.

• Scenario 4: Stochastic onshore wind, 15 % of generation, and stochastic

tidal, 10 % of generation, modeled as presented in Subsection 4.3.3, without

waves.

• Scenario 5: Same as Scenario 4, that is stochastic onshore wind, 15 % of

generation, and stochastic tidal, 10 % of generation, but the tidal generation

is disturbed by waves.

Note that the speci�c parameters for the SDE-based models used can be

found in [132]. In Scenario 3-5, o�shore wind and tidal generation is installed
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in the locations identi�ed in Figure 5.3, replacing 10 % of the local onshore wind

generation.

Typically, the sea surface is assumed to be stationary for 20 minutes, upto a

couple of hours. A stationary sea-state can be characterized by a set of parameters.

These are the signi�cant wave height, Hs, and the peak wave period, Tp. The

signi�cant wave height is de�ned as the mean wave height (trough to crest) of the

highest third of the waves. The peak wave period is the wave period with the

highest energy. The wave parameters for the considered sea-states are based on

those listed in Table 3.17 in [134]. The parameters utilized for di�erent sea-states

in the case study are shown in Table 5.3, where Hs refers to the signi�cant wave

height and Tp to the peak wave period; and Tmin − Tmax gives the range of wave

periods, sampled from the JONSWAP spectrum in (4.18), for the Stokes wave

model in (4.16).

Table 5.3: Three sea-states considered for Scenario 5.

Sea-state Hs [m] Tp [s] Tmin − Tmax [s]
(S) Small waves 1 5 1.4− 8.8
(M) Moderate waves 2.5 7 2.8− 13.5
(L) Large waves 5 10 3.8− 15.5

Scenario 5 includes three cases, where waves a�ect the tidal current. The three

cases take into account the locations of the four tidal power plants. The largest

signi�cant wave heights, of about 5 meters, are seen on the west coast during

winter. On the other hand, the average signi�cant wave heights, in the Irish sea,

do not exceed 2 meters, during any season [141]. Thus, Location 1 & 2 are more

likely to experience higher signi�cant wave heights than Location 3 & 4, as they

are facing the Atlantic ocean. Speci�cally, Location 1 is likely to experience the

worst wave conditions. Table 5.4 shows the sea-state at each location, for the

three cases of Scenario 5.

The standard deviation of the ramp rates, computed using (4.20), for a range

of time lags of the Centre of Inertia (COI) frequency are utilized to compare the

scenarios. This measure is used as it enables assessing the e�ect of the ACF and

PDF of the stochastic sources on the system variables through a single process.
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Table 5.4: Sea-state at each location, for the three cases considered in Scenario 5.
S, M and L represent small, moderate and large waves, respectively as presented
in Table 5.3.

Case\Location 1 2 3 4
a S S S S
b M M S S
c L M S S

5.3.3 Wind versus tidal generation

The Irish system with all the loads modeled as stochastic (Scenario 1) is studied

�rst. This scenario serves as a reference for the remaining scenarios. To validate

the stochastic load scenario, frequency data from the Irish system, gathered in

the AMPSAS project is used. The frequency is measured with a 10 Hz sampling

frequency. In this case, the morning of a singular day, that is the 20th of May in

2014, is considered. During this time period there is almost no wind generation,

hence the stochastic �uctuations in the frequency are mainly due to loads, as well

as dispatches. Further details on these measurements are provided in [142].

Figure 5.4 shows the standard deviation of the ramp rates of the measured

frequency data and the COI frequency, for the simulated Scenario 1. The model

underestimates the frequency ramps in the initial 20 s, when compared to the

measured data. However, for higher time steps, the model, for Scenario 1, and the

measured data are in agreement.

The �ve di�erent scenarios, as presented in Subsection 5.3.2, are compared in

Figure 5.4. The inclusion of stochastic wind, in Scenario 2, increases the standard

deviation of the ramp rates by approximately 25 %. An even bigger change is seen

for Scenario 3-5. For these scenarios, however, the generation pro�le of the system

had to be modi�ed to accommodate o�shore wind or tidal power plants.

The wind generation in Ireland is mostly composed of small farms spread across

the system. For Scenario 3-5, these small farms are replaced by four much larger

o�shore wind or tidal farms. This causes relatively larger power �uctuations to be

introduced in four points in the system. Whereas, for Scenario 2, smaller power

�uctuations are installed in locations spread across the area.
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Figure 5.4: Standard deviation of the ramps in the frequency of the COI for
Scenario 1-5, as well as of the measured frequency [142]. Ramp rates are computed
as in (4.20).

Figure 5.4 shows that Scenario 4 has slightly smaller frequency variations than

Scenario 3. This indicates that o�shore wind introduces larger frequency variations

than tidal generation. However, the set up of the farms, the number of turbines

and the turbine sizes also impact the stochastic variations in the output power of

the farms. Thus, it cannot be claimed that either source introduces less frequency

variations. It can only be stated that tidal generation, when compared to wind

generation, if no waves are presents, does not necessarily introduce bigger system

frequency variations.

The trajectories of the standard deviation of the frequency ramps for Scenario

5-a are shown in Figure 5.4. In this case, all tidal farms are subject to relatively

small waves simultaneously. This is the most common wave scenario for the

Irish system. The inclusion of waves in the tidal current results in oscillatory

�uctuations in the power outputs of the tidal farms, with a time period of less than

10 s. This increases the frequency variability, for the initial 20 s and introduces

oscillations in the system frequency.
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Scenario 5-b represents moderate waves in both Location 1 & 2, which are

facing the Atlantic ocean. In this case, frequency ramps have a standard deviation

of about 0.015 Hz, within a few seconds, as shown in Figure 5.5. This state is

likely to last for 20 minutes upto a few hours at a time.
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Figure 5.5: Standard deviation of the ramps in the frequency of the COI for
Scenario 5, case a, b and c. Ramp rates are computed as in (4.20).

Scenario 5-c represents the worst case scenario. In this case Location 1 is

experiencing large waves, with longer time periods, that is swell waves. This case

is characterized by unacceptable frequency variations. Energy storage systems

can be installed along side tidal generation, as suggested in [102] to mitigate these

�uctuations. An alternative solution is to include primary frequency control in

the tidal generation. This is discussed in the next section.

5.3.4 Frequency control of tidal generation

In this section, frequency control of tidal generation is considered, to reduce the

frequency variability caused by the waves of Scenario 5. The similarity between

tidal and wind turbines allows for the the frequency control implemented for wind
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turbines to be adapted for tidal turbines. A common approach for wind turbine

frequency control is to bypass the Maximum Power Point Tracking and set the

power output based on the deviation of the measured frequency (droop control)

and/or Rate of Change of Frequency (ROCOF) control. The combination of the

two strategies proposed in [143] for wind turbines is considered below.

The droop controller, with gain 1/R, is comparable to the primary frequency

controller of a synchronous machine. The ROCOF controller consists of a low-pass

�lter with time constant Tl, the time derivative of the frequency measurement and

a gain Kl. The two controllers are complementary. The ROCOF control is faster

and has its main e�ect in the very �rst instants after the frequency drop. However,

the droop control is slower and mitigates the frequency deviation [143].

Figure 5.6 shows a comparison of the three di�erent cases for Scenario 5 with

the inclusion of frequency control in the four tidal power plants. Compared to the

results presented in Figure 5.5, frequency variations are approximately halved in

size for all three cases. For comparison, Figure 5.6 also shows Scenario 2 and 3,

i.e. the two scenarios with only wind generation. The frequency control of the tidal

turbines e�ectively mitigates the frequency variations for both Scenario 5-a and

5-b to be less than those for Scenario 3, excluding the �rst few seconds. Therefore,

coupling frequency control to tidal generation can reduce the frequency variations,

due to the waves, to an acceptable level.

5.3.5 Remarks

It is important to note that the sea state is strongly dependent on the location, as

discussed in Subsection 5.3.2. Thus, the location is the �rst design parameter to

be considered to reduce the impact of waves on tidal generation. If the potential

tidal locations are all prone to extreme wave conditions, it is key to determine

the optimal placement for the tidal power plants to minimize the impact of waves

on the system. In the case of the Irish system, for Location 1 & 2, Scenario

5-c represents the worst case scenario, while for Location 3 & 4 the frequency

variations due to wave disturbance would not get bigger than those shown for
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Figure 5.6: Standard deviation of the ramps in the frequency of the COI for
Scenario 5, case a, b and c with frequency control. Scenarios 2 and 3 are shown
for comparison. Ramp rates are computed as in (4.20).

Scenario 5-a. Thus, it appears sensible to commission tidal installments on the

east coast �rst, e.g. Locations 3 & 4.

5.4 Irish system with inclusion of wind and solar

generation

The Climate Action Plan from 2019 states that 70 % of electricity in the Irish

system will be supplied by renewable sources by 2030. This means that the current

limit of 65 % renewable energy in the system needs to be raised to 95 % by 2030

[55]. To meet this goal 1.5 GW of grid-scale solar PV energy is set to be installed

in the system, along side the biggest source of renewable energy, wind. The current

goal of Eirgrid Group is to have 100 MW of solar installed by 2024. In Northern

Ireland over 100 MW is already supplied by solar PV and System Operator for

Northern Ireland expects the solar capacity to grow to 179 MW by the end of 2022
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[144]. This section presents a case study of the Irish system with solar and wind

generation.

5.4.1 Irish system model

The Irish system model is divided up into 10 areas. In 7 of those areas there is

wind generation. For this case study 10 % of the wind generation in the system

presented in Section 5.1 is replaced with solar PV generation. The capacity of the

installed solar PV is distributed equally between the 7 areas.

5.4.2 Scenarios

Three di�erent scenarios for the Irish system model are studied:

• Scenario a: The onshore wind, 25 % of generation, is stochastic modeled

as presented in Subsection 4.3.1.

• Scenario b: Stochastic onshore wind, 15 % of generation, and stochastic

solar, 10 % of generation, modeled as presented in Subsection 4.3.2, for a

mostly clear sky.

• Scenario c: Stochastic onshore wind, 15 % of generation, and stochastic

solar, 10 % of generation, modeled as presented in Subsection 4.3.2, for a

mixed clouding condition.

In all scenarios the loads are modeled as stochastic as presented in Section 3.4, with

no jumps and no correlation in the active and reactive power. The parameters used

for the stochastic load and wind models are presented in [132]. The parameters

for the stochastic solar model are those presented, based on data, in [78]. The

plant area parameter S for the aggregated model, presented in Subsection 4.3.2 is

set based on the capacity of the individual PV farms. All PV farms are assumed

to produce 150 W/m2.
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5.4.3 Wind versus solar generation

All scenarios are simulated for 10, 000 s with a time step of 0.1 s. In Figure 5.7,

the standard deviation of the ramps in the COI frequency of the system is shown

for Scenario a, b and c, calculated using (4.20). There it can be seen that for the

�rst 10 s the standard deviation is approximately the same for all three scenarios.

In the time frame from 10 to 40 s Scenario a, with only wind has a slightly higher

standard deviation. Scenario b which represents a mostly clear sky has a lower

standard deviation than Scenario a in time frames upto approximately 60 s after

that the two scenarios are similar. Scenario c shows bigger ramps in the frequency

for time steps above 40 s. This is as expected because of the jumps in the solar

generation. However, the �ltering e�ect of aggregating multiple PV generators

results in the jumps ramping up over longer time frames.
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Figure 5.7: Standard deviation of the ramps in the frequency of the COI for
Scenario a, b and c. Ramp rates are computed as in (4.20).
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5.4.4 Remarks

It is worth noting that the stochastic solar model used in Scenario c represents

the worst case scenario in terms of short-term variability of solar PV. That is the

scenario where there are intermittent clouds blocking the solar PVs. In all other

weather conditions it is likely that the solar generation will not add more than

wind to the system frequency uncertainty as can be seen for Scenario b. Thus,

including solar generation in the renewable energy mix in Ireland could be a good

option, considering the frequency stability of the system.

5.5 Case study with correlated active and reactive

power loads

In this case study the e�ect of the correlation in the active and reactive power

of loads on power system dynamics is studied. First the 3-machine, 9-bus test

system is used as presented in [117]. Then, the analysis is extended to the Irish

system.

5.5.1 9-bus test system model

The test power system used in this case study is the Western System Coordinating

Council 3-machine, 9-bus system shown in Figure 5.8. The system base is 100 MVA

and the system frequency is 60 Hz. Further details on the model can be found

in [145]. Note that for this case study the voltage levels of the system have been

lowered compared to the original case. This is done to demonstrate a case where

the lower voltage limits might be reached.

Loads are modeled as stochastic as presented in Section 3.4. The parameters

used for the load model are set as follows. The mean reversion parameters of the

processes are set as αp = αq = 0.02. σp and σq are set individually for each load

so that the standard deviation of the variations is 5 % of pL0 and qL0, respectively.

The standard deviation of the jump size σςp and σςq is set to 10 % of pL0 and qL0,

respectively.
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Figure 5.8: Western System Coordinating Council 9-bus test system.

For this case study two di�erent cases are considered:

• Case 1: Loads are modeled without jumps. That is ςp(t) = ςq(t) = 0. The

e�ect of correlation in the stochastic component, through ρW , is studied.

• Case 2: Loads are modeled with jumps. The e�ect of correlation in the

jump time (ρJ) and size (ρJs) is studied.

Case 1

Three scenarios are examined, namely: (a) ρW = 0, (b) ρW = 0.5 and (c) ρW = 0.9.

The test system is simulated 1, 000 times using Monte Carlo simulation for

a duration of 110 s and with a time step of 0.05 s for both Cases 1.a and 1.c.

A fault is applied in these simulations at Bus 7 at time 101 s that is cleared in

0.1 s. The resulting e�ect on the voltage at Bus 5 is shown in Figure 5.9 and

5.10. In these �gures, the black line presents the voltage mean value of the 1, 000

simulations. This process gives an idea of the e�ect of the perturbation for the

deterministic case, that is where the loads are not modeled as stochastic. In that

104



case, the disturbance does not result in the voltage at Bus 5 reaching the lower

voltage limit.
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Figure 5.9: Voltage magnitude at Bus 5 with no correlation (Case 1.a). The
trajectories of the 1, 000 simulations are shown in gray, the mean trajectory of
the 1, 000 simulations is shown in black and the lower voltage limit of 0.9 pu is
indicated with a dashed line.

Figure 5.9 shows that the voltage for only one trajectory goes below the

voltage limit. This corresponds to 0.1 % of the simulations. In Figure 5.10,

where the correlation in the active and reactive power of the loads is considered

approximately 2 % of the trajectories go below the limit and stay there for a

longer duration. This shows the importance of considering the correlation in the

active and reactive power uncertainty when the voltage stability of the system is

considered.

The correlation also a�ects the steady-state standard deviation of the voltage

as can be seen in the spread of the simulated trajectories around the mean value

in Figure 5.10 when compared to Figure 5.9. To further examine this point, the

ramp rates of the voltage are computed using (4.20) and compared for the di�erent

scenarios.
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Figure 5.10: Voltage magnitude at Bus 5 with correlation (Case 1.c). The
trajectories of the 1, 000 simulations are shown in gray, the mean trajectory of
the 1, 000 simulations is shown in black and the lower voltage limit of 0.9 pu is
indicated with a dashed line.

Ramp rates are obtained by simulating the system once for a duration of

10, 000 s with a time step of 0.1 s without any disturbance. Figure 5.11 shows

the standard deviations of the ramp rates of the voltage at Bus 5 for Case 1.a,

1.b and 1.c. The standard deviation increases as the correlation, ρW is increased.

Thus, the more the stochastic variations of the active and reactive load power are

correlated the bigger the variations/uncertainty in the voltages of the system.

Case 2

Three scenarios are considered, namely: (a) ρJ = ρJs = 0, (b) ρJ = 0.9 and

ρJs = 0 and (c) ρJ = ρJs = 0.9. In all scenarios ρW = 0.

Figure 5.12 compares the standard deviation of the ramp rates in the voltage

at Bus 5 for Case 2. If the jump times are correlated (Case 2.b), the standard

deviation of the ramps in the voltage is signi�cantly decreased when compared

to the base case with no correlation (Case 2.a). Case 2.b, where the jump times
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Figure 5.11: Standard deviation of the ramps in the voltage at Bus 5 of the test
system for Cases 1.a, 1.b and 1.c.

are correlated but not the jump size, results in the lowest levels of ramps in the

voltage. Case 2.c, where the jump times and sizes are both correlated, results in

lower voltage ramps than if no correlation is considered.

5.5.2 Irish system model

In this case study, only the loads in the Irish system are modeled as stochastic.

The model presented in Section 3.4, coupled with the same parameters as are

used for the 9-bus test system, is used. In Figure 5.13, the standard deviation

of the ramp rates in the voltage of a centrally located bus (Athlone in county

Westmeath) in the Irish system is shown for Case 1.a, 1.b and 1.c. The same

behavior is observed in this case. That is, with more correlation in the stochastic

component of the active and reactive power of the loads, the higher the standard

deviation of the ramp rates in the voltage, and thus, the higher the uncertainty.

The standard deviation in the ramp rates of the voltage at the same centrally

located bus in the system for Case 2.a, 2.b and 2.c is shown in Figure 5.14. The
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Figure 5.12: Standard deviation of the ramps in the voltage at Bus 5 of the test
system for Cases 2.a, 2.b and 2.c.

same behavior can be seen for the Irish system as is observed for the 9-bus test

system.

5.5.3 Remarks

The results for Cases 1 and 2 highlight the importance of modeling the correlation

of the loads of the system as it a�ects the variations of bus voltages and thereby

the stability limits of the whole network. The level and type of correlation in the

active and reactive powers may vary for di�erent types of loads. Thus, it appears

relevant to examine measured data for a variety of loads and further investigate

this correlated behavior.
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Figure 5.13: Standard deviation of the ramps in the voltage at a centrally located
bus in the Irish system for Cases 1.a, 1.b and 1.c.
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Figure 5.14: Standard deviation of the ramps in the voltage at a centrally located
bus in the Irish system for Cases 2.a, 2.b and 2.c.
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CHAPTER

SIX

CONCLUSIONS

This thesis discusses stochastic modeling for the short-term dynamic analysis

of power systems. To model the sources of random variability in the system

Stochastic Di�erential Equations (SDEs) are utilized. Chapter 2 presents the

SDE-based methods utilized for modeling the sources of volatility in the system.

In Table 6.1 the properties of the four stochastic modeling methods, presented

in Chapter 2 are outlined. Methods I and II can be used to build a continuous

SDE with an arbitrary PDF and an ACF that can be �tted as a sum of weighted

decaying exponentials and sinusoidals based on data. Method II o�ers a more

systematic approach to de�ning the SDE model based on the statistical properties

of measured data, namely the PDF and ACF. However, Method I is a good

option in a case where a prede�ned ARMA model is available. Method III allows

modeling SDEs with jumps. This method does not propose a systematic way to

de�ne the jump di�usion SDE. This is because many di�erent types of jumps may

be encountered in stochastic measured data. Thus, more extensive data analysis

is required than just de�ning the ACF and PDF. Finally, Method IV can be used

to model the correlation of two SDEs in terms of the stochastic driving component

and if present the jump component. A limitation of this method is that only the

correlation between two processes can be modeled. However, in power systems

multiple random perturbations in the system can be correlated.
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Table 6.1: SDE methods presented in Chapter 2.

Method PDF ACF Jumps Correlation

I Any numerical
or analytical

PDF

Sum of weighted
decaying

exponentials
and sinusoidals

- -

II - -

III - - Yes -

IV - - Yes
Between two
SDE processes

In Chapter 3, four sources of random �uctuations and jumps in power systems

are modeled using the modeling methods presented in Table 6.1, namely wind,

solar and tidal generation as well as loads. All the modeling in this chapter is

supported by measured data and the models can all be used in dynamic analysis

of power systems. In Chapter 3, it is demonstrated how Method I and II can be

utilized to model wind speed based on measured data sets with a range of sampling

frequencies, as presented in [38] and [72], respectively. It is shown that Method II

speci�cally can be used to capture the stochastic properties of wind speed seen in

measured data sampled with a sampling rate from a second to a hour. Method II

is also used to model tidal current speed as presented in [116]. The method is used

to model two measured data sets, one where the short-term variations are purely

due to turbulence and one where they are due to a mix of turbulence and waves.

In Chapter 3, measured solar irradiance data is analyzed. It is shown that the

solar irradiance jumps up and down as clouds pass over the PV solar panel. To

model the solar irradiance a SDE jump di�usion model is proposed using Method

III as presented in [78]. A load model that uses Method III and IV, proposed

in [117], is presented in Chapter 3. This model can model the correlation in the

stochastic component, the jump size and time of the active and reactive power

consumed by a load.

Chapter 4 focuses on the integration of the SDE-based models (proposed in

Chapters 2 and 3) into power systems, modeled as a set of Di�erential Algebraic

Equations (DAEs). The resulting stochastic power system model is a set of

Stochastic Di�erential Algebraic Equation (SDAE). In this chapter a novel method
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to initialize the SDAE power system model is presented and compared to methods

previously used, as discussed in [125]. Additionally, the adaptations done to

model the aggregated volatile renewable sources, namely wind, solar and tidal

are outlined. In this chapter, the One-Machine In�nite-Bus (OMIB) test system

is used to show examples of simulations of a power system modeled as a set of

SDAEs. It is demonstrated how the volatility of the renewable energy sources can

a�ect the system variables in di�erent ways.

In Chapter 5, four case studies utilizing the 1, 479 bus Irish power system model

are outlined. First the proposed initialization method, presented in Chapter 4, is

tested and it is shown that the method scales well for larger systems. The proposed

initialization method has a lower computation time and requires less disc space

when compared to other initialization methods previously used for SDAE-based

power systems.

The Irish system, including tidal and wind generation, is tested as presented in

[132]. Di�erent scenarios where the tidal current speed is disturbed by turbulence

and waves are considered. It is shown that by including frequency control in the

tidal turbines the e�ect of the stochastic perturbations in the tidal current on the

system frequency can be reduced to acceptable levels.

A similar study of the Irish system is also presented where the system includes

wind and solar generation. It is shown that in the Irish system, including solar

generation will result in lower ramps in the system frequency for clear sky days.

However, in case of mixed clouding conditions solar generation introduces larger

frequency ramps.

Finally, a case study where the e�ect of modeling the correlation in the active

and reactive power of loads is presented that utilizes both the 9-bus test system

and the Irish test system. It is shown that modeling the correlation is important

when considering the voltage stability of the system. If the stochastic component

of the active and reactive power model is more correlated it results in bigger

voltage variations in the system. However, if the jumps are correlated the system

voltage variations are lower compared to the uncorrelated case.
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These case studies highlight the importance of considering the stochastic

perturbations that a�ect power systems in dynamic system studies. The

perturbations introduced by the various sources of random variations a�ect the

system in di�erent ways. Thus, it is important to use measured data to build

models that accurately represent the sources of randomness.

6.1 Future work

Numerous routes can be taken to continue this thesis work. For example the SDE

modeling methods, presented in Chapter 2, can be extended to model multiple

correlated SDE processes. This work has already begun. Another important

modeling aspect would be to develop a more systematic way to build jump di�usion

SDE models based on measured data.

The models, presented in Chapter 3, utilizing the SDE-based modeling

methods presented in Chapter 2, demonstrate the versatility of the presented

modeling methods. Thus, in future work, these modeling methods can be utilized

to model other sources of volatility in power systems.

Finally, the stochastic power system studies that can be performed utilizing

the models proposed in this thesis are endless. Future work could focus on the

implementation of some of these potential stochastic case studies.
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