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© Taulant Kërçi, 2021. All Rights Reserved.

i



Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Federico Milano, for giving

me the opportunity to pursue a PhD at University College Dublin. I have been very

fortunate to have him as a supervisor. His continuous support, help, motivation and

feedback have contributed to the successful completion of this thesis. In particular, I

wish to thank him for always finding the time for our weekly meetings and my questions.

Working with him has been a pleasure and a challenge at the same time. A pleasure

for two reasons: (i) his immense knowledge of power systems and other related and

non-related fields have served as a great learning process; and (ii) he always supported

me to implement my research ideas. A challenge because he always expects the best from

you, and as such, it pushes you to the limits.

Second, I would like to thank Science Foundation Ireland for making this PhD work

possible by funding me under project ESIPP, Grant No. SFI/15/SPP/E3125.

Next, I would like to thank all my colleagues at UCD for their invaluable help and for

sharing everyday life on and off-campus. In particular, I want to thank Dr. Mohammed

Ahsan Adib Murad, Dr. Georgios Tzounas, Dr. Ioannis Dassios, and Weilin Zhong for

their friendship and excellent collaboration. I also wish to thank my Albanian friends

in Ireland, Alban, Evis, Elida, Andi, Anisa, Ledi and Ola, and those back in Albania,

Mariglen, Erlin, Donard, Andi, Pjerin and Grisild for being great friends.

Finally, I am grateful to my family and relatives. Thank you to my parents Sulejman

and Sheqere, my wonderful wife Marina, my sister Arvenola, my brother Qazim, my

nephew Eldjon, my niece Anduena and my brother and sister-in-law Ndriçim and Denada.
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Abstract

A reliable and cost-effective operation of power systems involves different tasks over

different time horizons ranging from tens of milliseconds (protection) to years (planning).

Generally, power system operators routinely check the effectiveness of these tasks separately

(depending on time constants) through computer studies based on mathematical models.

While the modelling and simulation of short-term dynamics of power systems (e.g.

electromagnetic and transient simulation) have received tremendous attention in the

literature, that is not the case for long-term dynamics.

In this context, this thesis aims to assist power system operators in addressing the

modelling and simulation of long-term dynamics in modern power systems (minutes

to years). To do so, the thesis presents novel mathematical and software tools that

allow studying the long-term impact interactions between different short-term electricity

markets models and power systems, and the impact of energy policy incentives on the

evolution of Renewable Energy Sources (RESs) technologies, particularly that of solar

Photovoltaics (PVs).

Short-term electricity markets are essential tools to guarantee the reliable operation of

the power system. They are moving closer to real-time and using finer time resolutions

(e.g. 5 minutes) in response to the large-scale integration of variable RESs. This means

that their dynamics evolve with a timescale similar to some long-term power system

dynamics, e.g. the Automatic Generation Control (AGC). Consequently, assessing the

impact interactions between such markets and the dynamic response of the power grid

becomes increasingly important. The contributions on this topic are as follows:

(i) Investigate the effect of real-time electricity markets modelled as a sort of

discrete AGC or Market-based Automatic Generation Control (MAGC) on power system

dynamics. In particular, a thorough analysis using Time Domain Simulations (TDSs) is

provided.

(ii) Propose a short-term dynamic electricity market model that includes the memory

effect of market participants. Particularly, the effect of the memory of suppliers on the

decision-making (generator schedules) and dynamic response of the grid is discussed.

(iii) Investigate the impact interactions between sub-hourly deterministic Unit

Commitment (d-UC) and stochastic Unit Commitment (s-UC) and the power grid.

iv



Furthermore, the thesis also proposes a dynamic model based on nonlinear delay

Differential-Algebraic Equations (DAEs) able to predict the evolution of PV installations

for different countries. This model is a valuable tool that can help policymakers in the

decision-making process, such as the definition of the Feed-in Tariff (FiT) price and the

duration of the incentives.

Finally, the proposed models and tools are duly validated throughout the thesis by

means of numerical tests based on benchmark test systems.
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Chapter 1

Introduction

1.1 Context and Research Motivation

Modern power systems have dramatically evolved over the last decades. In particular,

two significant changes have been taking place, namely the deregulation of the energy

industry and the replacement of conventional large-scale power plants with converter-based

RESs (e.g. wind and solar) and Distributed Energy Resources (DERs) (e.g. ESSs and

flexible loads). The changes are mainly driven by economic and environmental factors,

respectively. Among the deregulation activities, it is worth mentioning the liberalisation

of the electricity markets and the separation of generation, transmission and distribution.

These transformations have brought massive challenges to power system operators to

ensure a reliable electricity supply.

A reliable and cost-effective electricity supply involves different tasks over different time

horizons. Figure 1.1 shows the main tasks by timescales in power system operation [46].

Transmission System Operators (TSOs) need to ensure the continuous balance between

generation and demand through various frequency control strategies like, for example,

the AGC (minutes timescale). Furthermore, system operators need to establish the

generation schedules through a day-ahead market clearing mechanism (e.g. UC). TSOs

also are responsible for the continuous development of the high voltage grid infrastructure

to deal with, for example, the integration of highly variable and uncertain RESs (years

timescale). On the other hand, wholesale electricity markets need to provide adequate

investment signals to invest in or expand generation capacity (years timescale). Finally,
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governments need to introduce incentive policies to support the development of various

RESs technologies like, for example, wind and solar PVs (years timescale).

Task

Protection

Generation
control

Economic
dispatch

Unit
commitment

Hydro
scheduling

Load
forecasting

Operational
studies

System
studies

Maintenance
scheduling

Expansion
planning

Energy
policy

Second Minute Hour Day Week Year

Timescale

Figure 1.1: Tasks by timescales in power system operation [46].

Power system operators ensure a safe, secure and reliable electricity supply by

conducting detailed analyses and simulations of each of the above tasks. Any analysis and

simulation have to be performed by means of a mathematical model, which, based on a

set of equations, allows us to know their behavior under different conditions [46]. However,

a mathematical model that includes all tasks in Fig. 1.1 is intractable in practice due to

computational issues. For this reason, TSOs necessarily employ a study time segmentation

of tasks based on time scales. While the modelling and simulation of short-term dynamics

of power systems (e.g. electromagnetic and transient simulation) have received tremendous

attention, that is not the case of the long-term dynamics [55]. This thesis attempts to fill

this gap.
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1.1.1 Subject Matter and Scope

This thesis addresses two main research questions: (i) how to systematically study the

long-term impact interactions between short-term electricity markets and the power grid;

(ii) how to assess the impact of RESs incentives on their long-term development. To tackle

these research questions, the thesis presents novel tools to help TSOs and policymakers

address the modelling and simulation of the long-term dynamics in modern power systems.

In particular, the dissertation focuses on the modelling and simulation of the AGC,

sub-hourly UC, and the energy policy (see the shaded areas in Fig. 1.1). This choice

is motivated by the fact that there is a concern on the coupling between the dynamic

response of the power system and short-term electricity markets because of the similar

timescales.

Such markets, e.g. balancing (real-time) markets, currently operate in time intervals

as short as 5-15 minutes in order to offer additional operational flexibility [71,82]. The

utilization of sub-hourly time intervals as opposed to the conventional hourly intervals is a

trend that is expected to further continue in power system markets with high penetration

of RESs [37, 78]. For example, the European Network of Transmission System Operators

for Electricity (ENTSO-E) has recommended that in order to tackle the phenomena of

deterministic frequency deviation in the European power systems the following measures

have to be taken: Introduction of 15-minute market schedules and balancing; Introduction

of 15-minute period imbalance settlement in each balancing area [38]. Likewise, the

Australian energy market operator plans to use a 5-minute imbalance period by 2021 [3].

Sub-hourly modelling is thus to be preferred compared to the conventional hourly dispatch.

However, as aforementioned, sub-hourly electricity markets, e.g. 5-minute resolution,

can overlap with long-term power system dynamics. The first studies that have looked

at this problem date back to around two decades ago when Alvarado used first-order

differential equations to describe the dynamics of a short-term electricity market model [5].

Since then, numerous works have studied the same problem in the literature, for example,

we cite [105] and [20].

On the other hand, a powerful way to understand the long-term behavior of incentive

policies and capture the interactions among their variable components, is to construct

proper dynamic models and simulate their response over different scenarios. To this aim,

the thesis proposes a novel mathematical tool to help understand the coupling between

3



incentives and the actual installed capacity of PV panels. This is considered key for the

design of policies under different scenarios [92].

Finally, throughout the thesis, the proposed software and mathematical tools are

tested by means of computer-based simulations.

1.2 Thesis Overview

1.2.1 Contributions

The goal of this dissertation is twofold: (i) provide TSOs useful software and mathematical

tools to evaluate possible interactions between different short-term electricity market

formulations and power system dynamic response; (ii) provide a useful mathematical tool

to energy policymakers to predict the evolution of RESs technologies, particularly that of

PVs. In particular, the contributions of the thesis are in three directions, namely assess

the effect of discrete AGC/MAGC on power system dynamics, study the interactions

between the sub-hourly UC and the power grid, and understand the coupling between

incentives and the actual installed capacity of PVs.

Automatic Generation Control

The AGC is an essential component in the secure operation of the power system. Installed

in the control centers of TSOs, it coordinates dispatchable generating units to ensure

the power balance in real-time. This thesis uses the AGC approach in four ways: (i)

by studying the impact of discrete AGC and MAGC on power system dynamics; (ii)

by exploring the effectiveness of ESS in mitigating the long-term frequency deviations

caused by large MAGC time intervals; (iii) by presenting an AGC-based approach for the

coordination of DERs that form a VPP and comparing its performance to a MILP-based

scheduling approach; and (iv) by proposing a MAGC model with the inclusion of memory

effect of market participants, particularly that of suppliers.

1. AGC and MAGC:

The AGC coordination consists in a set of set-points sent to the generators every

2-6 s. So far, this time interval has shown to be adequate to return the frequency to

the target value and has not created any stability issue. The first part of Chapter 2
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indicates a range of values, from few tens of seconds to few minutes, of the execution

cycles of conventional AGC that leads to a limit cycle. This result serves as a

motivation to study the same phenomenon when considering real-time electricity

markets with short trading intervals. With this aim, a formal analogy between the

AGC and real-time electricity markets modeled as a sort of MAGC is provided.

Such an analogy then serves to study the impact of discrete MAGC time intervals

on power system dynamics.

2. Converter-interfaced ESSs:

Converter-interfaced ESSs are an emerging technology of modern power systems.

They have gained high interest in recent years due to their ability to add increased

flexibility to power systems by smoothing the variable output of non-dispatchable

power production such as RESs.

This thesis explores the potential application of the converter-interfaced ESS and its

control parameters in removing long-term power system frequency deviations caused

by large MAGC time intervals. A comprehensive analysis of the performance of

ESSs show that, while ESSs can significantly reduce the frequency oscillations, two

parameters of the ESS primary frequency control, namely deadband and droop,

have to be carefully designed to avoid undesirable fluctuations of the frequency.

3. AGC-based VPP:

The penetration of DERs creates additional challenges for TSOs mainly due to

their uncertain and variable nature and the lack of visibility (i.e. mostly connected

on the distribution level). For this reason, it is essential to manage DERs to better

contribute to electricity markets and system operation. A way to address this

problem is to make use of the VPP concept. A VPP is generally composed of

different DERs technologies, including conventional (e.g. gas power plants) and

non-conventional (e.g. wind power plants) generating units, ESSs and flexible loads,

and operates as a single transmission-connected generator.

This thesis proposes a simple yet efficient AGC approach for VPPs. The proposed

approach is compared to that of the VPPs based on MILP scheduling. It is shown

that the AGC-based approach leads to a better dynamic performance of the system.
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4. Fractional MAGC:

Considering the memory of market participants is of utmost importance in economic

processes as they can remember the changes of economic indicators and factors in

the past. To this aim, the thesis proposes a short-term dynamic electricity market

model with the inclusion of memory effect. The memory is represented through

fractional-order derivatives. Chapter 3 presents an in-depth comparison of the

impact of fractional and integer-order market models on the decision-making process

of suppliers and on the overall dynamic performance of the grid.

Unit Commitment

The short-term scheduling of power generation, often known as the UC, is a crucial

decision-making component in the operation of power systems. This is because the

scheduling of generators determines the level of system inertia in the system and the

amount of available reserves. This thesis presents a software framework to include the UC

problem into TDS. The proposed framework models the UC problem as a slow “discrete

controller” that responds to the time-varying loading condition of the grid by changing the

power order set-points of the TGs of the power plants. Such a framework is a valuable tool

for TSOs to understand the impact interactions of different UC formulations, including

sub-hourly d-UC and s-UC with the actual dynamic response of the grid.

PV Energy Policy

The development of RESs technologies like wind and solar PV is directly related to

incentives policies introduced by governments. For example, the solar PV market has

seen a significant increase over the past two decades due to extremely favorable incentives

policies and installation cost reduction. This thesis presents a simple yet accurate dynamic

model for the long-term development of solar PV generation. A simple and practical

model, in fact, is much more likely to be implemented and used in practice by policymakers.

The model uses the learning-by-doing concept, FiT budget and people’s willingness to

install PVs to predict the evolution of PV installations. In particular, the learning-by-

doing concept to model the PV cost and consequently the PV development is proposed

for the first time in this thesis. Further, the thesis provides a thorough validation of the

proposed model through the Italian and German cases. This is considered an advantage
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of the current dynamic model compared to others proposed in the literature that only

focus on one PV market.

* * *

All models developed in the course of this thesis are implemented and simulations are

carried out using the Python-based power system analysis software tool Dome [85]. In

addition, the optimization problems considered in this thesis, e.g. d-UC and s-UC, are

implemented in the Python language and solved using Gurobi [49].

1.2.2 Organization

The remainder of the thesis is organized as follows.

Chapter 2 provides a systematic study on the impact of discrete secondary frequency

controllers on the dynamic response of power systems. At first, the deterministic power

system model based on Hybrid Differential-Algebraic Equations (HDAEs) is presented.

Then, the effect of conventional discrete AGC and MAGC is discussed through various

illustrative examples using the well-known WSCC test system. In addition, Chapter 2

examines the potential application of converter-interfaced ESS in removing the long-term

frequency deviations originated by the MAGC. Finally, the chapter compares the dynamic

performance of two VPP secondary frequency controllers, namely AGC-based VPP and

MILP-based VPP.

Chapter 3 presents a short-term dynamic electricity market model with memory effect.

First, the chapter describes the modelling of economic processes with memory using

fractional calculus. Subsequently, the proposed fractional-order market model and its

solutions is presented. The WSCC 3-machine 9-bus system is then employed to compare

the impact of integer and fractional market models on suppliers’ decision-making and

power system dynamics.

Chapter 4 focuses on the interactions between sub-hourly d-UC and power system

dynamics. The need for sub-hourly modelling in power systems is first discussed.

Subsequently, a conventional MILP d-UC problem is introduced. Next, Chapter 4

proposes a software framework to embed the d-UC problem into the TDS routine of

Dome. Finally, two case studies are carried out employing the IEEE 39-bus system
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to assess the impact of different scheduling periods of the d-UC and different net-load

volatility and control/machine parameters.

Chapter 5 focuses on the interactions between sub-hourly s-UC and power system

dynamics. With this aim, the chapter presents the stochastic long-term power system

model based on Stochastic Differential-Algebraic Equations (SDAEs). Next, Chapter 5

introduces different s-UC formulations, namely complete, simplified, and alternative.

Then, the chapter provides a modified version of the proposed software framework that

embeds various s-UC problems into the TDS routine of Dome. Similar to Chapter 4, two

case studies are then carried out by means of the IEEE 39-bus system to assess the impact

of different scheduling periods and different s-UC formulations.

Chapter 6 proposes a dynamic behavioral model of the long-term development of solar

PV generation driven by FiTs. First, the chapter provides a background of FiTs schemes

in two of the biggest PV markets in the world, namely Italy and Germany. The proposed

dynamic model is then validated against historical data of the two PV markets. Finally,

a parametric analysis is carried out using the Italian case, where crucial parameters of the

model are identified.

Finally, Chapter 7 concludes the thesis, summarizes the most relevant conclusions,

and suggests directions for future work.
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Chapter 2

Impact of Discrete Secondary

Controllers on Power System

Dynamics

2.1 Introduction

This chapter provides a comprehensive analysis of the impact of various secondary frequency

controllers, namely AGC, MAGC, AGC-based VPP, and MILP-based VPP, on the

dynamic response of power systems. The chapter is organized as follows. Section 2.2

presents the dynamic model of power systems based on HDAEs. Section 2.3 and 2.4

discuss the impact of discrete AGC and MAGC on power system dynamics through

various illustrative examples. Section 2.5 provides a case study regarding the contribution

of ESSs to long-term power system dynamic performance. Section 2.6 compares AGC-

based VPP and MILP-based VPP dynamic performance through a case study on the

IEEE 39-bus system. Finally, conclusions are drawn in Section 2.7.

2.2 Hybrid Power System Model

Power systems are intrinsically hybrid dynamical systems due to interactions between

continuous dynamics and discrete events. They can be formulated as a set of nonlinear
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HDAEs [84], as follows:

ẋ = f(x,y,u, z) ,

0ny ,1 = g(x,y,u, z) ,
(2.1)

where f are the differential equations, g are the algebraic equations, x, x ∈ Rnx are the

state variables, e.g. generator rotor speeds, and y, y ∈ Rny , are the algebraic variables,

e.g. bus voltage angles; u, u ∈ Rnu , are the inputs, e.g. load forecast, generator bids; and

z, z ∈ Nnz , are the discrete variables, e.g. status of the machines. The functions f , g are

at least C1.

The set of nonlinear HDAEs (2.1) is a special case of a singular system of nonlinear

hybrid differential equations in the following form:

Eψ̇ = F (ψ,u, z) , (2.2)

where

E =

 Inx 0nx,ny

0ny ,nx 0ny ,ny

 , ψ =

 x(t)

y(t)

 ,
and

F (ψ,u, z) =

 f(x,y,u, z)

g(x,y,u, z)

 .
An hybrid system is a set of systems of differential equations where transition conditions

from one system to another in that set of systems play an important role. This can

be easily seen from the following example. Let z ∈ {z1, z2}, z1, z2 constant vectors in

Nnz ; z1, z2 can then be considered as two different modes and (2.2) can be split into two

systems:

Eψ̇ = F (ψ,u, z1), Eψ̇ = F (ψ,u, z2) .

In this case, there will be two systems of singular non-linear differential equations. However,

the index set of the mode transitions as well as the transition conditions should be taken

into account and defined. In general, (2.2) can be rewritten as Eψ̇ = F (ψ,u, zi),

i = 0, 1, 2, ..., N , zi constant. Then each singular nonlinear system is only defined in a

certain interval t ∈ [ti, ti+1), i = 0, 1, 2, ..., N .

Equations (2.1) and (2.2) are utilized to emulate the transient behavior of power

systems. These equations include the dynamic models of synchronous machines, TGs,
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Automatic Voltage Regulators (AVRs), Power System Stabilizers (PSSs) and the discrete

model of the AGC and MAGC, to name a few.

It is important to note that tools for the stability analysis of nonlinear hybrid dynamical

systems are quite limited. The nonlinearity prevents the use of methods that require a

linear set of equations and this eliminates the vast majority of available techniques. The

Lyapunov stability theory has been widely utilized for the analysis of nonlinear systems,

including power systems. However, due to the dissipative nature of power systems, even

assuming that a Lyapunov function can be found, the Lyapunov theory would not provide

sufficient and necessary conditions and is thus of limited practical use. The only fully

general approach to study the stability of power systems that does not requires shortcuts

or simplifications is the TDS. This is the approach utilized in this thesis.

2.3 Conventional AGC

The Secondary Frequency Control (SFC), also known as AGC (in ENTSO-E terminology

known as the frequency restoration process), is a centralized secondary regulator

implemented in the control centers of TSOs. It follows and reinstates frequency to

the nominal value, while it may also restore power exchanges between different areas to

their scheduled values. This action is achieved through continuously monitoring the MW

output of the controllable generating units. Typically, AGC dynamics take place in the

time scale of minutes, e.g. 10 minutes [86]. In practice, the AGC is implemented in a

discrete form. That is, the AGC sends power signals to participating generating units at

fixed intervals, e.g. every 2-6 seconds [9, 95]. This time interval has shown to be adequate

in managing real-time power mismatches and has not caused any power system instability.

Figure 2.1 shows a standard control scheme of an AGC. The input of the controller is

the difference between the reference frequency ωref and the measured frequency ωCoI(t),

that is, the Center of Inertia (CoI). Note that in practice TSOs use the frequency of a

pilot bus of the system as an input for the AGC. Next, the main controller of the AGC

is an integral control with gain Ko, as follows:

∆ṗ(t) = Ko(ω
ref − ωCoI(t)) , (2.3)
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where ∆p(t) is the output of the integrator. The integral term is needed to perfect

tracking the reference frequency and nullify the steady-state frequency error introduced by

the Primary Frequency Control (PFC) (in ENTSO-E terminology known as frequency

containment process). In general, TSOs use AGC based on Proportional Integral (PI)

controller that includes other functionalities, among others, filtering and heuristics in order

to reduce the area control error [99]. However, the fact that ωCoI(t) is used as an input for

the controller represents actually a sort of filter (i.e. it filters local frequency oscillations

due to its weighted nature). The output of the continuous integrator is discretized at

given fixed-time intervals and sent to each TG. These signals (∆pi) are proportional to

Discretization
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...

∆pAGC,1

∆pAGC,i

∆pAGC,ng

Figure 2.1: AGC control diagram.

the capacity of the machines and the TG droops (Ri) and normalized with respect to the

total droop of the system:

Rtot =

ng∑
i=1

Ri . (2.4)

The model of the TG considered in this chapter is depicted in Fig. 2.2. It is composed

of a droop Ri and a lead lag transfer function. T1,i and T2,i represent the transient gain and

governor time constant, respectively. pord,i represent the power order set-point as obtained

by the electricity market. This model is suitable for transient stability analysis [84].

In practice, the output of the AGC is limited by the secondary regulation reserve [95].

Therefore, the active power output of the integrator block of the AGC (see ∆p(t) in
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Figure 2.2: Turbine governor control diagram.

Fig. 2.1) is limited [96], in this case, through an anti-windup (AW) limiter, as follows:

if ∆p(t) ≥ ∆pmax & ∆ṗ(t) ≥ 0 : ∆p(t) = ∆pmax & ∆ṗ(t) = 0 ,

if ∆p(t) ≤ ∆pmin & ∆ṗ(t) ≤ 0 : ∆p(t) = ∆pmin & ∆ṗ(t) = 0 ,

otherwise : ∆ṗ(t) = Ko(ω
ref − ωCoI(t)) .

(2.5)

The AW limiter is needed to limit the windup phenomenon of the integrator state variable

(∆p(t)).

2.3.1 Illustrative Example on the AGC

In this section, we present an illustrative example on the impact of discrete AGC on

power system stability. The IEEE WSCC 9-bus system (see Fig. 2.3) is utilized to show

the effect of different AGC time intervals. The base case data of this IEEE benchmark

network can be found in [58].

G

G G

1

2 3

4

5 6

7 8 9

Figure 2.3: Single line diagram of the IEEE WSCC 3-machine 9-bus system.
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Since the original benchmark system does not include an AGC, we have included in

the model the AGC described in the previous section. In the simulation results below,

the disturbance consists in the disconnection of the load at bus 6 at t = 1 s.

Sensitivity analysis with respect to Ko

We first consider the effect of Ko with a continuous AGC model. It is well-known that a

high gain of the AGC may lead to power system instability due to the coupling between

the dynamics of the PFC and AGC. Figure 2.4 shows the transient behavior of ωCoI(t)

for Ko = {5, 20, 50} without considering the AW limiter; and for Ko = 100 with inclusion

of the AW limiter on ∆p(t) (40% of the total generation capacity). As expected, the

system is unstable for high values of Ko, in this case, for Ko > 20. On the other hand,

low gain values keep the system stable (see Fig. 2.5). However, the dynamic response

with this small value of Ko is very slow, and consequently the controller is not effective.

Finally, imposing a limiter on ∆p(t) leads to a limit cycle.
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Figure 2.4: Transient response of ωCoI(t) of the WSCC 9-bus system for different AGCgains.

Impact of different AGC time intervals

First we show qualitatively that the impact of different values of Ko of continuous AGC

is equivalent to different time intervals of a discrete AGC. Let us discretize the first-order
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Figure 2.5: Transient response of ωCoI(t) of the WSCC 9-bus system for different AGCgains.

differential equation (2.3) using the forward Euler method. The k-th integration step is:

∆p(k+1) = Ko∆t(ω
ref − ωCoI(t)) + ∆p(k) , (2.6)

where ∆p(k+1) and ∆p(k) are the next and present value of ∆p(t), respectively; ∆t is the

integration time interval. From (2.6), it is apparent that increasing ∆t is equivalent to

increasing Ko.
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Figure 2.6: Transient response of ωCoI(t) for different AGC time intervals.
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Figure 2.7: Transient response of ωCoI(t) for different AGC time intervals.
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Figure 2.8: Transient response of ∆p(t) for different AGC time intervals.

Figures 2.6 and 2.7 depict the transient response of the ωCoI(t) for different AGC time

intervals. Observe that using a continuous AGC and a discrete AGC with a time interval

of 5, the system is stable as the controller is fast enough to bring back the frequency to the

nominal value. On the other hand, the results without an AGC show a stable transient

response with a steady state-frequency error. For AGC time intervals equal or greater

than 40 s, the system enters into a limit cycle. As expected from the discussion above,

large discretization time intervals lead to unstable system dynamics. For this reason, in
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practice, the AGC time interval is in the range of (2, 6) s, which is small enough not to

originate any limit cycle.

Figure 2.8 shows the transient behavior of the state variable of the AGC (∆p(t))

for some relevant AGC time intervals. The limit cycle occurs whenever the AGC time

interval is big enough (e.g. 120 s) to allow ∆p(t) to go to the other extreme value (limit)

and saturate. Other factors that determine the period of the limit cycle are related to

how fast is the AGC controller as well as the type of the contingency. Note that for very

long-time intervals, e.g. > 10 minutes, the AGC controller is not effective anymore and

other mechanisms are in place to compensate the power unbalance e.g. short-term optimal

power flow.

RoCoF dead-band

A way to remove the bang-bang phenomena shown in the previous section is to consider a

dead-band on the RoCoF. In this chapter, the RoCoF is calculated using the following

expression:

RoCoF =
ω

(k−1)
CoI − ω

(k)
CoI

∆t
, (2.7)

where ω
(k−1)
CoI and ω

(k)
CoI correspond to the values of ωCoI(t) at the previous interval (e.g. 5

seconds) and the current time, respectively. While ∆t represents the AGC time interval.

Note that controlling the frequency of the CoI is not viable in practice. One can, however,

implement RoCoF dead-bands in the primary frequency controllers of the power plants.

These will affect the variation of the rotor speeds of the synchronous machines and, in turn,

of the frequency of the CoI. The model considered in the chapter is thus an approximation

but it is sufficient to show the effect of this dead-band.

Figure 2.9 depicts the transient behavior of the ωCoI(t) with RoCoF dead-band of

0.0002 pu(Hz/s). The RoCoF dead-band successfully removes the limit cycle, however,

it leads to a frequency steady-state error. Clearly, this is not desirable because the AGC

cannot serve its main purpose.
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Figure 2.9: Transient response of ωCoI(t) for different AGC time intervals and with RoCoF
dead-band.
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Figure 2.10: Transient response of ωCoI(t) for different ∆p(t) limits.

Sensitivity analysis with respect to ∆p(t)

Another solution to prevent the bang-bang phenomena is to limit the variation of the

internal state variable of the AGC, namely ∆p(t). The limit case, of course, is when the

limit of ∆pmax = ∆pmin = 0, which basically opens the control loop. Figure 2.10 depicts

the transient behavior of the ωCoI(t) for a variation of ∆p(t) from 40% up to 1% and for an

AGC time interval of 60 seconds. As expected, limiting ∆p(t) makes the AGC controller
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less effective. For example, allowing ∆p(t) to vary just 1% of the total generation capacity,

is almost equivalent to disabling the AGC.

Based on the simulation results above, we conclude that the only effective solution to

avoid the limit cycle phenomena caused by the discretization of the AGC is to impose a

sufficiently small ∆t.

2.4 Market-based AGC

The previous section shows that there is a range of values, from few tens of seconds to

few minutes, of the execution cycles of conventional AGC that leads to a limit cycle.

Such a result serves as a motivation to study the same phenomenon when considering

real-time electricity markets. These markets are currently moving to 5 minutes or even

faster trading intervals to facilitate the integration of weather-dependent RESs into power

systems [2]. These time scales are comparable with those of the AGC. Motivated by this

fact and by the observation that real-time market can be modeled as a sort of discrete

AGC, we make use of a dynamic electricity market model proposed in [6] and discretize

it to represent different trading intervals. Then, we investigate the impact of the MAGC

on the power system stability when using different trading intervals and different shares

of renewable generation.

2.4.1 Dynamic Electricity Market Model

Alvarado started to study the dynamics of electricity markets after similar works were

performed by economists in their respective fields [5]. The main idea behind his studies

on this topic was to be able to manage the real-time balance between power demand and

supply through a continuous price signal sent to both loads and generators.

In this model, it is assumed that when a generator sees that the electricity price,

say, ρ(t), is higher/lower than the corresponding marginal cost, then the generator will

increase/decrease its production until the cost matches the price. These assumptions lead

to the following dynamic electricity market model [6]:

Tρ ˙ρ(t) = KE(ωref − ωCoI(t))− Idρ(t) , (2.8)

Tg,i∆ṗg,i(t) = ρ(t)− cg,i∆pg,i(t)− bg,i , i = 1, . . . , ng , (2.9)
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where ∆pg,i(t) represent the active power order set points (pord,i) of the TGs (see Fig. 2.2);

cg,i and bg,i are the parameters of the marginal cost of the generators. Tρ and Tg,i are the

time constants; and KE is the feedback gain. Id is the deviation with respect to a perfect

tracking integrator and for a Low-Pass Filter (LPF) is Id = 1. Finally, the mismatch

ωref − ωCoI(t) is utilized as an indirect estimation of the real-time energy imbalance in the

system.

In [6], loads responds similarly to generators with respect to the electricity price ρ(t)

but with opposite strategy, i.e. load bids increase as the electricity price decreases. In this

chapter, however, loads are assumed to be inelastic and do not participate in the MAGC.

Such an assumption is consistent with the current situation in most of the electricity

markets where loads (effectively) do not respond to changes in the wholesale electricity

prices. In fact, it has been shown in the literature that making loads price responsive as

well will further deteriorate the stability of the system [93].

Note that the use of this electricity market model (2.8)-(2.9) is considered adequate

for real-time markets with short dispatch periods [6]. As mentioned above, some systems

already use these markets and they will be more common in future power systems.

2.4.2 Analogy between AGC and MAGC

The structure of the equations (2.8)-(2.9) is formally similar to the structure of the AGC

shown in Fig. 2.1. For comparison, the “control” diagram of (2.8)-(2.9) is depicted in

Fig. 2.11. The AGC and the MAGC have exactly the same structure for Id = bg,i =

Tg,i = 0. The MAGC can be thus seen as a generalized secondary frequency controller.
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Figure 2.11: MAGC control diagram.
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A substantial difference between the two controllers concerns the meaning of the state

variables, namely ∆p(t) and ρ(t). In the MAGC, ρ(t) is a price, which does not carry

any information on the energy involved in the system, as opposed to ∆p(t), which is a

power reserve. Nevertheless, the market model (2.8)-(2.9) makes ρ(t) a “physical quantity”

of the system.

Anti-Windup Limiter on ρ(t)

Similar to the AW limiter on ∆p(t), one can limit the state variable of the MAGC,

namely ρ(t) in Fig. 2.11. Enforcing a limit on ρ(t) might be desirable in order to limit the

electricity price spikes. This happens, for example, in most of the European electricity

markets [39]. The AW limiter on ρ(t) is as follows:

if ρ(t) ≥ ρmax & ˙ρ(t) ≥ 0 : ρ(t) = ρmax & ˙ρ(t) = 0 ,

if ρ(t) ≤ ρmin & ˙ρ(t) ≤ 0 : ρ(t) = ρmin & ˙ρ(t) = 0 ,

otherwise : equation (2.8) .

(2.10)

2.4.3 Illustrative Example on the MAGC

The analogy discussed above allows us simulating real-time electricity markets as an

equivalent AGC. In this case, however, the time interval matters because in practice

electricity markets use dispatch periods of the order of minutes, not seconds as in the

conventional AGC.

For a fair comparison between the AGC and MAGC, we use again the IEEE WSCC

9-bus system and we assume that the three generators have the same market data as

the first three generators in the IEEE 39-bus system [6]. Unless stated otherwise, for

simulation purposes, the maximum and minimum limit of ρ(t) is set to 4,000 and 0

$/MWh, respectively. The contingency is the outage of the load at bus 6 at t = 1 s.

Systems with MAGC only

In this first scenario, it is assumed that the system includes only the MAGC controller,

i.e. there is no AGC. This scenario corresponds to power systems that do not include an

AGC, but instead use some sort of offline and/or “manual” generation control [99]. The
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goal is to investigate whether the idea of controlling power systems exclusively based on

market mechanism is feasible.

Figures 2.12 and 2.13 show the transient behavior of ωCoI(t) and ρ(t), respectively.

The discrete MAGC leads to limit cycles similar to the case of the AGC. Specifically,

the limit cycle appears for a MAGC time interval equal or above 120 s. Compared to the

AGC, this phenomenon appears for longer time intervals. This is due to the parameters of

the MAGC control scheme. It is important to note, however, that the limit cycles always

appear for a certain range of ∆t, independently from the parameters of the secondary

controller.
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Figure 2.12: Transient response of ωCoI(t) for different MAGC time intervals.

There are two ways to avoid the limit cycles. One is to use “short” time periods, for

example, 5 s in Fig. 2.12. The other one is to use “long” time periods, for example, 10

minutes [34]. In this case, the MAGC approximation does not hold and is effectively

decoupled from the dynamics of the system, and thus it does not cause the occurrence of

instability. Figure 2.12 also suggests that real-time electricity markets with very short

periods, e.g. 5 s, can, in principle, substitute the AGC provided that they have the same

features.
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Figure 2.13: Transient response of the electricity price ρ(t) for different MAGC time intervals.

Sensitivity analysis with respect to ρ(t)

As discussed earlier in the chapter, a solution to remove the limit cycle is to limit the

variation of the state variable of the AGC controller, in this case, that of MAGC controller.

In this context, Fig. 2.14 shows the transient response of the system for different ρ(t)

limits. As expected, limiting the variation of the state variable removes the limit cycle.

For example, allowing ρ(t) to vary just 0.75% from its nominal value (40 $/MWh) appears

to be able to remove the instability, however, it leads to a steady state frequency error.

Further limiting the variation of ρ(t), e.g. 0.125%, makes the controller even less effective,

i.e. almost an open loop. The interested reader is referred to [66] for such an example.

As for the case of the AGC, the best solution appears to be that of using short dispatch

intervals.

Systems with AGC and MAGC

This scenario considers a common scenario, i.e. power systems equipped with both an

AGC and a real-time electricity market. The AGC considered here has a time interval of

4 s. Simulations are solved considering the same load outage as in the previous section.

The transient response of the system following the contingency is depicted in Fig. 2.15.

The inclusion of the AGC removes the limit cycle. It appears that, if the system includes

an AGC, then the discretization of the real-time market does not cause instability issues.
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Figure 2.14: Transient response of ωCoI(t) for different ρ(t) limits.

It is also interesting to note that using a continuous MAGC leads to a lower frequency

nadir. This is due to the dynamic coupling between the dynamics of the MAGC and

the AGC. Depending on the severity of the frequency variations, the system operator

may have to implement corrective actions, e.g. load shedding. However, a discussion on

corrective actions is outside the scope of this chapter.
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Figure 2.15: Transient response of ωCoI(t) using the AGC and MAGC.
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Economic impact of systems with and without an AGC

This scenario discusses the differences with respect to the profit of the generating units

that are part of systems that include only MAGC controller, and both AGC and MAGC.

We assume that both MAGC controllers utilizes a time interval of 60 s, whereas the

AGC utilizes a time interval of 4 seconds. Figure 2.16 shows the outputs of the controllers

for the generator at bus 1, for the scenarios with MAGC only, and with both AGC and

MAGC.
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Figure 2.16: Secondary frequency controller signals for the scenarios with MAGC only and with
both MAGC and AGC.

It is interesting to see that the MAGC only controller contributes more (by decreasing

more its output in response to the contingency) compared to the same controller when the

system includes both MAGC and AGC. This is due to the fact that in the scenario that

includes both controllers, the AGC is the dominant controller (being faster) and takes

care of power mismatches. For this reason, the profit of generating units that participate

in the MAGC only is less compared to the profit of the same generating units that are

part of power systems with MAGC and AGC (the other way round is true if a generator

is lost). This is better shown in Fig. 2.17 where the income of the first generator is

depicted for both scenarios considered in this section.
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Figure 2.17: Profit of generator 1 for the scenarios with MAGC only and with both MAGC
and AGC.

2.4.4 Inclusion of Non-Synchronous Devices

So far we have studied the impact of discrete AGC and MAGC using conventional power

systems. However, it is also relevant to study such an impact on power systems with high

shares of non-synchronous devices. The impact of wind power penetration is considered.

With this aim, the New England IEEE 39-bus system [57] is utilized along with the market

data taken from [6]. The contingency is the outage at t = 1 s of the load located at bus 3.

For simulation purposes a MAGC with a time interval of 120 s (chosen on purpose as

it is the worse case scenario) and gain KE = 15 are used. Whereas for the AGC a time

interval of 4 s and gain Ko = 2 is used. The focus is on the transient response of the CoI

following the contingency. Three scenarios are considered: (i) base case with conventional

generation; (ii) 25% penetration of wind generation; and (iii) 50% penetration of wind

generation. For a fair comparison, all scenarios have same loading level, control and

network topology.

Wind Power Modelling in Real-Time Electricity Markets

Nowadays, in most electricity markets worldwide, wind power producers bid in the same

way and follow same rules as conventional power plants. For instance, wind power plants

are responsible for power deviations with respect to the values scheduled in day-ahead
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market. In this context, following the structure of the original dynamic market model in

(2.8)-(2.9), one can write the equation that models wind power plants (WPPs) behavior

with respect to their marginal cost and the price ρ(t), as follows:

Tw,k ṗw,k(t) = ρ(t)− cw,k pw,k(t)− bw,k , k = 1, . . . , nw , (2.11)

where pw,k(t), Tw,k, cw,k, bw,k have same meaning as in (2.9).

Marginal cost of wind power equal to zero

In general, the marginal cost of wind is assumed to be zero, i.e.:

cw,kpw,k(t)− bw,k = 0 ,

and, from (2.11), we have:

Tw,k ṗw,k(t) = ρ(t) . (2.12)

Equation (2.12) is a pure integrator. This means that the WPPs will try to dynamically

integrate and set the price ρ(t) = 0. As shown earlier in the chapter, a pure integrator

tends to be unstable. Thus, the WPPs will integrate until their output reaches a maximum

power limit. In the same vein, if:

cw,kpw,k(t) + bw,k < 0 ,

i.e. the WPPs bid negative prices, then from the dynamic point of view their market

secondary control is unstable. However, this does not mean that WPPs drives the system

to instability, but just that they are going to generate their maximum power all the time.

To simulate this case, we assume that the system includes both AGC and MAGC and

show the transient behavior of ωCoI(t) in Fig. 2.18. The scenarios with non-synchronous

devices, i.e. the scenarios with inclusion of wind generation, worsen the performance of

both AGC/MAGC controllers, and consequently the dynamic performance of the system.

These results indicate that future power systems with high shares of wind power will
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require much shorter dispatch periods compared to, for example, conventional power

systems to avoid possible instabilities.

0 200 400 600 800 1000
Time [s]

0.985

0.99

0.995

1

1.005

1.01

1.015

ω
C

o
I

[p
u

(H
z)

]

Without wind

25% wind

50% wind

Figure 2.18: Transient response of ωCoI(t) for different wind power shares.

Marginal cost of wind power different from zero

If the share of WPPs in the electricity market increases, WPPs may consider acting

strategically (i.e. price maker) in order to increase their own profits through intentionally

altering the market clearing price. This scenario has been well discussed in the literature,

e.g. in reference [31]. In order to become a price maker, WPPs will have to be sufficiently

big (otherwise they will be limited), and with a marginal cost that is in the same range

as that of other conventional generators. In this scenario, WPPs will participate in the

real-time electricity market according to (2.11), i.e. will be part of the MAGC shown in

Fig. 2.11.

Note that, if they are not coupled with ESSs or include some mechanism to provide

power reserve, the WPPs can only provide down regulating service, that is, will only

decrease their power production. To simulate this scenario, we consider a 25% wind power

penetration, i.e. replace 3 conventional generators with WPPs. Furthermore, we assume

that the WPPs have the same bids and market data as the conventional power plants.

The Spanish electricity market is a real-world example where RESs and conventional

power plants bid together [12]. We also assume that the systems includes both AGC and

MAGC.
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Figure 2.19 shows the results for this scenario. It appears that the participation of

WPPs in real-time electricity markets does not make a huge difference with respect to the

transient response of the system. This is due to the fact that the AGC is the dominant

secondary controller, as it is faster than the MAGC and thus contributes more after the

occurrence of the contingency (see Fig. 2.16). We can conclude that, in this scenario,

the participation of WPPs in real-time electricity markets does not make a significant

contribution to long-term power system dynamics.
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Figure 2.19: Transient response of the ωCoI(t) for WPPs included and not included in to the
MAGC, respectively.

2.5 Case Study 1: Contribution of ESSs to Long-

Term Power System Dynamic Performance

The performance of the converter-interfaced ESSs in mitigating the long-term oscillatory

behavior of the frequency caused by the electricity market (see Fig. 2.12) is illustrated in

this case study. Such an application of the ESSs is motivated by the fact that they can

be used for many power system applications, including the safe integration of intermittent

RESs, PFC and SFC, voltage support, and RoCoF control, to mention some [88]. With

this aim, we assume that ESSs do not participate in the electricity markets, i.e. are not

part of the MAGC in Fig. 2.11, but instead are paid for the frequency containment support

that they provide. Here, we utilize the simplified ESS model presented in [94]. The ESS
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Figure 2.20: The frequency control scheme of an ESS.

frequency control diagram is depicted in Fig. 2.20. In this case, the controller’s input is

the difference between the measured (ω) and reference frequency (ωref). The frequency is

measured through a phase-locked loop device. Next, the ESS control scheme includes a

deadband and a LPF to make the controller less sensitive to small frequency deviations

and filter out noises, respectively. Then, it includes a PI regulator with Kp being the

proportional gain and Ki being the integral gain. In the control scheme shown in Fig. 2.20,

the droop coefficient is obtained indirectly through the integral deviation coefficient Id.
For Id = 0 the controller is a PI and hence the droop coefficient is R = 0, whereas for

Id 6= 0, the controller becomes a lead-lag filter, with droop coefficient R = Id/(Ki+KpId).
Finally, the ESS is represented by an anti-windup first-order lag filter with time constant

TESS.

2.5.1 WSCC 9-bus System

The effectiveness of ESS is studied by means of a modified WSCC 9-bus system where

a MAGC time interval of 120 seconds is considered. Furthermore, the contingency is a

10% instantaneous load increase (approximately 32 MW) at t = 1s.

ESS devices are connected to different buses of the system, and their impact on the

long-term frequency deviations is duly discussed. Three scenarios are considered, as

follows:

• Without ESSs limits;

• With ESSs limits; and

• Comparison of the impact of droop and deadband parameters.

All scenarios above are compared with the base case, i.e. without ESSs (see Fig. 2.12).
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ESSs without Capacity Limits

This first scenario discusses the effect of ESSs on long-term power system dynamics without

considering the capacity limits of the ESS. This scenario is relevant for microgrids where

the storage capacity can be relatively large with respect to the total installed power

capacity. For simulation purposes, Id = 0.7 is used, and the deadband is set to zero.

Figure 2.21 shows the transient response of ωCoI(t) for three scenarios, namely with one

ESS connected at bus 9, three ESSs connected at buses 7, 8, and 9, and when no storage

is included in the system.
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Figure 2.21: Transient response of ωCoI(t) following a 10% instantaneous load increase without
ESSs limits.

Simulation results indicate that the ESSs help reduce the frequency variations caused

by large MAGC time intervals and, hence, considerably improve the system’s dynamic

performance. Moreover, the case with three ESSs leads to significantly lower frequency

variations than the case with one ESS. This result indicates that, from the dynamic point

of view of the system, it is better to install ESSs in different locations of the network

rather than installing them in one location.

ESSs with Capacity Limits

This section considers the same system and contingency as in the previous scenario but

taking into account the ESS capacity limits. In particular, each ESS device is now
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assumed to have a 10 MW capacity. Thus, the case with three ESSs represents almost

the 10% instantaneous load increase (32 MW). Figure 2.22 depicts the transient response

of ωCoI(t). The case with three ESSs leads to a similar dynamic behaviour where no

limits are considered (Fig. 2.21). In contrast, the case when one ESS is connected in

the system is unable to solve the problem caused by the MAGC discretization. These

results indicate that, as expected, the performance of the ESS is greatly impacted by its

capacity.
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Figure 2.22: Transient response of ωCoI(t) following a 10% instantaneous load increase with
ESSs limits.

Impact of Droop and Deadband

Deadband and droop coefficient are two relevant parameters that can reduce the sensitivity

of a controller to small frequency variations and noise. In the context of this chapter, we

are interested to understand what is the impact of these control parameters on the overall

dynamic performance of the system. With this aim, four cases are considered, as follows:

1. Zero droop and without ESSs limits.

2. Zero droop and with ESSs limits.

3. Non-zero droop and without ESSs limits.

4. Non-zero droop and with ESSs limits.
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When non-zero values are utilized, a deadband value of db = 0.0006 pu(Hz) and

Id = 0.7 are used. Furthermore, only the case when three ESSs connected at buses 7, 8,

and 9 is considered below.

Zero droop without ESS limits

Figure 2.23 shows the trajectories of the ωCoI(t) for three scenarios, namely without

storage, with storage and without deadband, and with storage and with deadband. The

aim is to evaluate the impact of the deadband on the frequency error when ESS capacity

limits are not considered. Interestingly, the case with a non-zero deadband leads to a

worse dynamic behaviour compared to the case without. This result leads to conclude

that it is better not to include a deadband on the frequency error.
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Figure 2.23: Transient response of ωCoI(t) following a 10% instantaneous load increase with zero
droop and without ESSs limits.

Zero droop with ESS capacity limits

The results of this scenario are shown in Fig. 2.24. If the ESSs limits are taken into

account and the droop is set to zero (Id = 0), the inclusion of the ESSs does not necessarily

improve the system’s dynamic behaviour. Moreover, introducing or not a deadband on

the frequency error does not improve the overall dynamic response of the system. These

results indicate that a PI controller is not the most adequate set-up to mitigate the

long-term frequency variations caused by the market.
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Figure 2.24: Transient response of ωCoI(t) following a 10% instantaneous load increase with zero
droop and with ESSs limits.

Non-zero droop without ESS capacity limits

This scenario considers a system setup similar to the case with zero droop without ESS

limits except for the value of the integral deviation coefficient assumed to be Id = 0.7.

Figure 2.25 shows that the frequency deviations for this scenario are similar to those

obtained in Fig. 2.23. Also, in this case, the inclusion of the deadband on the frequency

error leads to a worse dynamic behaviour of the system as compared to the case without

deadband.

Non-zero droop with ESS capacity limits

This last scenario considers ESS controllers with a non-zero droop and with and without

a deadband in a scenario where ESS capacity limits are binding.

Results shown in Fig. 2.26 allow concluding that, also in this scenario, the inclusion of

the deadband deteriorates the dynamic behaviour of the system. Figure 2.27 shows the

effect of the deadband on the active power of an ESS. When deadband is not zero, the

ESS reaches its active power limit, which gives raise to a sort of bang-bang phenomenon.

These results indicate that depending on the set-up of the real-time electricity market, the

values of the droop and deadband of the ESS frequency controller have to be carefully

chosen.
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Figure 2.25: Transient response of ωCoI(t) following a 10% instantaneous load increase with
non-zero droop and without ESSs limits.
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Figure 2.26: Transient response of ωCoI(t) following a 10% instantaneous load increase with
non-zero droop and with ESSs limits.

2.6 Case Study 2: Impact of the Aggregate Response

of DERs

This case study uses the AGC approach discussed in the previous sections to coordinate

the DERs included in the VPP. The proposed approach aims to address a current

concern of the Irish TSO, namely the impact of linear aggregate response of DERs on the
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Figure 2.27: Transient response of ESS active power following a 10% instantaneous load increase
with non-zero droop and with ESSs limits.

dynamic behavior of transmission systems [14]. Furthermore, its performance is compared

with that of a MILP problem that optimally schedules the DERs that compose the VPP.

To do so, the MILP is embedded into a TDS by means of software framework in order

to study its impact on the dynamic response of the system [61]. Simulations on the IEEE

39-bus system serve to illustrate the features and dynamic behaviour of the proposed

approaches.

2.6.1 AGC-based VPP

In this section, we propose an AGC scheme for the VPP that instead of regulating the

frequency, regulates the total active power of the VPP. The proposed AGC control

scheme is shown in Fig. 2.28 [68]. The signal pref
VPP is the reference power signal sent by

the TSO to the VPP, and pVPP is the sum of the measured active power of the DERs

included in the VPP. An integrator block is then included to reduce the steady-state

error to zero, with Ko being its gain. Finally, the AGC coordinates each TG of the

generators proportionally to their droop, i.e. Rg/Rtot, where Rtot =
∑n

g=1Rg.

2.6.2 MILP-based VPP

TSOs commonly utilize MILP to solve power system operation (e.g. UC) and planning

problems. These analyses are facilitated by the significant improvements in the efficiency
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Figure 2.28: Basic AGC control scheme for active power regulation of VPPs.

and robustness of MILP solvers in recent years [91]. In this section, we use the MILP

model proposed in [14] to optimally schedule the single generators of the VPP and obtain

a ramping rate that is as close to linear as possible. The mathematical formulation of

such a problem is as follows.

min
∑
t

(
pa,t +Kpb,t

)
, (2.13)

such that

pg,t ≤ pmax
g , ∀g, t, (2.14)

pg,t = pg,t−1 + Rg

(
zg,t − zg,t

)
, ∀g, t, (2.15)

zg,t ≥ zg,t−1, ∀g, t, (2.16)

zg,t ≥ zg,t−1, ∀g, t, (2.17)∑
t

(zg,t − zg,t) = Υg, ∀g, (2.18)

∑
g

pg,t + pb,t − pa,t =
t
∑

g p
max
g

|T̃ |
, ∀t, (2.19)

zg,t, zg,t ∈ {0, 1}, ∀g, t, (2.20)

pg,t, pa,t, pb,t ≥ 0, ∀g, t. (2.21)

where pa,t and pb,t represent continuous variables that model the distances above and

below the target linear characteristic (e.g. represented by the power generated by a single

large power plant, see [61]) at time t, respectively. K represents a penalty multiplier when
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the actual ramping rate is below the target line, i.e. this is needed as the VPP is penalized

if it provides less power but that is not true for the other way round. In this chapter, a

value of K = 10 is considered. Equations (2.14) model the capacity limits of single small

generators, where pg,t represents the active power generation of the g-th generator at time

period t. Equalities (2.15) model the ramping limits of generating units, where the binary

variables zg,t model the status of generating units when they are generating (1 if producing

and 0 otherwise), while the binary variables zg,t model the status of generating units when

they are generating at maximum capacity (1 if true and 0 otherwise). Equations (2.16)

and (2.17) model the logic of the binary variables. Equations (2.18) model the generators

ramp time (Υg), i.e. the sum of the differences zg,t − zg,t must equal Υg. Equations (2.19)

model the target ramping line, i.e.
t
∑
g p

max
g

|T̃ | , with |T̃ | representing the total number of

time periods. Finally, equations (2.20) and (2.21) represent variable declarations.

2.6.3 Comparison between AGC-based and MILP-based VPP

This section compares the performance of the AGC described in Section 2.6.1 and assumes

a 20% penetration of VPPs. With this aim, it is assumed that at t = 1 s there is a 20%

instantaneous load increase. Because of this contingency, it is assumed that the TSO

sends a signal to the VPP to start the production and cover the increase of the load

within 15 minutes. The gain of the AGC is set to Ko = 50. The data of the VPP are

given in Table A.1. To simulate the VPP, we connect ten small generators at buses 10-19.

In the following, we assume that the VPP is only composed of non-renewable generation,

i.e. small gas power plants, as is the case in the Irish system. The focus is on the first

15 minutes of the planning horizon that is the relevant time window for the aggregated

response of DERs.

Figure 2.29 shows the results for two scenarios, namely MILP-based VPP and AGC-

based VPP. The AGC-based VPP leads to better dynamic behaviour in the long-term

than the MILP-based approach and achieves a null steady-state frequency error. This is

because the AGC-based approach has a slightly faster response than the MILP-based

one. Since the MILP-based control starts up the generators one by one (e.g. starting

from the cheapest one) until they reach the set-point sent by the TSO, it cannot track

perfectly the reference frequency. Moreover, The MILP-based approach causes several

“ripples” in the frequency that correspond to the start-up of the units included in the VPP.
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Figure 2.29: Comparison of the impact of AGC-based and MILP-based VPP.

The AGC-based VPP, on the other hand, starts up the DERs all at the same time and

then smoothly increase their power output. From a system operator point of view, thus,

the AGC-based VPP is preferable with respect to the conventional scheduling based on

a MILP problem.

2.7 Conclusions

This chapter studies the impact of discrete secondary frequency controllers on power

system dynamic behavior. In the first part, the chapter considers the impact of AGC

and MAGC on the dynamic response of the system. The AGC is a controller installed

in most of the control centers of TSOs, while the MAGC is a model that reproduces

the behavior of real-time electricity markets with short dispatch periods. The illustrative

examples suggest that increasing too much the execution cycles of the AGC leads to a

limit cycle or bang-bang phenomena. It is shown that the only effective solution to remove

this issue is to keep as short as possible the AGC execution cycles. The formal analogy

between the AGC and MAGC and the results of the illustrative example indicate that if

future real-time electricity markets will be based on the power imbalance to update the

electricity price and use dispatch periods that range from some tens of seconds up to few

minutes then these markets might lead to some sort of limit-cycles and/or power system

instability.
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The first part of the chapter also shows that: (i) integrating more wind power generation

into power systems worsen the performance of both AGC controllers, and consequently,

the power system dynamic performance; and (ii) the inclusion of WPPs in MAGC

(real-time electricity markets) does not necessarily mean an improvement in the system’s

dynamic performance.

In the second part, the chapter evaluates the ability of converter-interfaced ESSs to

mitigate long-term power system frequency deviations caused by quasi-real-time electricity

markets. The main conclusion is that ESSs play an essential role in reducing the frequency

deviations caused by the market. However, the ESS frequency control parameters, namely

the droop coefficient and the deadband on the frequency error, have to be carefully chosen

not to deteriorate the system’s overall dynamic performance.

Finally, the chapter considers the problem of VPP linear ramping response and

compares the performance of two approaches to coordinate the DERs, namely AGC-

based and MILP-based VPP. While both methods achieve the main goal which is that

of providing a linear ramping response of VPP, that is not the case for their dynamic

performance. Specifically, Section 2.6.3 shows that an AGC-based VPP is to be preferred

compared to scheduling based on an optimization problem as it leads to lower frequency

variations of the system in the long-term. This is because the AGC-based VPP starts-up

the generators simultaneously, whereas the MILP-based VPP starts-up the generators

one by one (e.g. starting from the cheapest one) until they reach the set-point sent by

the TSO. Despite the advantage of the AGC-based VPP, TSOs should pay special

attention to possible interactions between the AGC-based VPP and conventional AGC.

In other words, the control parameters of the two SFC controllers have to be carefully

chosen to avoid possible dynamic couplings.
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Chapter 3

A Short-Term Dynamic Electricity

Market Model with Memory Effect

3.1 Introduction

In this chapter, an approach to include in the dynamic model [5] a specific aspect of the

behavior of the market participants such as suppliers, namely the “memory effect”, is

proposed. This aspect is absent in the several variants of the dynamic market model

proposed so far in the literature. These models, in fact, are all based on conventional

integer-order time derivatives. These consider an infinitely small neighborhood of the

“present” time, i.e. the time at which the derivatives are computed [107]. This means

that, by definition, the processes that are modelled through conventional differential

equations have infinitely fast “amnesia.” However, taking into account the memory of

market participants is of utmost importance in economic processes as they can remember

the changes of economic indicators and factors in the past [108]. These changes can then

impact their behavior and decisions. For example, it is shown that market participants

can use available market information to form price expectations and to exploit arbitrage

opportunities [97]. Therefore, modelling such a behaviour is critical in current and future

electricity markets.

An effective and powerful tool to model the memory effects of a dynamic system is

fractional calculus, which deals with the analysis of non-integer order differentials and

integrals [110]. The ability of fractional derivatives to capture physical processes better

than traditional integer-order derivatives has been shown for several systems in physics
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and engineering [11]. For example, reference [106] provides a review of the application of

fractional calculus in science and engineering. The recent work in [109] proposes a new

economic model of the price dynamics of goods that considers the memory of the market

agents. Using the work in [109] as a source of inspiration, this chapter takes into account

for the first time the memory of the participants, in particular, suppliers, in power system

markets.

The main goal of this chapter is to provide a short-term dynamic electricity market

model with the inclusion of the memory effect. The model is a generalized system of

differential equations of fractional order [28,65]. It is highly realistic since it successfully

describes the dynamic aspects of systems and incorporates the desired memory into the

electricity market model by adding the essential information on how the memory of market

participants, namely suppliers and consumers, impacts their behavior, i.e. on their bids.

The remainder of the chapter is organized as follows. Section 3.2 describes the modelling

of economic processes with memory using fractional calculus. Section 3.3 presents the

proposed fractional-order market model. Section 3.4 presents solutions of the proposed

model and provides closed formulas of solutions. Section 3.5 provides an example using

the obtained formula of solutions and a comparison between the integer and fractional

market models on suppliers’ decision-making and on power system dynamics. Finally,

conclusions and future work are discussed in Section 3.6.

3.2 Modelling Economic Processes with Memory

A mathematical tool that allows modelling the memory effects of market agents is

fractional-order differential equations. The recent work [109] extends the well-known

Evans model – that describes the price dynamics of goods [40] – to take into account the

memory of market participants. Based on this theoretical background, this section shows

the mathematical steps that lead to the proposed fractional market model.

The Evans model of price dynamics is as follows:

$̇(t) = −γq̇(t) , (3.1)

where $(t) represents the price of goods; γ is a proportional coefficient that represents

the speed of response; and q(t) represents the stocks. The change in stocks is defined by
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the following differential equation:

q̇(t) = es(t)− ed(t) , (3.2)

where es(t) and ed(t) represent the supply and demand for goods, respectively. Using

equation (3.2), equation (3.1) can be rewritten as:

$̇(t) = −γ(es(t)− ed(t)) . (3.3)

The supply and demand are described by the following equations:

es(t) = bs + cs$(t) ,

ed(t) = bd + cd$(t) ,
(3.4)

where cd, cs, bs, bd are constant parameters. In particular, bs and bd represent the supply

and demand, respectively, and do not depend on the price $(t). In general, it is assumed

that cd < 0 and cs > 0. Using equation (3.4), equation (3.3) of price dynamics can be

rewritten, as follows:

$̇(t) + γ(cs − cd)$(t) = γ(bd − bs) . (3.5)

Equation (3.5) is a first-order differential equation. It cannot account for the memory

of the market participants. With this aim, one has to consider not only the difference

es(t)− ed(t), but also the “history” of changes of the differences es(τ)− ed(τ) on a finite

time interval τ ∈ [0, t]. Such a dependence of $(t) can be described by the following

equation:

$̇(t) = −
∫ t

0

γ(t− τ)
dq(τ)

dτ
dτ

= −
∫ t

0

γ(t− τ)(es(τ)− ed(τ))dτ ,

(3.6)

where γ(t) represents the memory function. Assuming a power-law fading memory, the

function γ(t) can be written as follows:

γ(t− τ) =
γ

Γ(α)
(t− τ)α−1 , (3.7)
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where Γ(α) is the gamma function; 0 < α < 1 is the fractional-order; and t > τ . Using

(3.7), (3.6) can be rewritten as:

$̇(t) = −γ
(
IαRL;0+q

(1)
)

(t)

= −γ
(
IαRL;0+(es − ed)

)
(t) ,

(3.8)

where IRL;0+ is the Riemann-Liouville fractional integral defined as:

IαRL;0+f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ , (3.9)

where the function f(τ) is measurable on the interval (0, t) and has the property∫ t
0
|f(τ)|dτ < ∞. Since we are interested to obtain a differential equation for the price

dynamics, we act on equation (3.8) by the left-sided Caputo derivative of order α > 0

defined as follows:

dα

dtαC;0+
f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ , (3.10)

and obtain the following fractional differential equation:

dα+1

dtα+1C;0+
$(t) = −γ(es(t)− ed(t)) , (3.11)

where n− 1 < α + 1 ≤ 1 and n ∈ N. It can be seen that for α = 0, equation (3.11) takes

the form of the equation (3.5), while for α = 1, equation (3.11) takes the form of the

second-order differential equation of the Evans model [109].

3.3 Proposed fractional-order electricity market model

3.3.1 Modelling

The original version of the Alvarado model proposes a dynamic market model to study

the couplings between the dynamics of the power network and the short-term electricity

market, see [6]. It is based on the following equations:

• The first equation accounts for the system power imbalance indirectly, i.e. through

the deviation frequency of the CoI with respect to the reference frequency:
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Tρρ̇(t) = −Idρ(t) +KE(ωref − ωCoI(t)), (3.12)

where ρ(t) is the electricity price; ωref represents the reference frequency; ωCoI(t)

represents the frequency of the CoI, i.e. ωref − ωCoI(t) is the deviation frequency of

the CoI with respect to the reference frequency; Tρ is the time constant; Id is the

deviation with respect to a perfect tracking integrator and for a LPF it is Id = 1;

and KE can be written as K · ρ(t) and be used as feedback gain.

• The second equation assumes that a generator will increase its power production if

the electricity price is higher than its marginal cost:

Tgi∆ṗgi(t) = ρ(t)− cgi∆pgi(t)− bgi, (3.13)

where ∆pgi(t) is the generator active power; cgi, bgi are the parameters of the

marginal cost of the generator; and Tgi is the time constant.

• The third equation assumes that a load will decrease its power consumption if the

electricity price ρ(t) is higher than its marginal benefit.

Tdi∆ṗdi(t) = −ρ(t) + cdi∆pdi(t) + bdi, (3.14)

where ∆pdi(t) is the load active power; cdi, bdi are the parameters of the benefit of

the load; Tdi is the time constant.

If one assumes loads to be inelastic (i.e. not considering (3.14)), then the market model

(3.12)-(3.13) has a very similar structure to that of a conventional SFC, i.e. the AGC [64]

(see Fig. 2.1 and Fig. 2.11).

Equations (3.12)-(3.14) can be written as a matrix equation and form the following

generalized system of differential equations:

E x′(t) = Ax(t) + ω(t) . (3.15)

48



Where

E =


Tρ 0 0

0 Tgi 0

0 0 Tdi

 , A =


−Id 0 0

1 −cgi 0

−1 0 cdi

 , x(t) =


ρ(t)

∆pgi(t)

∆Pdi(t)

 ,

and

B =


ωref − ωCoI(t) 0 0

0 1 0

0 0 1

 , u =


KE

−bgi
bdi

 , ω = Bu.

Next, we will define the Caputo fractional derivative that we will use as a tool for our

model. Note that there exist several other definitions of fractional derivatives. We chose

the Caputo fractional derivative because the initial conditions required are of the integer-

order rather than the fractional order. This aspect is critical in engineering because we

only have information about integer-order initial conditions and not fractional ones [115].

Definition 3.1. (see [13], [27]) Let Y : [0,+∞) → Rm×1, t → Y , denote a column

of continuous and differentiable functions. Then, the Caputo (C) fractional derivative of

order a, 0 < a < 1, is defined by:

Y
(a)
C (t) := Y (a)(t) =

1

Γ(1− a)

∫ t

0

[
(t− x)−aY ′(x)

]
dx .

In order to simply explain why the proposed fractional derivative and its memory effect

will relate to our model, we will use the discrete version of (3.15). An alternative way to

represent this system, formed through (3.12)-(3.14), is the following generalized discrete

time system:

E xk+1 = Axk + ωk, k ∈ N . (3.16)

Where

E =


Tρ 0 0

0 Tgi 0

0 0 Tdi

 , A =


−Id 0 0

1 −cgi 0

−1 0 cdi

 , xk =


ρk

∆pgik

∆pdik

 .
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and

B =


ωref − ωCoI(t) 0 0

0 1 0

0 0 1

 , u =


KEk

−bgi
bdi

 , ω = Buk.

Equation (3.16) is a first-order matrix differnce equation. It cannot account for the

memory of the market participants. The term xk+1 is only related to just a previous

step in time namely the term xk. Hence, when using (3.16), we obtain the values of ρk+1,

∆pgik+1, ∆pdik+1 by only absorbing information from just a previous step in time k, and

not considering all the “history” of changes at times k − 1, k − 2, ..., k0, where k0 the

initial time step which can be assumed zero, i.e. k0 = 0. To include the information from

all these time steps we will use the fractional nabla operator.

To define this fractional operator and how it is formed, we initially have to to define

the backward difference operator of first order, denoted by ∇ (nabla operator), which

when applied to a vector of sequences Y k : N→ Cm it produces the following result:

∇Y k = Y k − Y k−1;

while the backward difference operator of second order, denoted by ∇2, is defined by:

∇2Y k = ∇(∇Y k) = Y k − 2Y k−1 + Y k−2;

Similarly, the νth backward difference operator, ∇ν , is defined by:

∇νY k =
1

Γ(ν + 1)

ν∑
j=0

(−1)j
1

Γ(j + 1)Γ(ν − j + 1)
Y k−j, ν ∈ N.

Where Γ(·) is the Gamma function. In order to define the fractional nabla operator,

see [26], we set:

∇νY k = fk.

Where fk, known vector of sequences. By solving for Y k we get:

Y k =
1

Γ(ν)

k∑
j=α

(k − j + 1)ν−1f j = ∇−νfk.
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Based on this expression, i.e. ∇−νfk = 1
Γ(ν)

∑k
j=α(k − j + 1)ν−1f j, if we define Nα by

Nα = {α, α + 1, α + 2, ...}, α positive integer, and n fractional then the nabla fractional

operator of n-th order for any Y k : Na → Cm is defined by:

∇−nα Y k =
k∑

j=α

bk−jY j,

where bk−j = 1
Γ(n)

(k − j + 1)n−1, j = α, α + 1, ..., k − 1, k.

As already written, one has to consider not only one time step to absorb information

from the past but also the “history” of changes throughout the timeline 0, 1, ..., k − 1, k.

This should be applied to three equations that form system (3.16) and have a different

effect in each case:

Tρρk+1 =
k∑
j=0

γ1,k−j

{
−Idρj +KE(ωref − ωCoI(t)j)

}
Tgi∆pgik+1 =

k∑
j=0

γ2,k−j

{
ρj − cgi∆pgij − bgi

}
Tdi∆pdik+1 =

k∑
j=0

γ3,k−j
{
−ρj + cdi∆pdij + bdi

}
,

where γi,k−j, i = 1, 2, 3, represents the memory functions. Assuming a power-law fading

memory, the functions γ(t) can be written as follows:

γi,k−j =
1

Γ(ni)
(k − j + 1)ni−1, j = 0, 1, ..., k − 1, k ,

where Γ(ni) are gamma functions; Equivalently we then have:

Tρ∇n1
α ρk+1 = −Idρk +KE(ωref − ωCoI(t)k)

Tgi∇n2
α ∆pgik+1 = ρk − cgi∆pgik − bgi

Tdi∇n3
α ∆pdik+1 = −ρk + cdi∆pdik + bdi .

(3.17)

Where 0 ≤ ni ≤ 1 are the fractional-orders of the nabla discrete operator; Returning to

the continues time system (3.15), and by using the previous discussion, we propose the
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following fractional-order version of the dynamic electricity market model:

Tρρ
(n1)(t) = −Idρ(t) +KE(ωref − ωCoI(t)) , (3.18)

Tgi∆p
(n2)
gi (t) = ρ(t)− cgi∆pgi(t)− bgi , (3.19)

Tdi∆p
(n3)
di (t) = −ρ(t) + cdi∆pdi(t) + bdi , (3.20)

where 0 ≤ ni ≤ 1 are the orders of the fractional derivatives. It’s matrix form is:

E xΨ(t) = Ax(t) + ω(t), xΨ =


ρ(n1)(t)

∆p
(n2)
gi (t)

∆p
(n3)
di (t)

 . (3.21)

Where E, A, x(t), B, u as defined in (3.15). The pencil of the system is equal to, see [29]:


sn1 0 0

0 sn2 0

0 0 sn3

E −A =


sn1 0 0

0 sn2 0

0 0 sn3



Tρ 0 0

0 Tgi 0

0 0 Tdi

−

−Id 0 0

1 −cgi 0

−1 0 cdi



=


sn1Tρ + Id 0 0

−1 sn2Tgi + cgi 0

1 0 sn3Tdi − cdi

 .

The determinant of the pencil is equal to (sn1Tρ + Id)(sn2Tgi + cgi)(s
n3Tdi − cdi) which

means that the pencil of this system is regular, though the system can be singular if at

least one of the elements Tρ, Tgi, Tdi is zero or tends to be close to zero.

3.4 Solutions investigation

Since the pencil of system (3.21) is regular there exist solutions for the system, see [27],

and in addition sE −A is also a regular pencil, see [29]. Because of the structure of E

there exist invariants of the following type:

• κ finite eigenvalues of algebraic multiplicity νi, i = 1, ..., κ, ..., 3;

• an infinite eigenvalue of algebraic multiplicity µ,
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where
∑κ

i=1 νi = ν, ν + µ = 3. There exist non-singular matrices W, V ∈ C3×3 such that,

see [45]:

WEV = Iν ⊕Hµ, WAV = Jν ⊕ Iµ , (3.22)

where Jν ∈ Cν×ν is Jordan matrix, constructed by the finite eigenvalues of the pencil and

their algebraic multiplicity, Hµ ∈ Cµ×µ is a nilpotent matrix with index µ∗, constructed

by using the algebraic multiplicity of the infinite eigenvalue. We have the following cases:

1. The pencil of (3.21) to have all its eigenvalues finite. This is the most realistic case

since it would mean that Tρ, Tgi, Tdi are all non-zero. In this case let

W =


W1,n1

W1,n2

W1,n3

 , V =
[

Vν,n1 Vν,n2 Vν,n3

]
,

where W1,n1 ∈ C1×3, W1,n2 ∈ C1×3, W1,n3 ∈ C1×3, and Vν,n1 ∈ C3×1, Vν,n2 ∈ C3×1,

Vν,n3 ∈ C3×1. Then (3.22) will take the form:

WEV = Iν , WAV = Jν .

We can write (3.21) in the form:


dn1
dtn1

0 0

0 dn2
dtn2

0

0 0 dn3
dtn3

Ex = Ax+ ω .

By using the transformation x = Vz, then multiplying by W and using the above

notation and (3.22) we get:

z
(n1)
ν̂ (t) = J ν̂zν̂(t) + W1,n1ω(t) ;

z
(n2)
ν̄ (t) = J ν̄zν̄(t) + W1,n2ω(t) ;

z
(n3)
ν̃ (t) = J ν̃zν̃(t) + W1,n3ω(t) ,
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where

z(t) =


zν̂(t)

zν̄(t)

zν̃(t)

 , Jp = J ν̂ ⊕ J ν̄ ⊕ J ν̃ .

We consider the first equation. By applying the Laplace transform L we get:

L{z(n1)
ν̂ (t)} = J ν̂L{zν̂(t)}+ W1,n1L{ω(t)}.

Let L{zν̂(t)} = wν̂(s). Then:

(sn1I ν̂ − J ν̂)wν̂(s) = sn1−1C1 + W1,n1L{ω(t)} ,

or, equivalently,

wν̂(s) = sγ−1(sn1Iν̂ − J ν̂)−1C1 + (sn1I ν̂ − J ν̂)−1W1,n1L{ω(t)} .

By taking into account that (sn1I ν̂ − J ν̂)−1 =
∑∞

k=0 s
−(k+1)n1Jkν̂ we have:

wν̂(s) =
∞∑
k=0

s−n1k−1Jkν̂C1 +
∞∑
k=0

s−(k+1)n1Jkν̂W1,n1L{ω(t)}.

Then:

zν̂(t) =
∞∑
k=0

tn1k

Γ(kn1 + 1)
Jkν̂C1 +

∫ t

0

(t− τ)(k+1)n1−1

Γ(kn1 + n1)
Jkν̂ω(τ)dτ .

To conclude, by similarly solving the other two equations we arrive at the general

solution of (3.21) for this case:

x(t) = Vz(t) =
3∑
i=1

Vν,ni [
∞∑
k=0

tnik

Γ(kni + 1)
JkiCi +

∫ t

0

(t− τ)(k+1)ni−1

Γ(kni + ni)
Jki ω(τ)dτ ] .

(3.23)

Where J1 = J ν̂ , J2 = J ν̄ , J3 = J ν̃ .

2. The second case is the pencil of (3.21) to have an infinite eigenvalue. This means

that at least one of the terms Tρ, Tgi, Tdi is zero or tends to zero. The number of

terms that are zero is the algebraic multiplicity q of the infinite eigenvalue. Let Tdi

be the term that is zero but let Tρ, Tgi be strictly non-zero. Then the algebraic
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multiplicity q of the infinite eigenvalue is 1. Let:

W =


W1,n1

W1,n2

W2,n3

 , V =
[

Vν,n1 Vν,n2 Vν,n3

]
,

where W1,n1 ∈ C1×3, W1,n2 ∈ C1×3, W1,n3 ∈ C1×3, and Vν,n1 ∈ C3×1, Vν,n2 ∈ C3×1,

Vν,n3 ∈ C3×1. The equations in (3.22) will take the form:

WFV = I ν̂ ⊕ I ν̄ ⊕ 0 , WGV = J ν̂ ⊕ J ν̄ ⊕ 1 .

We can write (3.21) in the form:


dn1
dtn1

0 0

0 dn2
dtn2

0

0 0 dn3
dtn3

Ex = Ax+ ω .

By using the transformation x = Vz, then multiplying by W and using (3.22) we

get:

z
(n1)
ν̂ (t) = J ν̂zν̂(t) + W1,n1ω(t) ;

z
(n2)
ν̄ (t) = J ν̄zν̄(t) + W1,n2ω(t) ;

0 = zq̃(t) + W2,n3ω(t) ,

where

z(t) =


zν̂(t)

zν̄(t)

zq̃(t)

 .
The first two equations have same solutions as in case 1. The third equation has

solution:

zq̃(t) = −W2,n3ω(t) .

To conclude, by using x(t) = Vz(t), we arrive at the general solution of (3.21) for

this case:

x(t) =
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2∑
i=1

Vν,ni [
∞∑
k=0

tnik

Γ(kni + 1)
JkiCi +

∫ t

0

(t− τ)(k+1)ni−1

Γ(kni + ni)
Jki ω(τ)dτ ]−Vν,n3W2,n3ω(t) .

(3.24)

Where J1 = J ν̂ , J2 = J ν̄ .

We proved the following theorem:

Theorem 3.1. Using the spectrum of the pencil sE − A, the general solution of

the fractional order system (3.21) is given by:

x(t) =∑3
i=1 f(Ti)Vν,ni [

∑∞
k=0

tnik

Γ(kni+1)
JkiCi +

∫ t
0

∑∞
k=0

(t−τ)(k+1)ni−1

Γ(kni+ni)
Jki ω(τ)dτ ]−∑3

i=1 g(Ti)Vq,niW2,niω(t) .

(3.25)

Where T1 = Tρ, T2 = Tgi, T3 = Tdi. The matrices J1, J2, J3 are Jordan matrices defined in

(3.22), (3.23), (3.24), and constructed by the finite eigenvalues of the pencil sE −A, and

their algebraic multiplicity, while Vν,ni ∈ C3×ν are the matrices constructed by the linear

independent eigenvectors related to the finite eigenvalues of the pencil. Ci ∈ Cν×1 are

constant vectors. The matrices Vν,ni , W2,ni are matrices with left and right eigenvectors

of the infinite eigenvalue. Finally

f(Ti) =

 1, Ti 6= 0

0, Ti = 0

 , g(Ti) = 1− f(Ti).

3.5 Examples

3.5.1 Example 1

As a first example we assume system (3.21) with Tρ = Hµ = cgi = 1, Tgi = −cdi = 1
2
,

Tdi = 1
6
. The pencil sE −A has three finite eigenvalues λ1 = −1, λ2 = −2, λ3 = −3 with

eigenvectors

Vν,n1 =


1

1

−3

 , Vν,n2 =


0

1

0

 , Vν,n3 =


0

0

1

 ,
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respectively. Hence the solution of the system is equal to:

x(t) =
1

1

−3

 [
∑∞

k=0
tn1k

Γ(kn1+1)
(−1)kC1 +

∫ t
0

∑∞
k=0

(t−τ)(k+1)n1−1

Γ(kn1+n1)
(−1)kω(τ)dτ ]+


0

1

0

 [
∑∞

k=0
tn2k

Γ(kn2+1)
(−2)kC2 +

∫ t
0

∑∞
k=0

(t−τ)(k+1)n2−1

Γ(kn2+n2)
(−2)kω(τ)dτ ]+


0

0

1

 [
∑∞

k=0
tn3k

Γ(kn3+1)
(−3)kC3 +

∫ t
0

∑∞
k=0

(t−τ)(k+1)n3−1

Γ(kn3+n3)
(−3)kω(τ)dτ ] .

3.5.2 Example 2

In this second example, we provide a comparison between the conventional Integer-

Order MAGC (I-MAGC) (3.12)-(3.13), n1 = n2 = 1, and the Fractional-Order MAGC

(F-MAGC) (3.18)-(3.19) with n1 = 1, n2 = α. The objective is to evaluate the impact of

these models on the behavior of market participants, e.g. generator schedules, and on the

overall dynamic response of the power system.

The comparison is based on a modified version of the well-known WSCC 9-bus test

system, whose details are provided in [64]. A 10% sudden load increase is considered as a

contingency.

Oustaloup’s Recursive Approximation

In order to implement or simulate in practice the proposed fractional market model

(3.18)-(3.19), one needs to approximate the fractional dynamics using appropriate rational

order transfer functions. In this chapter, we use the Oustaloup’s Recursive Approximation

(ORA) method which is widely utilized as a continuous approximation technique. The

generalized ORA of a fractional derivative of order α is defined as [89]:

sα ≈ ωαh

N∏
k=1

s+ ω′k
s+ ωk

, (3.26)
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where ω′k = ωbω
(2k−1−α)/N
v , ωk = ωbω

(2k−1+α)/N
v , ωv =

√
ωh/ωb. In the above expressions,

[ωb, ωh] is the frequency range for which the approximation is designed to be valid; N is

the order of the polynomial approximation. The term “generalized” means that, in (3.26),

N can be either even or odd [89], while the term “recursive” implies that the values of

ω′k, ωk result from a set of recursive equations. The block diagram of ORA is shown in

Fig. 3.1. Further details on the ORA method and its accuracy can be found in [115] and

references therein.

uin
ω
α

h

yNy1 y2 yN−1s+ ω
′

1

s+ ω1

s+ ω
′

2

s+ ω2

s+ ω
′

N

s+ ωN

Figure 3.1: Oustaloup’s recursive approximation block diagram.

+

+

+
+ωref

ωi

1/Ri

∆pMAGC,i

∆pAGC,i pmin
i

pmax
i

pm,i1 + sT1,i

1 + sT2,i

Figure 3.2: Updated turbine governor control diagram with the AGC and MAGC outputs.

Impact of the Frequency of Price Updates

Some long-term power system dynamics, e.g. the dynamics of the AGC, evolve with

a timescale similar to today’s short-term market dynamics [122]. For this reason, it is

essential to understand how the frequency with which the market price is updated impacts

the decision-making process of market participants and on power system dynamics. In

the continuous market models considered in this chapter, the information on how often

the price is updated is contained in the value of the gain KE in (3.12). Hence, this section

presents a sensitivity analysis with respect to the variations of the KE.

Figure 3.3 shows that the value of KE has a negligible impact on the overall dynamic

of the system, i.e. the frequency nadir is the same in all cases. This was expected as the

MAGC is slow with respect to the PFC (see the model of the TGs and the respective
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interactions in Fig. 3.2). Figure 3.4, on the other hand, shows that the schedules of

generator active power are by the value of KE. Specifically, the faster the price updates,

i.e. the higher KE, the faster the generator response and consequently the higher the

generator schedules. This phenomenon is called price chasing [124]. These results indicate

that how often the market updates the price (which in this continuous model is modelled

by means of KE) impacts the schedule of the suppliers or generators.
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Figure 3.3: Trajectories of the frequency of the CoI.
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Figure 3.4: Trajectories of the MAGC active power schedules of generator 1.

The trajectories of the AGC set-point ∆p1 of generator 1 are shown in Fig. 3.5. Higher

gain values – and hence faster price updates – lead to faster AGC response and lower
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AGC set-points. This has to be expected as the AGC has to compensate the difference

in the market schedules since at the end the total power output of the generator has to

be the same. These results imply that, depending on the market design and rewards of

the ancillary services, generators may prefer to compensate power imbalances through the

short-term market or through the SFC.
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Figure 3.5: Trajectories of the AGC active power set-point of generator 1.

Sensitivity Analysis

This section presents a sensitivity analysis with respect to the fractional-order α of the

F-MAGC and compares the results with the ones obtained using the conventional integer-

order market model. For fair comparison, all other parameters, namely time constants

and gains, of both market models, (3.12)-(3.13) and (3.18)-(3.19), are kept the same.

First, we compare the impact of I-MAGC and F-MAGC on power system dynamics.

Figure 3.6 shows the trajectories of ωCoI(t) for both models. It is interesting to observe

that both the I-MAGC and F-MAGC lead to the same frequency nadir and very similar

frequency overshoots. The memory of market participants, thus, does not have a relevant

impact on the overall power system dynamics. These results are consistent with those

shown in Fig. 3.3.

Next, we compare the effect that different values of α have on the behavior of the

generators. Figure 3.7 shows that the F-MAGC leads to different (in this case, lower)

market schedules compared to that of the I-MAGC. This result suggests that the
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Figure 3.6: Comparison of the trajectories of the frequency of the CoI as obtained with the
I-MAGC and F-MAGC.

F-MAGC is less prone to price changes. In other words, taking into account the memory

of market participants makes them more conservative. Furthermore, the higher the

fractional-order α, the faster the generator response, and consequently, the higher the

generator market schedules. This conclusion is supported by Fig. 3.8. This figure shows

that the AGC set-point for the fractional market is less prone to changes compared to

the conventional market. Observe that, in steady-state, the total active power generation

depends only on the variation of the load consumption. However, α changes the quota

of active power produced by each machine. The dependency of the steady-state on α is

evident in Fig. 3.7. However, for α > 0.9 and α→ 1, the steady-state operating point of

each machine varies very little.

Impact of a Sudden Load Decrease

In this final example, we compare the impact on the performance of I-MAGC and

F-MAGC of a 10% sudden load decrease occurring at t = 1 s.

Figure 3.9 shows that the F-MAGC is again less prone to price changes compared

to the I-MAGC. For the considered contingency, such a behavior leads the market to

schedule higher generator powers.

Figure 3.10 shows the AGC power output and indicates that the I-MAGC case

responds faster than the F-MAGC to the contingency. This result is consistent with that

obtained in the previous section, i.e. the memory effect makes the generators less sensitive
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Figure 3.7: Trajectories of the MAGC active power schedules of generator 1.
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Figure 3.8: Trajectories of the AGC active power set-point of generator 1.

to changes in the operating point of the grid. This conservativeness, however, has to be

compensated, at least in the short term, by the secondary frequency regulation.

3.6 Concluding remarks

This chapter contributes to the application of fractional calculus in power systems by

proposing a dynamic model for electricity markets based on differential equations of

fractional order. This is the first attempt to model the behavior of market participants
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Figure 3.9: Trajectories of the MAGC active power schedules of generator 1.
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Figure 3.10: Trajectories of the AGC active power set-point of generator 1.

and its impact on their decisions and power system dynamics. As such, we believe it is an

exciting research topic and necessarily yet to be fully understood.

First, it is shown how to model economic processes with memory by applying fractional

calculus to the Evans model that describes the price dynamics of goods. Using such an

application as a motivation, a short-term fractional dynamic electricity market model is

then proposed. Next, we study its solutions and provide analytical and numerical examples,

including comparing a model of integer order differential equations. In particular, for the

numerical example, we employ the ORA method to approximate the fractional dynamics.

This is critical if one needs to implement in practice such a model in a software tool.
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The second example demonstrates that taking into account the memory of suppliers has

a negligible impact on the dynamic behaviour of power systems. This has to be expected

as such an aspect of market participates intrinsically has a long timescale compared to

power system dynamics. In contrast, the memory effect leads to a conservative behavior

of suppliers and their decisions. Specifically, different fractional order α lead to different

market schedules. Therefore, accounting for the memory effect in future electricity markets

is of utmost importance.
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Chapter 4

Interaction between Deterministic

Sub-Hourly Unit Commitment and

Power System Dynamics

4.1 Introduction

This chapter states the need for sub-hourly modelling in power systems and discusses the

impact interactions between the sub-hourly d-UC and power system dynamics through

a recently proposed software framework. The remainder of the chapter is organized

as follows. Section 4.2 motivates the use of sub-hourly timescales in power system

scheduling. Section 4.3 describes the mathematical formulation of d-UC. Section 4.4

presents the proposed software framework for studying the interactions between d-UC and

HDAEs. Two case studies are presented in Section 4.5 and Section 4.6 that focus on the

effect of different scheduling periods and different net-load volatility and control/machine

parameters on the system’s dynamic response. Finally, conclusions are drawn in Section 4.7.

4.2 Need for Sub-hourly Modelling

The UC problem plays a crucial role in the secure operation of power systems. Most of

the electric utilities in the US clear the markets using a d-UC [42]. The level of system

security in these models is mainly defined by network constraints equations (e.g. line flow

limits) and the amount of scheduled reserves. Traditionally, these models are solved with
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an hourly time period [43]. This time scale is well decoupled from relevant power system

dynamics. However, a sub-hourly UC is to be preferred in systems with high penetration

of variable RESs [117,128] as these increase variability and uncertainty and at the same

time decrease the overall inertia of the system [86].

Furthermore, sub-hourly scheduling is a way to increase flexibility without investing

in physical assets [51,76]. Reference [30] shows that sub-hourly modelling allows to better

capture the costs and the ramping capability of generators. A more recent paper [44]

demonstrates that sub-hourly dispatch results in lower costs and lower reserves. The

importance of sub-hourly modelling is also shown in [113], where the authors conclude

that sub-hourly modelling reveals significant power plant cycling in the form of ramping

and start-ups. Moreover, reference [67] shows that using a sub-hourly UC with a rolling

horizon approach, i.e. scheduling the system more frequently using a forecast moving

window, the required reserves can be decreased.

A sub-hourly UC, e.g. 5-minute resolution, can overlap with long-term dynamics.

There exist several attempts to include simplified dynamic constraints into the UC

problem, for example [4, 25, 33, 73, 77, 100, 111]. However, the main limitation of these

approaches is that the dynamics of the system are oversimplified and linearized. On the

other hand, embedding the UC problem into a fully-fledged transient stability analysis

software tool has not been thoroughly discussed so far.

4.3 Deterministic Unit Commitment Formulation

The main objective of the UC problem is to minimize the total operating cost and

determine for a given planning horizon the ON/OFF status of the generating units needed

to match the demand. It is common practice to formulate the UC as a MILP problem

thanks to the good performance of the available commercial solvers [18]. In this chapter, a

conventional MILP d-UC problem is used [22]. The mathematical formulation is recalled

below.
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Objective function

The objective function of the d-UC to be minimized consists of the fixed, variable, start-up

and shut-down costs of the generating units, as follows:

∑
t∈T

∑
g∈G

(CF
g z

F
g,t + CV

g pg,t + CSU
g zSUg,t + CSD

g zSDg,t ) (4.1)

where t is the index for the time period; g is the index for the generating units; T is

the set of time periods, e.g. {1, . . . , 24} hours; G is the set of generating units; zFg,t is the

binary variable that represents the status of the units in time period t, e.g. 1 if ON; zSUg,t

and zSDg,t are the binary variables that represent the status of the units at the beginning

of time period t, i.e. zSUg,t = 1, zSDg,t = 0 if the generator is up and zSUg,t = 0, zSDg,t = 1 is

the generator is down; and pg,t is the continuous variable representing the active power

production during time period t.

Binary variable constraints

These constraints are needed to ensure the consistency of the logic of binary variables.

For example, if a unit is ON in a given period t, then it can only be switched OFF but

not started-up in the following period. The constraints are:

zSUg,t − zSDg,t = zFg,t − zFg,t−1, ∀g ∈ G, ∀t ∈ T , (4.2)

zSUg,t + zSDg,t ≤ 1, ∀g ∈ G, ∀t ∈ T , (4.3)

zFg,t, z
SU
g,t , z

SD
g,t ∈ {0, 1} ∀g ∈ G, ∀t ∈ T (4.4)

Note that the sum of the start-up and shut-down binary variables cannot be greater than

one. Note also that for the first time period, the initial status of the unit, namely zFg,0

has to be known in (4.2) and is thus an input datum. When the model steps forward

(i.e. rolling horizon) the status of the units at the end of the horizon serve as an initial

status for the next planning horizon, and so on.
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Power bounds

Typical technical constraints of the generating units include their upper and lower limits:

Pmin
g zFg,t ≤ pg,t ≤ Pmax

g zFg,t, ∀g ∈ G, ∀t ∈ T , (4.5)

where, Pmin
g and Pmax

g are the minimum and maximum active power limits, respectively.

Ramping limits

Other important constraints of generation units are the so-called ramping limits. For

instance, between two successive time periods, a unit output is bounded by a maximum

value called the ramping-up limit. Also, a start-up limit is applied to the unit power

output during its start-up time. Similar considerations apply to the ramping-down and

shut-down ramping limits. The ramping limit constraints are:

pg,t − pg,t−1 ≤ RU
g z

F
g,t−1 +RSU

g zSUg,t , ∀g ∈ G, ∀t ∈ T , (4.6)

pg,t−1 − pg,t ≤ RD
g z

F
g,t +RSD

g zSDg,t , ∀g ∈ G, ∀t ∈ T , (4.7)

where, RU
g , R

SU
g , RD

g , R
SD
g are the ramping-up, start-up ramping, ramping-down and shut-

down ramping limits, respectively. Since ramping limits are generally given in per hour,

we divide the hourly data by the relevant sub-hourly scheduling interval, e.g. by 4 in the

15 min case. Again, zFg,0 has to be assigned for the first time period.

Power balance

The following constraints ensures the active power balance at every node of the network:

∑
g∈Gn

pg,t −
∑
l∈Dn

dl,t =

∑
m∈Fn

Bnm(θn,t − θm,t), ∀n ∈ F , ∀t ∈ T ,
(4.8)

where dl,t is the forecasted demand located at node n; F is the set of all branches; Bnm is

the susceptance of transmission line n−m; and θn,t and θm,t are the voltage phase angles

at nodes n and m, respectively. The set Gn indicates the generators connected to bus n.

Similarly, Dn and Fn are the demands and lines, respectively, connected to bus n.

68



Transmission lines limits

Generally, the power through a transmission line is limited by its thermal limit:

− Pmax
nm ≤ Bnm(θnt − θmt) ≤ Pmax

nm ,

∀n, ∀m ∈ Fn, ∀t,
(4.9)

where, Pmax
nm is the capacity limit of the line.

Security constraints

System operators usually schedule some spinning reserves in order to cope with unforeseen

events, e.g. an unscheduled outage. So, for all time periods, the total generation available

online has to be greater than the actual demand:

∑
g∈Gi

Pmax
g zFg,t ≥

∑
l∈D

(dl,t + rj,t), ∀i, ∀t ∈ T , (4.10)

where dl,t is the system total forecasted demand; rj,t accounts for reserves; and Gi is the set

of generators that provides reserve (in the following, we assume Gi ≡ G). For simplicity,

the amount of reserve is assumed to be a percentage of the total demand. The reserve

percentage value is lower for shorter scheduling timescales assuming that better forecast

is available [67].

Reference angle

Finally, as it is well-known, the voltage phase angle at some node of the network has to

be assigned:

θn,t = 0, ∀t ∈ T , (4.11)

where n is the node chosen to be the reference angle.

Remarks on the UC model

Equations (4.1)-(4.11) form a conventional model of d-UC. The aim, in fact, is not to

propose a novel formulation of the UC but rather to show how the UC can be embedded

into the dynamic model of power systems. In the following, the d-UC is modeled using

different sub-hourly time periods, ranging from 15 to 3.75-minutes. Moreover, a rolling
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(moving window) approach with a planning horizon of 24 hours is considered to account

for better forecast. In other words, the d-UC problem (4.1)-(4.11) is solved at every time

period t for the next 24 hours.

The average demand of each load is assumed to vary as a piece-wise linear function

according to a predefined profile. To simulate uncertainty, the values dl,t utilized to solve

the d-UC problem at each period differ from the actual demand of the loads by a given

percentage. A normal distribution function with different standard deviations per period,

say, σt, is used to generate the forecast error. The value of the standard deviation increases

linearly as a function of t. Specifically, σt is null for current loading condition, i.e. t = 0,

and is maximum for the last period of the planning horizon T .

4.4 Interaction between d-UC and HDAEs

d-UC Data

d-UC pg,t

TG

TG

ωCoIAGC

∆p1

∆pn

pm,1
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+
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Static &
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Grid
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Figure 4.1: Interaction between the d-UC problem, AGC, TGs, synchronous machines and the
grid.

It is time to embed the d-UC equations (4.1)-(4.11) into equations (2.1). One has two

ways to do so: embed d-UC into an existing power system dynamic model (HDAEs), or
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the other way round. This thesis proposes the former approach, i.e. embedding the d-UC

problem (4.1)-(4.11) into the TDS routine of Dome [85].

Figure 4.1 shows the connection and the interactions between d-UC, TGs, AGC,

generators, demands and the rest of the grid. In particular, the solutions of the d-UC

(pg,t, ∀g ∈ G) and the output of the AGC (∆p), are utilized to change the power order

set-point (pord) of the TGs of the power plants which in turn changes the mechanical (pm)

and electrical (pe) power of synchronous generators, respectively.

4.5 Case Study 1: Impact of Different Scheduling

Time Periods of d-UC

This case study investigates the impact of different scheduling periods of the d-UC on the

dynamics response of the power system based on a modified version of the IEEE 39-bus

system [57]. While the rolling UC is solved for 24 hours at every period, in the discussions

below, we show only the first hour of the planning horizon, which has a demand forecast

of 700 MW [19].

Several scenarios are considered to study the impact of the uncertainty of the net-load,

i.e. total load minus RES generation, on the dynamic behavior of the system. The first

four scenarios compare the effects of the scheduling period of the UC problem on frequency

variations. Periods of 15, 10, 7.5 and 3.75 minutes are considered. Then, the impact of

net-load volatility (short-term noise) on the system’s frequency is discussed. Finally, the

combined effect of uncertainty and a large contingency on frequency deviations is shown.

The total number of state and algebraic variables of the system for the first four case

studies is 131 and 223, respectively, while in the fifth scenario we have an increase in

the number of state variables, from 131 to 169 (i.e. noise added to the 19 loads of the

system). The total computing times to solve the TDS and the d-UC for the 15, 10, 7.5,

3.75-minute scheduling periods and the noise case are 1 min and 34 s, 1 min and 39 s, 1

min and 44 s, 2 min and 25 s and 4 min and 46 s, respectively.
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15-minute Scheduling

In this scenario, d-UC is solved four times and a maximum of 30% of uncertainty is

applied to the end of the first hour. Figure 4.2 shows the mechanical power of two relevant

synchronous machines, whereas Fig. 4.3 shows the transient behavior of the frequency of

the CoI of the system (ωCoI(t)).

Electro-mechanical oscillations occur every 15-minutes due to a change in the operating

points of the synchronous machines enforced by the d-UC. In the periods between two

scheduling events of the d-UC, machine powers vary due to load ramps, but the frequency

is almost steady-state thanks to the action of primary and secondary frequency regulations.

The average value of the objective function for these four periods is found to be

$553,346.4.
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Figure 4.2: Mechanical power of two relevant machines for the 15 minute scheduling period.

10 Minute Scheduling

In this scenario, the hour is divided into six scheduling time intervals and uncertainty is

added to the load, but it is proportionally lower compared to the 15-minute scenario as a

more reliable forecast is assumed to be available. Figure 4.4 shows that the amplitude and

duration of the oscillations of the ωCoI(t) decreases with respect to the 15-minute scenario.

This is due to both lower uncertainty and lower load variations in the shorter period.

The average value of the objective function per period is $551,575.1, hence lower than

for the 15-minute scenario. The decrease of the objective function is a consequence of
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Figure 4.3: Frequency of the center of inertia for 15-minute scheduling period.

the lower reserves and uncertainty and, in turn, of the shorter time period. It has to be

noted that the net-load consumption is assumed to vary linearly between two consecutive

periods. If different paths are assumed, the solution of the sub-hourly d-UC problem

can become more expensive [113]. A proper modelling of the transient behavior and the

control of the system between consecutive solutions of the UC problem is thus crucial to

avoid unnecessarily increasing the price of electricity.
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Figure 4.4: Frequency of the center of inertia for the 10 minute UC scheduling period.
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7.5 and 3.75-Minute Schedulings

The results of these scenarios are shown in Figs. 4.5 and 4.6. The trend shown by the

10 minute scheduling is confirmed: shorter periods leads to lower frequency variations

to the lower uncertainty. Also the cost of electricity decreases: the average values of the

objective function for these two scenarios are $550,938.35 and $550,033.97, respectively.

These results suggest that a smoother operation (e.g. more frequent solutions of the d-UC

problem) is not just better from a dynamic point of view, but it is also more economical.
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Figure 4.5: Frequency of the center of inertia for 7.5-minute d-UC scheduling period.
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Figure 4.6: Frequency of the center of inertia for 3.75-minute scheduling period.
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Effect of Noise

In this scenario, volatility is added to the load net consumption as proposed in [87]. This

noise models both load and DER short-term fluctuations. Simulation results indicate that

noise can significantly increase frequency variations. Figures 4.7 and 4.8 show the worst

case scenario, namely the 15 minute scheduling with noise. In addition, the average value

of the objective function is $556,689.32 and so slightly higher compared to the 15-minutes

case without noise.
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Figure 4.7: Mechanical power of the relevant machines for 15-minute scheduling and noise.
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Figure 4.8: Frequency of the center of inertia for 15-minutes scheduling and noise.
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Effect of Contingencies

A contingency, i.e. the outage of line 1, occurring at 1,802 s and cleared after 200 ms for

the scenarios of 15 and 3.75-minute scheduling scenarios illustrates the impact of the d-UC

on the stability of the system. The time at which the contingency occurs is chosen on

purpose to be in the seconds after the solution of the d-UC problem. Figures 4.9 and 4.10

show the rotor speeds of the machines following the d-UC scheduling and the contingency.

As expected, the highest impact of the contingency on the frequency occurs if a 15-minute

scheduling period is used.
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Figure 4.9: Frequency of two synchronous machines following a contingency for the 15-minute
scheduling.
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Figure 4.10: Frequency of two synchronous machines following a contingency for the 3.75-minute
scheduling.
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4.6 Case Study 2: Impact of Different Net-Load

Volatility and Control/Machine parameters

This case study carries out a sensitivity analysis with respect to net-load volatility and

control/machine parameters. Four case studies are considered on the modified IEEE

39-bus system. The first two scenarios use a 15-minute scheduling period while the last

two use a 5-minute scheduling period. Each scenario is characterized by a different amount

of load stochastic variations.

The base case (reference) machine/control parameters are set as follows: gain of the

AGC is Ko = 50, droop of the TGs is R = 0.05, and the inertia of the synchronous

machines is taken equal to the original values, say Mo, used in [57]. When solving the

sensitivity analysis, these parameters are varied, one at a time, and their impact on the

standard deviation of the frequency of the system (σ) is observed. Next, to simulate

uncertainty, the load is assumed to differ from the forecast by a maximum of 30% in the

first hour in all scenarios. In other words, the load in the last period of the first hour is

chosen to be 30% higher than the forecast, and it is proportionally lower for other periods

of this hour.

The total number of state and algebraic variables of the system for all scenarios are 169

and 223, respectively. The average computing time for each simulation is about 5-minutes.

Scenario 1 – 15-Minute Scheduling with High Noise

The standard deviation of the white noise for this scenario is 1% of the base case load.

During the first hour, the d-UC is solved four times (i.e. 4 periods of 15-minutes) and

the average value of the objective function for these 4 periods is found to be $561,784.79.

It is relevant to note that this cost is lower compared to the one found in some other

works [60], [18]. This is mainly due to the fact that since we are using a 15-minute

scheduling interval, the value of the total reserve is taken 2.5% of the total demand and

so proportionally lower compared to the above works that use a value of 10%.

Simulation results of this scenario are shown in Table 4.1. These indicate that, as the

gain Ko of the AGC increases, the standard deviation of the frequency decreases. Also,

as expected, if the droop of the TGs increases, the standard deviation of the frequency

increases. Interestingly enough though, decreasing the inertia of the system leads to
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Table 4.1: 15-minute scheduling with high noise – Standard deviation σ of the frequency for
different control/machine parameters

Ko σ R σ M σ
10−4 pu 10−4 pu 10−4 pu

25 9.73 0.02 4.39 2Mo 6.85
50 7.5 0.05 7.5 Mo 7.5
100 5.09 0.08 9.26 0.5Mo 7.43

slightly lower standard deviations of the frequency. This is due to the fact that the

distribution of the frequency is not exactly a Gaussian distribution because of the jumps

of the power imposed by the d-UC [83].

Scenario 2 – 15-Minute Scheduling with Low Noise

The standard deviation of the load noise in this scenario is chosen to be five times lower

compared to Scenario 1. The value of the objective function is found to be $559,191.47

and hence lower than Scenario 1. This is because the net-load volatility is lower. The

simulation results of the sensitivity analysis are shown in Table 4.2. As expected, increasing

the gain Ko of the AGC decreases σ; increasing the droop R of TGs leads to higher

values of σ; and decreasing the inertia M of synchronous machines increases the standard

deviation of the frequency.

Table 4.2: 15-minute scheduling with low noise – Standard deviations σ of the frequency for
different control/machine parameters

Ko σ R σ M σ
10−4 pu 10−4 pu 10−4 pu

25 3.74 0.02 1.57 2Mo 2.84
50 2.98 0.05 2.98 Mo 2.98
100 2.31 0.08 3.99 0.5Mo 3.01

Scenario 3 – 5-Minute Scheduling with High Noise

In this scenario, load noise is proportionally lower to scenario one. The value of the

objective function is found to be $557,373.86 and hence lower than the other two scenarios.

This is the result of lower reserves and lower noise and uncertainty of the net-load.

Therefore, it can be said that shorter scheduling periods of the d-UC leads to lower

operating costs. On the other hand, the sensitivity analysis with respect to different
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parameters is shown in Table 4.3. Similar to scenario one, increasing the gain Ko of the

AGC decreases σ; increasing R leads to higher values of σ; and decreasing inertia M

increases the value of σ.

Table 4.3: 5-minute scheduling with high noise – Standard deviations σ of the frequency for
different control/machine parameters

Ko σ R σ M σ
10−4 pu 10−4 pu 10−4 pu

25 6.68 0.02 3.71 2Mo 3.84
50 5.29 0.05 5.29 Mo 5.29
100 4.71 0.08 6.97 0.5Mo 6.33

Scenario 4 – 5-Minute Scheduling with Low Noise

The white noise of the load is reduced 5 times with respect to Scenario 3. The objective

function is found to be $556,421.26 and, hence, lower than all other scenarios. It can be

concluded that the shorter the scheduling period of the UC (i.e. lower uncertainty) the

lower the total operating costs. Moreover, the sensitivity analysis is shown in Table 4.4.

Again, similar to Scenario 1, increasing the inertia leads to a higher frequency standard

deviation. Following the same rationale discussed in Scenario 1, a higher value of σ with

high inertia is due to the fact that, after each d-UC scheduling, the frequency takes a

longer time to recover to its nominal value.

Table 4.4: 5-minute scheduling with low noise – Standard deviations σof the frequency for
different control/machine parameters

Ko σ R σ M σ
10−4 pu 10−4 pu 10−4 pu

25 3.8 0.02 1.73 2Mo 2.99
50 2.79 0.05 2.79 Mo 2.79
100 2.16 0.08 3.62 0.5Mo 2.87

4.7 Conclusions

This chapter presents a framework to embed the sub-hourly d-UC problem into TDS.

The framework allows studying the impact of different scheduling periods of the d-UC and

the effect of the net load variability and uncertainty on the system’s dynamic behaviour.
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In the proposed approach, the d-UC problem is modelled as a slow “discrete controller”

that responds to the time-varying loading condition of the grid by changing the power

set-points of the TGs. In particular, a sub-hourly MILP d-UC is used to accommodate

the variable net-load.

The results of the first case study indicate that reducing the time intervals at which

the d-UC problem is solved help: (i) reduce frequency variations; (ii) reduce electricity

price; and (iii) mitigate the impact of volatility and contingencies. These findings suggest

that power system operators should switch to the utilization of the sub-hourly modelling

instead of conventional hourly resolution. This is particularly important given the need

for higher flexibility in modern power systems characterised by high shares of RESs.

On the other hand, the results of the second case study show that: (i) increasing the

gain Ko of the AGC decreases σ; (ii) increasing R leads to higher values of σ; and (iii)

decreasing inertia M increases the value of σ. However, depending on the scheduling

period used and the amount of noise in the system, increasing the inertia M may lead to

a higher frequency standard deviation. As aforementioned, this is because the frequency

takes a longer time to recover to its nominal value after each d-UC scheduling.

Given these findings, it can be concluded that the proposed software framework

provides valuable information to TSOs and, as such, is a useful tool when operating

power systems with growing volumes of RESs.
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Chapter 5

Interaction between Stochastic

Sub-Hourly Unit Commitment and

Power System Dynamics

5.1 Introduction

Since large amounts of stochastic RESs can significantly impact the performance of the

system [86,126], stochastic programming has been introduced in recent years to properly

account for uncertainty (e.g. wind) when scheduling the system [23]. For example, [114]

shows that using a s-UC reduces operating costs and improves system performance. In

the same vein, the authors in [17] show that a stochastic market-clearing procedure allows

greater wind penetration than a deterministic approach. Moreover, in [120] the authors

propose a stochastic real-time market with 15-min dispatch intervals and show that it

outperforms the relevant deterministic approach. In [47], a stochastic economic dispatch

(15-minute dispatch interval) is proposed where the authors conclude that the stochastic

approach leads to lower operating costs compared to that of the deterministic approach.

Nevertheless, they acknowledge the computational burden of the stochastic approach as

the main limitation for practical applications.

The works above study the impact of the sub-hourly modelling in power systems from

the economic and/or operational perspective. The focus of this chapter, on the other

hand, is on the impact of the sub-hourly s-UC on power system dynamics. If sub-hourly

scheduling timescales are used, say 15-minute or 5-minute, in fact, then these timescales
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can overlap with long-term dynamics [69]. Therefore, it appears worthwhile and timely

to embed the sub-hourly s-UC problem into a fully-fledged transient stability analysis

software tool [62, 63] and study the dynamic behaviour of power systems.

The remainder of the chapter is organized as follows. Section 5.2 presents the stochastic

long-term power system model. Section 5.3, 5.4 and 5.5 describe the formulation of the

complete, simplified and alternative s-UC problem, respectively. Section 5.6 provides a

modified version of the proposed software framework able to embed the various s-UC

formulations in the TDS routine of Dome. Section 5.7 discusses the impact of different

scheduling periods of the complete s-UC problem on power system dynamics. Section 5.8

focuses on the effects of different s-UC and frequency controllers/machine parameters on

the system’s dynamic response. Finally, conclusions are drawn in Section 5.9.

5.2 Stochastic Long-Term Power System Model

The large-scale deployment of stochastic RESs, e.g. wind, significantly increases the

random perturbations and inevitably affects power systems’ safe and stable operation [127].

As a result, the adoption of Stochastic Differential Equations (SDEs) to model this

randomness in power systems has gained significant interest in recent years. However,

most of the literature focus on the impact of wind power variability (modelled as SDEs)

on transient and small-signal stability, respectively [123]. On the other hand, stochastic

long-term stability analysis of power systems has received little attention. This is of

particular importance considering the expected trends regarding the integration of RES

into modern power systems.

The stochastic long-term dynamic model of power systems can be represented as a set

of hybrid nonlinear SDAEs [87], as follows:

ẋ = f(x,y,u, z, η̇) ,

0 = g(x,y,u, z,η) ,

η̇ = a(x,y,η) + b(x,y,η) ζ ,

(5.1)

where f and g represent the differential and algebraic equations, respectively; x and

y represent the state and algebraic variables, such as generator rotor speeds and bus

voltage angles, respectively; u represents the inputs, such as the schedules of synchronous
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generators; z represents discrete variables; η represents the stochastic characterization

of wind speed; a and b are the drift and diffusion of the SDEs, respectively; and ζ is

the white noise. It is worth mentioning that (5.1) is solved using numerical integration

techniques. This is possible as the algebraic equations g, in (5.1), do not explicitly depend

on white noises ζ, or on η̇ [87]. In this chapter, an implicit trapezoidal integration method

is used for functions, f and a, while the Euler-Maruyama method is used to integrate the

stochastic term b. Further details related to the numerical integration of the SDAEs can

be found in [87].

It is necessary to consider both electromechanical and long-term dynamic models,

when one performs stochastic long-term dynamic simulations [68]. With this regard,

(5.1) includes the dynamic models of conventional machines (4th order models) and

their primary controllers; AGC; wind power plants ( 5th order Doubly-Fed Induction

Generator) [84]; and the model of sub-hourly s-UC. It is worth noting that we have not

included in the system a fast frequency control in wind power plants. This controller,

in fact, while can help improve the dynamic response of the system does not alter the

conclusions that are drawn in this chapter.

5.2.1 Modelling of stochastic processes

Modelling the stochastic nature of wind power is critical in power system dynamic

studies [56]. In this context, (5.1) includes only wind power variations with respect to the

forecast wind generation as a stochastic perturbations. An Ornstein-Uhlenbeck Process

(OUP) is used to model the stochastic nature of the wind speed vs that enters into the

wind turbine, as follows:

vs(t) = vs0 + ηv(t)

η̇v(t) = ιv(εv − ηv(t)) + bvζv

(5.2)

where vs0 is the wind speed initial value; ηv is the stochastic variable that is dependent on

the drift ιv(εv− ηv), and diffusion term bv of the SDEs; ι is the mean reversion speed that

indicates the rate at which ηv tends to the mean value εv; and ζv represents the white

noise.
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5.3 Complete Stochastic Unit Commitment Formu-

lation

As the penetration of highly variable RES increases, so does the uncertainty in power

systems. This complicates the real-time balance between generation and demand.

Therefore it is of particular importance to model the uncertainty when scheduling the

system. There are different methodologies and techniques proposed for optimization under

uncertainty, with one of the most popular being the two-stage stochastic programming.

In the context of UC, the two-stage s-UC makes use of a probabilistic model for the

uncertain input parameters, e.g. wind generation, and is usually approximated by a set of

scenarios representing the plausible realizations of these random parameters [23].

In this chapter, a standard MILP s-UC problem is implemented based on [16], in

which wind power production is considered as an uncertain parameter of the system, as

follows:

min
H,W

∑
t∈T

∑
g∈G

(CF
g z

F
g,t + CSU

g zSUg,t + CSD
g zSDg,t ) (5.3)

+
∑
ξ∈S

πξ

[∑
t∈T

∑
g∈G

CV
g pg,t,ξ +

∑
t∈T

∑
l∈D

CLdSHl,t,ξ

]

such that

zSUg,t − zSDg,t = zFg,t − zFg,t−1 (5.4)

(∀g ∈ G,∀t ∈ {2..., T})

zSUg,t − zSDg,t = zFg,t − ISg (5.5)

(∀g,∀t ∈ {1})

zSUg,t + zSDg,t ≤ 1 (5.6)

(∀g,∀t ∈ {1..., T})

zFg,t = ISg (5.7)

(LUPg + LDWg > 0,∀g,∀t ≤ LUPg + LDWg )

84



t∑
τ=t−UTg+1

zSUg,τ ≤ zFg,t (5.8)

(∀g,∀t > LUPg + LDWg )

t∑
τ=t−DTg+1

zSDg,τ ≤ 1− zFg,t (5.9)

(∀g,∀t > LUPg + LDWg )∑
g∈Gn

pg,t,ξ −
∑
l∈Dn

dl,t +
∑
l∈Dn

dSHl,t,ξ +
∑
k∈Kn

Wk,t,ξ (5.10)

−
∑
k∈Kn

W SP
k,t,ξ =

∑
m∈Mn

(θn,t,ξ − θm,t,ξ)
Xn,m

(∀n,∀t, ∀ξ ∈ S)

pg,t,ξ ≤ Pmax
g zFg,t (5.11)

(∀g,∀t,∀ξ ∈ S)

pg,t,ξ ≥ Pmin
g zFg,t (5.12)

(∀g,∀t,∀ξ ∈ S)

pg,t,ξ ≤ (P IS
g +RUg)z

F
g,t (5.13)

(∀g,∀t ∈ {1},∀ξ ∈ S)

pg,t,ξ ≥ (P IS
g −RDg)z

F
g,t (5.14)

(∀g,∀t ∈ {1},∀ξ ∈ S)

pg,t,ξ − pg,t−1,ξ ≤ (2− zFg,t−1 − zFg,t)P SU
g (5.15)

+ (1 + zFg,t−1 − zFg,t)RUg)

(∀g,∀t ∈ {2, ..., T}, ∀ξ ∈ S)

pg,t−1,ξ − pg,t,ξ ≤ (2− zFg,t−1 − zFg,t)P SD
g (5.16)

+ (1− zFg,t−1 + zFg,t)RDg)

(∀g,∀t ∈ {2, ..., T},∀ξ ∈ S)

dSHl,t,ξ ≤ dl,t (5.17)

(∀l,∀t,∀ξ ∈ S)

W SP
k,t,ξ ≤ Wk,t,ξ (5.18)

(∀k,∀t, ∀ξ ∈ S)
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− Pmax
n,m ≤

(θn,t,ξ − θm,t,ξ)
Xn,m

≤ Pmax
n,m (5.19)

(∀n,m ∈Mn,∀t, ∀ξ ∈ S)

pg,t,ξ, d
SH
l,t,ξ,W

SP
k,t,ξ ≥ 0 (5.20)

(∀g,∀l,∀k,∀t,∀ξ ∈ S)

zFg,t, z
SU
g,t , z

SD
g,t ∈ {0, 1} (5.21)

(∀g,∀t)

where H = {zFg,t, zSUg,t , zSDg,t } and W = {pg,t,ξ, dSHl,t,ξ,W SP
k,t,ξ}; and the initial state conditions

are as follows:

ISg =

1 if ONg > 0

0 if ONg = 0

LUPg = min{T, (UTg −ONg)ISg}

LDWg = min{T, (DTg −OFFg)(1− ISg)}

Equations (5.3) represent the total cost to be minimized which includes the fixed, start-up,

shut-down and variable cost of the generating units, as well as the cost of involuntarily

demand curtailment. Equations (5.4)-(5.6) model the logical expression between the

binary variables (i.e. start-up and shut-down of generating units). Equations (5.7)-

(5.9) model the minimum and maximum up- and down-time constraints. The power

balance constraint is modeled through equations (5.10). While the capacity limits of

generating units are modeled through equations (5.11)-(5.12) and their respective ramping

limits through (5.13)-(5.16). Equations (5.17)-(5.18) model the limits of the involuntary

demand curtailment and wind power spillage, respectively. Transmission capacity limits

are enforced by equations (5.19). Finally, equations (5.20)-(5.21) refer to the variable

declarations.

The model shown in (5.3)-(5.21) is the deterministic equivalent of the original two-

stage stochastic programming problem. It is called a two-stage problem since there

are first-stage and second-stage variables, also known as here-and-now and wait-and-see

variables, respectively [23]. In particular, zFg,t, z
SU
g,t , z

SD
g,t are first-stage decision variables

that represent the status of generating unit g in time period t (i.e. ON/OFF status,
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start-up and shut-down). These decisions do not depend on uncertainty realization ξ, and

are generally made one day in advance. Similarly, pg,t,ξ, d
SH
l,t,ξ,W

SP
k,t,ξ, θn,t,ξ are second-stage

decision variables that represent the active power dispatch of generating units g in time

period t and scenario ξ, the involuntary power curtailment from load j in time period t

and scenario ξ, wind power spillage from wind production unit k in time period t and

scenario ξ, and voltage angle at node n in time period t and scenario ξ, respectively. All

second-stage decision variables depend on uncertainty realization ξ. Further details of the

s-UC can be found in [16] and references therein.

Scenarios and Rolling Horizon within the s-UC

To illustrate the modelling of s-UC wind uncertainty and volatility, and rolling planning

horizon used in this chapter, we show below the power balance equations of the complete

s-UC, as follows:

∑
g∈Gn

pg,t,ξ −
∑
l∈Dn

dl,t +
∑
l∈Dn

dSHl,t,ξ +
∑
k∈Kn

Wk,t,ξ (5.22)

−
∑
k∈Kn

W SP
k,t,ξ =

∑
m∈Mn

(θn,t,ξ − θm,t,ξ)
Xn,m

, (∀n,∀t, ∀ξ ∈ S)

where pg,t,ξ is the active power of conventional generating units g, at time period t, and

scenario ξ (i.e. equivalent of the second-stage variable uf,t,ξ in section 5.3); dl,t is the

demand for load l at time period t; dSHl,t,ξ is the power curtailment from load l, at time period

t, and in scenario ξ; Wk,t,ξ and W SP
k,t,ξ represent the power generation and curtailment,

respectively, from wind unit k, in time period t, and scenario ξ; Xn,m is the reactance of

line n−m; θn,t,ξ represent the voltage angle at node n, time period t, and scenario ξ; and

Kn, Mn are the sets of stochastic power generation (i.e. wind) located at node n, and

nodes m ∈ N connected to node n by transmission line, respectively.

Modelling wind uncertainty

Similar to [90], a wind power penetration level Wk,t,ξ is defined as a percentage of the

demand dl,t, and named the medium scenario, Wm
k,t,ξ. Then, high and low wind power

scenarios (W h
k,t,ξ,W

l
k,t,ξ) are built as percentages of the medium scenario, as follows:
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W l
k,t,ξ = Wm

k,t,ξ × (1− j/100)

W h
k,t,ξ = Wm

k,t,ξ × (1 + j/100)
(5.23)

where j is the percentage of deviation of the the high and low scenarios with respect to

the medium one.

The consistency of the wind power scenarios with real-world information is compared

using wind power data of the Irish system [35]. Specifically, the 15-minute rate of change

of wind power is determined based on one typical day per month of 2018 (see Fig. 5.1).

Based on these data, wind power does not appear to change more than 10% in 15 minutes.

For this reason, in the case study, j = 10% is assumed.
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Figure 5.1: Wind power 15min rate of change for 12 typical day in the Irish system in 2018.

Modelling wind volatility

Wind power volatility is modelled as small fluctuations with respect to the average value

for a given period. Hence, uncertainty is related to wind power forecast, e.g. wind scenarios,

while volatility is considered as a percentage, e.g. standard deviation, on top of the wind

power forecast [121]. A normal distribution N(0, σ2) with zero mean and given standard
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Figure 5.2: Wind power profile for two typical days (Jan, Jul) in the Irish system in 2018.

deviation is attached to each wind power scenario, as follows:

W l1
k,t,ξ = W l

k,t,ξ +N(0, σ2)

Wm1
k,t,ξ = Wm

k,t,ξ +N(0, σ2)

W h1
k,t,ξ = W h

k,t,ξ +N(0, σ2)

(5.24)

where W l1
k,t,ξ,W

m1
k,t,ξ,W

h1
k,t,ξ are the new low, medium and high wind power scenarios,

respectively, after adding the volatility.

An important aspect to keep in mind when building the scenarios is the relationship

between the wind power level and its standard deviation σ. With this aim, two typical

days are analysed for two months, namely January (high wind) and July (low wind). The

wind power profile for these typical days is shown in Fig. 5.2. It appears that wind varies

more in January than in July. More specifically, the standard deviation of wind power

generation is found to be 234.78 MW and 68.46 MW, for January and July, respectively,

and that high wind leads to higher σ.

Note that the goal is not to propose new s-UC models to deal with wind power

uncertainty and volatility but rather to study the impact of a well assessed s-UC

formulation on power system dynamics. For this reason, it is not necessary to consider

more sophisticated s-UC models. As a matter of fact, the first case study shows that,
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depending on the wind penetration and planning horizon, a s-UC might not be needed at

all.

Modelling the rolling planning horizon

Scheduling the system frequently (i.e. more than once a day) allows having better wind

and load forecasts. As a result, fewer reserves are required [114]. This chapter uses a

rolling planning approach for updating the wind power forecast (Wk,t,ξ) with a planning

horizon of 24 h. During the first hour of the planning horizon, the high/low wind scenarios

increase/decrease as a linear function from the medium scenario and after that, they have

a fixed error, e.g. j = 10%. The s-UC model is solved at every period t during the first 12

h with a planning horizon of 24 h.

When rolling forward, the status of the units of the previous horizon serves as an

initial status for the next horizon. Between two scheduling events of the s-UC, e.g. 15 or

5-minutes, wind and load profiles are modelled as linear ramps.

5.4 Simplified Stochastic Unit Commitment Formu-

lation

The level of complexity of s-UC formulations proposed so far in the literature varies

significantly [54]. For example, a well-assessed MILP s-UC formulation is provided in [16].

Such a model considers several technical constraints, e.g. ramping limits of generators

and capacity limits of transmission lines, to name a few. These constraints improve

the performance of the schedules but are not crucial in this chapter, which focuses on

the impact on long-term power system dynamics. Hence, a simplified model of s-UC is

considered, as follows:

minimize
zFg,t,pg,t,ξ

∑
t∈T

∑
g∈G

CF
g z

F
g,t +

∑
ξ∈S

πξ

[∑
t∈T

∑
g∈G

CV
g pg,t,ξ

]
(5.25)

such that

pg,t,ξ ≤ Pmax
g zFg,t, ∀g,∀t,∀ξ ∈ S (5.26)

pg,t,ξ ≥ Pmin
g zFg,t, ∀g,∀t,∀ξ ∈ S (5.27)
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∑
g∈G

pg,t,ξ −
∑
l∈Dn

dl,t +
∑
k∈Kn

Wk,t,ξ =
∑
m∈Mn

(θn,t,ξ − θm,t,ξ)
Xn,m

, ∀n,∀t,∀ξ ∈ S (5.28)

zFg,t ∈ {0, 1}, ∀g ∈ G,∀t ∈ T (5.29)

where zFg,t is a first-stage decision variable that models the status (ON/OFF) of the

conventional machines in time period t; CF
g and CV

g represents the fixed and variable

production cost of generation unit g, respectively; πξ is the probability of wind power

scenario ξ; pg,t,ξ is a variable that represents the active power of the machine g in scenario

ξ and time period t; Pmax
g and Pmin

g represents the maximum and minimum active power

limits of generation unit g, respectively; dl,t represents the demand for load l at time

period t; Wk,t,ξ is the wind power production of wind generation unit k, θn,t,ξ are the

voltage angles at node n and at time period t in scenario ξ, respectively; Xn,m is the

reactance of the transmission line n−m; and Kn, Mn represents the sets of wind power

generation connected at node n, and nodes m ∈ N connected to node n through a line,

respectively. Finally, constraints (5.25) to (5.29) model the objective function, maximum

and minimum power output of generators, nodal power balance equation (DC power flow),

and variable declarations, respectively.

5.5 Alternative Stochastic Unit Commitment Formu-

lation

The literature provides several different formulations of the s-UC problem [129]. Therefore

it is relevant to compare and study the impact that these models have on the power

system dynamic behaviour. In this context, an alternative sub-hourly s-UC model with

respect to the one discussed in the previous section has been adapted based on [46], as

follows:

minimize
zFg,t,pg,t,r

U
g,t,ξ,r

D
g,t,ξ,Wk,t

∑
t∈T

∑
g∈G

CSU
g,t + CV

g pg,t (5.30)

+
∑
ξ∈S

πξ

[∑
t∈T

∑
g∈G

CV
g (rU

g,t,ξ − rD
g,t,ξ)

]

such that
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CSU
g,t ≥ CSU

g (zFg,t − zFg,t−1), ∀g,∀t (5.31)

CSU
g,t ≥ 0, ∀g,∀t (5.32)

zFg,tP
min
g ≤ pg,t ≤ zFg,tP

max
g , ∀g,∀t (5.33)∑

g∈G

pg,t +
∑
k∈K

Wk,t = lt, ∀t (5.34)

zFg,tP
min
g ≤ (pg,t + rU

g,t,ξ − rD
g,t,ξ) ≤ zFg,tP

max
g , ∀g,∀t, ∀ξ (5.35)∑

g∈G

(pg,t + rU
g,t,ξ − rD

g,t,ξ) +
∑
k∈K

Wk,t,w = lt, ∀t,∀ξ (5.36)

0 ≤ rU
g,t,ξ ≤ RUmax

g,t , ∀g,∀t,∀ξ (5.37)

0 ≤ rD
g,t,ξ ≤ RDmax

g,t , ∀g,∀t,∀ξ (5.38)

zFg,t ∈ {0, 1}, ∀g,∀t (5.39)

where, apart from the variables and parameters already defined above, CSU
g,t models the

start-up cost of generation unit g incurred at the beginning of time period t; rU
g,t,ξ and

rD
g,t,ξ are decision variables and represents the increase and decrease in the active power

output of generation unit g at time period t, respectively, say, during real-time operation

(e.g. to compensate wind power fluctuations); while all other parameters and variables

have analogous meanings as in the previous s-UC formulation.

The main difference between problem (5.30)-(5.39) and problem (5.25)-(5.29) is that

in the former the active power of generation units, pg,t, is a first-stage variable and

does not adapt to the uncertainty realization. Also, note that model (5.25)-(5.29) has a

slightly different objective function, namely it does not include the start-up cost (CSU
g,t ) as

compared to that of model (5.30)-(5.39).

5.6 Interaction between s-UC and SDAEs

It is time to merge all of the above in a single framework. Generally speaking, the goal is

to embed s-UC equations (5.3)-(5.21), (5.23)-(5.24), (5.25)-(5.29), and (5.30)-(5.39) into

equations (5.1).

Figure 5.3 shows the overall structure of the recently proposed co-simulation framework.

The tool is composed of two parts, namely the dynamic model of power systems (SDAEs)

and the discrete model of s-UC. Dome coordinates the co-simulation, i.e. the exchange
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Figure 5.3: Interaction between the s-UC problem, AGC, TGs, synchronous machines and the
grid.

of information between the s-UC and the SDAEs. In particular, the output of the s-UC

models, namely the active power of generating units (pg,t,ξ), serves as an input to the

SDAEs, i.e. change the power set-point of the TGs of the power plants. Finally, a Monte

Carlo Method (MC) is utilized to simulate large sets of realizations of the stochastic

processes of wind and loads. Each realization defines the “reality” that needs to be

updated to solve the next s-UC problem. Such feedback is required to update the forecast

of wind (Wk,t,ξ) and loads as utilized in the s-UC problem.

The s-UC model (5.3)-(5.21) uses the active power of the generators, namely pg,t,ξ, as a

second-stage decision variable. In other words, pg,t,ξ adapts to the uncertainty realization

ξ. Since we are interested in having a single power dispatch for each generator and for

each time period, a reasonable trade-off consists in taking a weighted-sum of the scenarios

ξ. In the literature, one may find different formulations of s-UC for the active power of

generators. For example, in [46], the authors use the active power as a first-stage decision

variable (pg,t, set-points) and then use up/down reserve deployment (production changes)

as a second-stage decision variable to accommodate wind variability (real-time).
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5.7 Case Study 1: Impact of Different Scheduling

Time Periods

From a system operator point of view, it is useful to study the impact that different levels

of uncertainty and volatility, e.g. wind forecast errors, within the s-UC model have on

power system dynamic performance. At the time of this writing, TSOs still rely on d-UC

formulations. Therefore, a comparison between d-UC and s-UC approaches is relevant.

Also, since different TSOs use different scheduling timescales and/or different rolling

approaches, e.g. every 15-minute [24], or every 5-minute [78], a comparison of the effect of

these strategies is also carried out in this section. Moreover, the impact of contingency and

renewable penetration on the transient response of the system and long-term frequency

deviations, respectively, using different s-UC strategies is shown as well. Finally, the

impact of different wind power scenarios of the s-UC on the system’s dynamic response is

discussed.

All simulations are based on a modified version of the IEEE 39-bus system [57]. The

data of the s-UC can be found in Table A.3.

The focus is on the first 12 hours of the planning horizon. During these hours the

demand increases from 700 MW in the first hour to 1500 MW in the 12 hour. For

simplicity, a wind profile that follows the demand is modelled. In other words, we assume

the same wind penetration level for the medium scenario during these hours, namely 25%,

and based on this we build the low and high scenario accordingly. Such a relationship

between demand and wind power corresponds to a typical day in 2018 in the Irish system.

It should be noted here that one may choose any other profile for the demand and wind but

according to our studies that does not change the relevant conclusions. Wind generation

is given by three wind power plants connected at bus 20, 21 and 23, respectively, with a

nominal capacity of 300 MW each.

The total number of state and algebraic variables of the SDAE model for all scenarios

are 173 and 277, respectively. Regarding the s-UC variables, the model includes three

first-stage variables, namely the ON/OFF, start-up and shut-down status of generating

units, and four second-stage variables, namely the active power of conventional units (set-

points), the demand and wind power curtailment, and the bus voltage angle, respectively.

The total numbers of the first-stage and second-stage variables for the 15-minute model
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are 2,880 and 20,448, respectively. While the total numbers of these variables for the

5-minute model are 8,640 and 61,344, respectively. Therefore even considering only three

wind power scenarios, shortening the time period of s-UC, lead to a huge increase in the

size of the s-UC model. In fact, this is one of the main limitations of s-UC approaches,

especially when considering their use for real-time operations of power systems.

Finally, a MC is used in all scenarios (100 simulations are solved for each scenario).

The standard deviation of the frequency of the CoI, σCoI, (computed as the average of

the standard deviation obtained for each trajectory) is utilized as an index to evaluate

the impact of s-UC on the dynamic response of the system. The software tool Dome

used in the simulations includes a set of dynamic models similar to the ones provided

by commercial software tools but with the additional feature of being able to model and

properly integrate stochastic processes. Note that EMT models are not considered because

they are not suitable for the simulation of several minutes of an interconnected power

system due to their computational burden.

15-Minute Scheduling

In this section, a 15-minute scheduling time period is used. The average value of the

objective function is found to be approximately $412,000, hence, lower than the value

found in, for example, [18]. This is due to the fact that wind generation is explicitly

accounted in the objective function, and since its marginal production cost is considered

zero, it leads to lower operational costs. Each scenario is characterized by an appropriate

amount of wind stochastic variations. When solving the sensitivity analysis, the s-UC

probabilities are varied, and their impact on the standard deviation of the frequency of

the system (σCoI) is observed.

In order to compare results, a base-case scenario is considered with the following

properties: s-UC probabilities for the low, medium and high wind power scenarios are

set to 20%, 60%, 20%, respectively. Similarly, when we run the MC-TDS, the system is

assumed to be with the following probabilities: 20%, 60%, 20% for the low, medium and

high wind power scenario, respectively. As mentioned in the rolling planning section, the

low and high scenario differs from the medium scenario by 10%. This base case is shown

in Fig. 5.4, 5.5, while Fig. 5.4 shows the trajectories of ωCoI(t), and Fig. 5.5 shows the

trajectories of the wind speed scenarios.
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Figure 5.4: 15-minute scheduling – Trajectories of ωCoI(t) for 12h.

Figure 5.5: 15-minute scheduling – Trajectories of wind speeds for 12h. Dashed lines indicate
the high, medium and low scenarios, respectively, while black line indicate the same scenarios
with inclusion of volatility.

It is interesting to note that, in Fig. 5.4, the frequency jumps due to a change in the

operating point of the machines forced by the s-UC, i.e. new schedules. These jumps

are very similar to real-world power systems behaviour observed in, for example, the

continental European grid [38,102]. Finally, it is worth mentioning that the wind speed

profile in Fig. 5.5 is obtained by adding some stochastic noise on each of the three wind

scenarios.
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Table 5.1: 15-minute scheduling – σCoI for different s-UC probabilities with j = 10%.

Scenario s-UC MC−TDS σCoI (10−4)
1 20% 60% 20% 20% 60% 20% 8.47
2 40% 50% 10% 20% 60% 20% 8.59
3 100% 0% 0% 20% 60% 20% 8.67
4 0% 100% 0% 20% 60% 20% 8.72
5 0% 0% 100% 20% 60% 20% 8.02
6 0% 20% 80% 20% 60% 20% 8.17
7 0% 40% 60% 20% 60% 20% 8.32
8 0% 60% 40% 20% 60% 20% 8.41
9 0% 80% 20% 20% 60% 20% 8.52

Impact of different s-UC strategies

Table 5.1 shows some of the most relevant results of the sensitivity analysis. Specifically,

scenario 1 assumes a s-UC with wind probabilities 20%, 60%, 20% and a MC-TDS with

the same probabilities. Thus, it is assumed that what was forecast by the s-UC will actually

happen in reality. σCoI for this scenario is 8.47 · 10−4. In Scenario 2 the probabilities of the

s-UC differ from that of the system by a relevant value. The value of σCoI is 8.59 · 10−4,

and thus higher than scenario 1 due to the error in the s-UC probabilities.

Scenario 3 assumes a s-UC with 100% low wind (one scenario, equivalent to d-UC).

The value of σCoI for this scenario is 8.67 · 10−4 and so higher than scenario 1 for the

same reason above. Similarly, Scenario 4 assumes a s-UC with 100% medium wind. This

leads to higher frequency variations compared to scenario 1, with σCoI = 8.72 · 10−4. Next,

Scenario 5 assumes a s-UC with 100% high wind. Quite surprisingly, this scenario appears

to be the best from the dynamic point of view with σCoI = 8.02 · 10−4.

To analyse this relevant case, more scenarios are considered. In Scenarios 6 to 9 in

Table 5.1, the probabilities of s-UC are varied from a s-UC with 100% high wind to a

s-UC with 100% medium, and it can be seen that σCoI increases almost linearly. Therefore,

even though Scenario 5 assumes an error in the s-UC probabilities, synchronous machines

and the respective controls (primary and secondary) can regulate it very fast.

To further analyse this, in Table 5.2 the wind power uncertainty level is increased from

j = 10% to j = 30% with a step of 10% for both, Scenario 1 and Scenario 5, respectively.

For j ≥ 30%, Scenario 1 gives the better dynamic behaviour. It appears that, if the wind

forecast error is small, then from the dynamic performance viewpoint of the system, it is

better to solve a d-UC with high wind power.
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Table 5.2: 15-minute scheduling – σCoI for different s-UC probabilities and different j.

Scenario j s-UC MC−TDS σCoI (10−4)
1 10% 20% 60% 20% 20% 60% 20% 8.47
1 20% 20% 60% 20% 20% 60% 20% 12.58
1 30% 20% 60% 20% 20% 60% 20% 17.20
5 10% 0% 0% 100% 20% 60% 20% 8.02
5 20% 0% 0% 100% 20% 60% 20% 12.41
5 30% 0% 0% 100% 20% 60% 20% 17.37

Table 5.3: 15-minute scheduling – σCoI for different stochastic unit commitment probabilities
with j = 10%.

Scenario s-UC MC−TDS σCoI (10−4)
1 0% 0% 100% 0% 0% 100% 8.01
2 0% 100% 0% 0% 100% 0% 2.90
3 100% 0% 0% 100% 0% 0% 1.46

It is worth observing that the differences in the system’s long-term frequency deviations

between scenarios are marginal (maximum of 3.5 mHz). This is mainly because, since

the scheduling is repeated with a short period, it reduces the forecast error, which leads

different s-UC strategies to produce similar schedules for the generators. This indicates

that system operators may prefer to use deterministic approaches when scheduling the

system as the complexity of the stochastic one does not provide a solution with a significant

added value for the operation of the system.

Finally, Table 5.3 compares three deterministic cases, namely low, medium and high

s-UC wind power scenarios. The deterministic low wind power scenario leads to better

dynamic behaviour (lower σCoI).

Impact of s-UC wind uncertainty

To simulate the impact of the s-UC wind power uncertainty, the uncertainty level is

increased from j = 10% to j = 40% with a step of 10% (volatility is kept constant). Four

σCoI are calculated and Fig. 5.6 shows σCoI as a function of wind power uncertainty. The

higher wind uncertainty, the higher σCoI. This relationship is almost linear within the

used range. This suggests that as power systems accommodate more RES, i.e. higher

uncertainty, TSOs will have to ensure they have the necessary sources (power reserves)

to cope with this uncertainty.
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Figure 5.7 shows the total cost as a function of wind uncertainty. The higher the

wind uncertainty, the higher the cost due to more ramp-up and ramp-down of generators.

Hence, despite RES being a cheap source of energy, their intermittent nature, requires

more reserves to cope and so there will be an increase of the cost of ancillary service.

These results confirm the conclusions of previous works, e.g. [90].
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Figure 5.6: 15-minute scheduling – σCoI as a function of wind uncertainty and volatility.
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Figure 5.7: 15-minute scheduling – Expected cost as a function of wind uncertainty and volatility.
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Impact of s-UC wind volatility

To study the impact of s-UC wind power volatility on power system dynamics, different

volatility levels are considered, i.e. higher standard deviations means high wind volatility.

The standard deviation of wind scenarios is increased from 10% to 40% with a step of

10% while uncertainty is kept constant.

Figure 5.6 shows σCoI as a function of wind power standard deviation. The higher the

wind power volatility, the higher the frequency variations. Similarly to the results shown

in Fig. 5.6, this relationship appears to be almost linear within the considered range. As

mentioned above, this supports the idea for increased ancillary services by TSOs in the

future.

Figure 5.7 shows the total cost as a function of wind volatility. It can be seen that

higher wind power volatility leads to higher costs due to higher ramping of generating

units. Wind power volatility has thus a more significant effect than uncertainty on costs.

5-Minute Scheduling

In this scenario, the wind power uncertainty level is assumed proportional lower compared

to the 15-minute scheduling period (j = 3.33%). This assumption is made based on the

15-minute rate of change of wind power shown above (Fig. 5.1). Next, the base case

scenario is depicted in Figs. 5.8, 5.9. Compared to the base-case scenario in the 15-minute

case study (Fig. 5.4), frequency variations are lower (Fig. 5.8). Also, it is interesting to

note that high frequency variations correspond to the wind ramp-up. Regarding the total

operating cost, its average value is approximately $408,000, and hence, lower than in the

15-minute case study due to lower uncertainty.

Impact of different s-UC strategies

Furthermore, a sensitivity analysis similar to the 15-minute scheduling is carried out and

Table 5.4 shows the relevant results. A reduction of the value of σCoI is observed for

all scenarios. This is due to the lower level of wind power uncertainty. In particular, if

we compare scenarios 1, 3 and 5, respectively, we can see that the differences are less

significant. It appears that, if the uncertainty level is low and the system is scheduled more

frequently, then differences between d-UC and s-UC becomes less evident. This result
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Figure 5.8: 5-minute scheduling – Trajectories of ωCoI(t) for 12h.

Figure 5.9: 5-minute scheduling – Trajectories of wind speeds for 12h. Dashed lines indicate the
high, medium and low scenarios, respectively, while black line indicate the same scenarios with
inclusion of volatility.

can be explained by the fact that, even if there is an error in the forecast, the machines

and the relevant controls will easily account for it. Therefore, if shorter interval of s-UC

are used and the system is scheduled more frequently, like, for example, in Australia [78],

then system operators can still rely on deterministic approaches without compromising

the dynamic performance of the system.
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Table 5.4: 5-minute scheduling – σCoI for different s-UC probabilities with j = 3.333%.

Scenario s-UC MC−TDS σCoI (10−4)
1 20% 60% 20% 20% 60% 20% 5.45
2 40% 50% 10% 20% 60% 20% 5.51
3 100% 0% 0% 20% 60% 20% 5.44
4 0% 100% 0% 20% 60% 20% 5.70
5 0% 0% 100% 20% 60% 20% 5.48
6 0% 20% 80% 20% 60% 20% 5.53
7 0% 40% 60% 20% 60% 20% 5.55
8 0% 60% 40% 20% 60% 20% 5.55
9 0% 80% 20% 20% 60% 20% 5.59

Table 5.5: 5-minute scheduling – σCoI for different s-UC probabilities with j = 3.333%.

Scenario s-UC MC−TDS σCoI (10−4)
1 0% 0% 100% 0% 0% 100% 5.46
2 0% 100% 0% 0% 100% 0% 3.38
3 100% 0% 0% 100% 0% 0% 2.43

While the sensitivity analysis in the case of the perfect forecast is shown in Table 5.5.

The deterministic case with low wind gives better dynamic behaviour, thus confirming

the conclusions drawn for the 15-minute s-UC.

Impact of s-UC wind uncertainty

Moreover, similar to the 15-minute case, the effect of wind power uncertainty on power

system dynamics using 5-minute scheduling is discussed. With this aim, the wind power

uncertainty level is increased from j = 10% to j = 40% with a step of 10%.

Figure 5.10 shows σCoI as a function of wind power uncertainty. Again, we can see

that such a relationship is almost linear within the used range. This suggests that, even

using shorter s-UC timescales, e.g. 5 minutes, higher shares of RES will likely affect the

system’s dynamic performance.

Impact of s-UC wind volatility

Following the same procedure as in the 15-minute case study, the standard deviation of

wind power scenarios is increased from 10% to 40% with a step of 10%. Then, Fig. 5.10

shows σCoI as a function of wind power volatility. This relationship is almost linear within

the considered range, and these findings support the conclusions made above.
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Figure 5.10: 5-minute scheduling – σCoI as a function of wind uncertainty and volatility.
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Figure 5.11: 5-min scheduling – Expected cost as a function of wind uncertainty and volatility.

Finally, the impact of wind power volatility on costs is shown in Fig. 5.11. Results

indicate that the higher the wind power volatility, the higher the cost due to more ramping

of generating units.
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Impact of contingency on the transient response of the system

using s-UC and d-UC

This section discusses whether a contingency leads to different dynamic behaviour of

the system if using a s-UC or d-UC. With this aim, the comparison is performed using

scenario 1 (stochastic) and scenario 5 (deterministic) from Table 4.1.

Figure 5.12: s-UC and 25% wind penetration – Trajectories of the rotor speed of relevant
machines following a contingency.

Figure 5.13: d-UC and 25% wind penetration – Trajectories of the rotor speed of relevant
machines following a contingency.
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Figure 5.14: s-UC and 50% wind penetration – Trajectories of the rotor speed of relevant
machines following a contingency.

Figure 5.15: d-UC and 50% wind penetration – Trajectories of the rotor speed of relevant
machines following a contingency.

A three-phase fault is applied at t = 900 s and cleared after 200 ms by disconnecting

line 1. The impact of the contingency is shown in Figs. 5.12 and 5.13. Specifically, Fig. 5.12

depicts the trajectories of the rotor speed of the relevant machines during the contingency

when using a s-UC. Similarly, Fig. 5.13 depicts the trajectories of the rotor speed of the

relevant machines during the contingency when using a d-UC. Results indicate that for

the considered case study the impact of contingency is almost identical. This is because

the generator schedules obtained with the s-UC and d-UC do not differ significantly.
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The same contingency is applied for the case of 50% wind penetration. Figures 5.14

and 5.15 show the trajectories of the rotor speed of the relevant machines during the

contingency when using a s-UC and d-UC, respectively. In this case, the s-UC leads to

a better transient response of the system following a contingency. It appears that one

cannot know a priori which strategies of s-UC are better from the dynamic viewpoint of

the system before solving both s-UC and d-UC problems.

Impact of renewable penetration on long-term frequency devia-

tions using different s-UC strategies

Increasing the penetration levels of RESs changes the system’s stability and dynamic

performance and makes real-time system operation more difficult for TSOs [126]. In this

context, this section focuses on the impact of high penetration levels of RESs, namely

50%, on the long-term frequency deviations using different s-UC strategies. A sensitivity

analysis with respect to different s-UC probabilities for the low, medium and high wind

power scenario is carried out with this aim.

Table 5.6 shows some relevant results of the analysis. There is a significant increase

in the value of σCoI in all scenarios compared to 25% of wind penetration. This is to

be expected as fewer synchronous generators that provide frequency regulation (primary

and secondary) are now scheduled to be online and more power is being produced by

stochastic sources.

Interestingly, the deterministic scenario with high wind power (scenario 5) is the worst

with σCoI = 2.61 · 10−3. Scenario 5, in fact, schedules fewer synchronous generators to be

online compared to the same scenario in the previous Section. In other words, there is

less frequency regulation available online to cope with wind power uncertainty. Therefore,

depending on the level of wind power uncertainty and wind penetration level, TSOs can

solve a s-UC or d-UC with high wind. Specifically, according to our results, it is better to

solve a d-UC with high wind power for low wind power uncertainty (j < 30%) and 25%

wind penetration level. On the other hand, if the wind penetration level is 50%, TSOs

can solve a s-UC and/or d-UC with medium and low wind power.
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Table 5.6: 15-minute scheduling – σCoI for different s-UC probabilities with j = 10% and 50%
wind penetration.

Scenario s-UC MC−TDS σCoI (10−4)
1 20% 60% 20% 20% 60% 20% 19.03
2 40% 50% 10% 20% 60% 20% 18.95
3 100% 0% 0% 20% 60% 20% 19.09
4 0% 100% 0% 20% 60% 20% 19.09
5 0% 0% 100% 20% 60% 20% 26.18

Impact of the number of s-UC wind scenarios on the dynamic

response of the system

In this section, we compare the impact of the number of s-UC wind scenarios on the

dynamic behaviour of the power system. The comparison is performed using a 15-minute

scheduling time period and 25% wind penetration. With this aim, we consider 10 wind

power scenarios and perform a sensitivity analysis. Wind power scenarios are built

according to the wind maximum variation width j (see Fig. 5.1). In order to compare the

results, a base-case scenario is considered with the following properties: s-UC probabilities

for the 10 scenarios (starting from low to high wind) are set as follows: 5%, 5%, 10%,

10%, 30%, 10%, 10%, 10%, 5%, 5%. Similarly, when we run the MC-TDS, the system is

assumed to be with the following probabilities: 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%,

5%, 5%, starting from low to high wind scenario, respectively.

Figure 5.16: 15-minute scheduling – Trajectories of ωCoI(t) for 10 s-UC wind power scenarios.
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Table 5.7: 15-minute scheduling – Different s-UC probabilities with j = 10% and 10 wind power
scenarios.

Scenario s-UC
1 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5%
2 20%, 5%, 5%, 10%, 10%, 5%, 10%, 10%, 5%, 20%
3 100%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%
4 0%, 0%, 0%, 0%, 100%, 0%, 0%, 0%, 0%, 0%
5 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 100%

Table 5.8: 15-minute scheduling – σCoI for different s-UC probabilities with j = 10% and 10
wind power scenarios.

Scenario MC−TDS σCoI (10−4)
1 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.74
2 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.77
3 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.82
4 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.99
5 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.90

Figure 5.16 shows the trajectories of ωCoI(t) for this base case scenario. Compared to

Fig. 5.4 (3 s-UC wind power scenarios), there is no significant difference in the system’s

dynamic behaviour. To further support this, Tables 5.7 and 5.8 show some of the relevant

results of the sensitivity analysis. As it can be seen, the long-term frequency deviations

are similar to those in Table 4.1 and do not differ significantly between scenarios. It

appears that, for the considered case, increasing the number of s-UC wind power scenarios

from 3 to 10 does not have a significant impact on the dynamic response of the system.

Furthermore, these results support the above conclusion that a highly sophisticated s-UC

might not be necessary if the scheduling is repeated with a short period.

5.8 Case Study 2: Impact of Different s-UC and

Frequency Controllers/Machine Parameters

This case study provides a sensitivity analysis of the impact of different frequency

controllers/machine parameters using a s-UC, a d-UC and different scheduling time

periods [70]. This analysis allows comparing and drawing conclusions on the effect of these

parameters on the dynamic performance of the system. The case study also compares the

impact that different formulations of s-UC have on the dynamic performance of power

systems.
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The focus of this case study is on the first 4 hours of the planning horizon. Wind

power uncertainty, volatility and rolling planning horizon within the s-UC are modeled as

in [66]. All other data are the same as in case study 1. The case study results are based

on a MC, where 50 simulations are considered for each scenario.

Sensitivity Analysis with Respect to Different Frequency Con-

trollers/Machine Parameters

In this section, we vary (one at a time) three relevant frequency control/machine parameters

and observe their impact on the standard deviation of the frequency.

The following base-case scenario is considered: the value of the gain of the AGC is

taken equal to Ko = 50, the value of the droop of the TGs is taken equal to R = 0.05,

and the value of inertia of the machines is taken equal to the original values. In the

scenarios below, the total inertia of the system and the gain of AGC is decreased up

to 45% from the base case. Similarly, the aggregated system droop is increased up to

45% from the base case. Finally, since system operators still rely on d-UC and different

sub-hourly scheduling periods [24], this sensitivity is performed using 15- and 5-minute

periods and different s-UC formulations.

In the following, the sub-indexes S and D indicate control parameters for stochastic

and deterministic scenarios, respectively.

s-UC with 15-minute time period

In this scenario, we use a 15-minute scheduling time period and set the s-UC probabilities

for the low, medium and high wind power scenario equal to 20%, 60%, 20%, respectively.

Same probabilities are used when solving the MC-TDS. Next, the relevant frequency

control/machine parameters are varied accordingly up to 45% of their base case value.

Figure 5.17 shows the effect of the variation of these parameters on σCoI. The gain of

AGC, KS, has the highest impact on σCoI. The relationship between the gain KS, the

droop RS, and σCoI is almost linear within the used range. This indicates larger frequency

deviations as synchronous generators are replaced with RES (assuming that RES will

not provide frequency regulation). On the other hand, the inertia MS appears to have

a small impact on long-term frequency deviation. This result indicates that while the
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inertia is the main parameter impacting on the frequency dynamics following a major

contingency, this is not the case on its impact on the σCoI (see also [118], which draws a

similar conclusion).

d-UC with 15-minute time period

As discussed above, system operators still rely on a d-UC formulation when scheduling the

system. Therefore, it is essential to compare the impact of the variation of the relevant

control/machine parameters on σCoI, using a s-UC and a d-UC. With this aim, we set

the d-UC probabilities for the low, medium and high wind power scenarios equal to 0%,

100%, 0%, respectively. Thus, perfect forecast, which corresponds to the medium scenario,

is assumed. However, when solving the MC-TDS, 20%, 60%, 20% probabilities are used

to generate the three wind power scenarios. This creates a mismatch between forecast

and actual wind variations and allows evaluating the robustness of the s-UC and d-UC

formulations. Figure 5.17 shows the impact on σCoI of varying control/machine parameters.
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Figure 5.17: 15-minute time period – σCoI as a function of different frequency controllers/machine
parameters using the complete s-UC and d-UC models.

A relevant difference concerning the scenario above is that the droop RD has the highest

impact on σCoI when its value is ≥ 30% with respect to the base case. On the other

hand, the gain of the AGC, KD and the inertia MD have similar impact on σCoI as in

the previous scenario. It appears that, the impact of different control parameters on σCoI

depends on the UC formulation (deterministic or stochastic). Thus, it is not obvious
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which one (i.e. R or K) has the highest impact on σCoI. Fig. 5.17 compares the results

of scenarios 1 and 2 and shows that using a s-UC leads to lower frequency variations.

Furthermore, it should be noted that the differences between scenarios in Fig. 5.17, for

example, RS and RD after 28%, are due to the fact that both models, namely s-UC and

d-UC, produce different schedules for generators.

Sensitivity analysis using the simplified and alternative s-UC,

and 15-minute time period

Here, we perform the same sensitivity analysis as above, but this time using the simplified

and alternative s-UC models, respectively. Such an analysis allows comparing and drawing

conclusions on the impact of different frequency control/machine parameters on σCoI,

using different sub-hourly s-UC models. With this aim, Fig. 5.18 shows the relevant

results of the sensitivity analysis. Note that the sub-indexes Sim and Alt indicate control

parameters for simplified and alternative s-UC scenarios, respectively. As expected, results

are, in general, very similar to the ones discussed in previous sections. The gain of the

AGC, in this case, KSim and KAlt, has most of the time the highest impact on σCoI, as

well as the inertia of the machines appears to have a small impact. Moreover, using

an alternative s-UC model and varying its relevant parameters leads to lower frequency

variations. This is because the alternative s-UC model schedules more generators to be

online compared to the other three UC models. Thus, depending on the s-UC model,

different control parameters (e.g. K or R) can have a different impact on σCoI.

s-UC with 5-minute time period

This scenario investigates whether a shorter scheduling time period of s-UC, namely

5-minute, changes the results and conclusions drawn for the 15-minute time period. Due

to the shorter time period, the wind power uncertainty level within s-UC is lower compared

to the previous section. Both s-UC and MC-TDS probabilities for the low, medium and

high scenarios are set equal to 20%, 60% and 20%, respectively.

Figure 5.19 shows the effect of the variation of the relevant control parameters on σCoI.

The most visible effect of reducing the time period to 5-minutes is that the value of σCoI

decreases in all scenarios due to a lower wind power uncertainty. Also in this case, the
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Figure 5.18: 15-minute time period – σCoI as a function of different frequency controllers/machine
parameters using the simplified and alternative s-UC models.

gain of the AGC, KS, has the highest impact on σCoI. The relationship is linear in the

considered range, which indicates the need to increase the frequency regulation to keep

long-term frequency deviations within certain limits. Finally, the inertia has little effect

on σCoI, supporting the conclusions above.
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Figure 5.19: 5-minute time period – σCoI as a function of different frequency controllers/machine
parameters.
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d-UC with 5-minute time period

Figure 5.19 shows the effect of the variation of control/machine parameters using a

5-minute scheduling and d-UC. Results are very similar to the 5-minute scheduling s-UC.

To better show the differences, Fig. 5.19 compares the results of both scenarios, where it

can be observed that the s-UC leads, in general, to lower frequency variations. Also, in

both scenarios, the gain of the AGC has the highest impact on σCoI, whereas the inertia

has a small impact.

Figure 5.20: Trajectories of ωCoI(t) for 15-minute time period and complete s-UC.

Figure 5.21: Trajectories of ωCoI(t) for 15-minute time period and simplified s-UC.
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Figure 5.22: Trajectories of ωCoI(t) for 15-minute time period and alternative s-UC model.

Comparison of Different s-UC Models

Even though system operators are skeptical regarding s-UC approaches due to their

complexity, they acknowledge the need to better represent uncertainty when scheduling

the system [129].

For this reason, the objective of this section is to compare the impact that these models

have on long-term power system dynamics. Such a comparison is made using a 15-minute

time period.

We first compare the impact on the dynamic response of the power system of the s-UC

formulations (5.3)-(5.21) (complete s-UC) and (5.25)-(5.29) (simplified s-UC).

Figures 5.20 and 5.21 show the ωCoI(t), of the complete and simplified s-UC models.

The two formulations returns an almost identical ωCoI(t), namely σCoI = 8.00 · 10−4

pu(Hz) for the complete s-UC and, while that of the simplified s-UC is σCoI = 7.94 · 10−4.

Specifically, the difference is about 1%. Figures 5.23 and 5.24 show the mechanical power

of the conventional synchronous generators 1, 2 and 4, of the complete and simplified

s-UC model. The two models produce similar schedules. In fact, at the beginning of the

planning horizon, the simplified s-UC model alternates the schedules for generators 2 and

4, and after some time (i.e. after 6000 s) it produces the same schedules as the complete

s-UC model. It appears, thus, that for this particular system and for normal operation

conditions, the differences between using a complete s-UC model and a simplified one are
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negligible. These results suggest that an involved UC formulation is not necessarily the

best in normal operating conditions of the system.

Next, we compare the impact on system dynamics of the problem (5.3)-(5.21) (complete

s-UC) and the problem (5.30)-(5.39) (alternative s-UC). With this aim, a MC-TDS per

each s-UC formulation is carried out.

Figure 5.23: Mechanical power of synchronous generators 1, 2 and 4, for 15-minute time period
and complete s-UC model.

Figure 5.24: Mechanical power of synchronous generators 1, 2 and 4, for 15-minute time period
and simplified s-UC model.

Figure 5.22 shows ωCoI(t) for the alternative s-UC model. Compared to the complete

s-UC model (see Fig. 5.20), the alternative formulation leads to lower frequency variations,
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Figure 5.25: Mechanical power synchronous generators 1, 2 and 4, for 15-minute time period
and alternative s-UC model.

i.e. σCoI = 3.90 · 10−4. In other words, the differences between the models is about 48%.

This is due to fact that the two s-UC formulations produce slightly different schedule

for generators. Specifically, the alternative s-UC model schedules a few more generators

(Fig. 5.25) compared to the complete s-UC model (Fig. 5.23). This, in turn, implies more

regulation, which helps better manage wind uncertainty. This can be observed in Fig. 5.22

where, in the time between two scheduling events – i.e. 15-minutes – frequency variations

are lower due to the increased frequency regulation available in the system.

This result had to be expected. From the dynamic point of view, in fact, it is better

to schedule more conventional synchronous generators, which provide both primary and

secondary frequency regulations, rather than wind generation.

5.9 Conclusions

This chapter analyses the impact of the sub-hourly s-UC problem on the dynamic response

of the power system. More specifically, the chapter focuses on the effect of different s-UC

strategies and different wind uncertainty and volatility scenarios included in the s-UC on

frequency variations. Also, the chapter performs a thorough sensitivity analysis to assess

the impact on long-term power system dynamics of different frequency control/machine

parameters and different sub-hourly s-UC formulations. With this aim, various standard

and sophisticated s-UC are used to capture wind uncertainty, while the variability is
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captured through a sub-hourly UC. Then, the sub-hourly s-UC are embedded into a

TDS, and a rolling approach is used to account for wind and load forecast updates.

Simulation results of the first case study based on MC-TDS show no significant

difference on long-term frequency deviations of the system when using different s-UC

strategies. Results also suggest that for low wind uncertainty and 25% wind penetration

level, system operators may want to solve a d-UC with high wind. However, as the s-UC

wind uncertainty increases, then a s-UC approach is to be preferred. In addition, if the

system is scheduled more frequently, then differences between stochastic and deterministic

approaches become less evident. From the dynamic performance point of view, thus, the

computational complexity of the stochastic methods does not provide an added value

compared to that of deterministic ones.

Furthermore, results show that s-UC wind power uncertainty has a more substantial

impact than volatility on the system’s dynamic behaviour. They also indicate an almost

linear relationship between s-UC wind uncertainty and volatility and frequency variations.

This means that as the share of RESs deepen into modern power systems, i.e., higher

wind uncertainty and volatility, it will be difficult for TSOs to manage the real-time

balance between generation and demand. Therefore, there is a clear need for a linear

increase of the spinning reserves.

Regarding the impact of s-UC wind scenarios, the case study shows that increasing the

number of scenarios does not lead to any significant difference in the long-term frequency

deviations. This result supports the conclusion that a highly sophisticated s-UC might

not be needed if the scheduling is repeated frequently and with a short time period.

Moreover, results demonstrate that s-UC and d-UC for 25% wind penetration lead

to an almost identical transient response of the system following a contingency. On the

one hand, s-UC leads to a better transient response of the system in case of 50% wind

penetration. On the other hand, when the wind penetration level reaches 50%, solving a

s-UC and/or d-UC with medium and low wind power leads to lower long-term frequency

deviations.

Simulation results of the second case study reveal that the gain of the AGC is the main

parameter impacting the long-term frequency deviation. On the other hand, synchronous

machine inertia has a negligible effect on the standard deviation of the frequency. The

results also highlight that the power system’s dynamic behaviour differences are marginal
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when using a complete or a simplified s-UC model. Furthermore, a s-UC leads to lower

variations of the frequency compared to a d-UC. An interesting result is that different

formulations of the s-UC problem can schedule conventional power plants in different

locations and/or numbers. These differences can significantly impact long-term power

system dynamics, and hence the formulation of the s-UC has to be carefully chosen.

Given the above findings, we can conclude that: (i) TSOs can still rely on deterministic

approaches when scheduling the system for wind power penetration levels below 25%; (ii)

for higher wind power penetration levels, stochastic approaches should be employed and

preferred by TSOs; (iii) there is a need for a linear increase of spinning reserves as the

share of RESs increases; and (iv) the gain of the AGC and the formulation of the s-UC

have to be carefully chosen as they may greatly impact the standard deviation of the

frequency.
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Chapter 6

A Dynamic Behavioral Model of the

Long-Term Development of Solar

Photovoltaic Generation driven by

Feed-in Tariffs

6.1 Introduction

This chapter focuses on the modelling and simulation of the very long-term dynamics

in power systems, namely the dynamics of incentive policies such as that FiT for PVs

development. While FiT has provided a good platform for increasing the number of PV

installations, it has also put a massive burden on the national budgets. This is because

governments put in place extremely favorable and generous FiT schemes. However,

generous FiT prices may lead to economic instability and eventually to the collapse of

the scheme. Hence, defining appropriate policies is of utmost importance [55].

In this context, the objective of the chapter is to introduce a novel dynamic model

based on nonlinear delay DAEs to simulate the evolution of the PV capacity and its

commitment in the power grid. The model assumes the FiT budget, the PV cost and

the public’s willingness to install PVs as the main drivers for solar PV installations. The

model’s accuracy is validated against historical data of two of the biggest PV markets in

the world driven by FiT, namely Italy during 2008-2014, and Germany during 2000-2014.
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A sensitivity analysis based on the Italian PV market is also carried out to identify the

impact of the parameters of the proposed model.

The remainder of the chapter is organized as follows. Section 6.2 presents the

background of FiT schemes in Italy and Germany. Section 6.3 introduces the proposed

dynamic model. The model validation test and the sensitivity analysis are presented in

Section 6.4 and Section 6.5, respectively. Finally, Section 6.6 states the main conclusions

of the chapter and discusses relevant policy implications.

6.2 FiT Evolution in Italy and Germany

Italy

The solar PV capacity in Italy experienced an unexpected and exponential growth between

2008 and 2012 [8]. The main driver of the increase was the favorable and generous FiT

applied by the Italian government through the so-called energy bill [72, 101]. The first

energy bill was introduced in 2005 and lasted until 2007. While it included a very high FiT

price, namely 490 EUR/MWh, this energy bill also had a cap of 100 MW. The capacity

cap and the excessive bureaucratization regarding the procedures for the installations

were a huge barrier to incentivize the investors [101].

In 2008, the Italian government introduced the second energy bill. This bill remained in

place until 2010. It foresaw a 2% decrease of the FiT price and removed the administrative

procedure and the cap on the overall PV capacity. Despite reducing the FiT price, the

bill had a positive impact with 432 MW additions in 2008. This deployment led to an

aggregate cost of 110 MEUR.

The solar PV capacity tripled in 2009 with a capacity of 1,114.4 MW and an annual

cost of 303 MEUR [101]. At this point, the Italian government realized that the incentive

cost was creating a considerable burden on the national budget. Thus, the government

introduced the third energy bill, which foresaw a cut of the FiT price. Despite the new

changes, the rush in the PV investment continued, and 3.74 GW were added. In terms of

costs, 800 MEUR were paid in 2009 [101]. Furthermore, it is relevant to mention that

this bill set an aggregate cap of 23 GW and 6,700 MEUR for the installed capacity and

incentive cost, respectively.
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In 2012, the Italian government revised the energy bill again and significantly decreased

the FiT price. Finally, on the 7th of July 2013, the assigned annual incentive budget of

6,700 MEUR was reached thus leading to the removal the FiT [32].

Germany

In 2010, Germany was the world’s largest market for PVs with approximately 17.3 GW of

installed capacity [119]. The growth was directly related to the so called renewable energy

sources act in 2000 that introduced the FiT mechanism [74]. The act restored a secure

climate for investment as it guaranteed a fixed price for PV-generated electricity for a

period of 20 years. In other words, it provided long-term financial security for investors

and made the PV technology economically viable [104].

The German FiT mechanism for solar PV power is regarded by many as a highly

effective and widely copied policy instrument that led to a significant diffusion and

development of PV technology [52]. Since its implementation in 2000, the installed

capacities of renewable energy technologies increased remarkably, by more than eightfold

between 2000 and 2015 [7].

The initial plan was to review the FiT scheme every year to take into account

technological and price developments [50]. For example, the amending law of 2004 stated

that the FiT price for PV and other renewable technologies should be increased to reflect

the cost situation of the technologies [98]. Then the modification of the renewable act in

2009 established an increase in the reduction of FiT from 5% to 10% [104].

The renewable act was further amended in 2012 and decided to reduce FiT by 1% per

month, and set a 52 GW PV capacity threshold [74]. Finally, the German government

moved away from the FiT approach in 2014, and introduced pilot auctions for solar

energy [75].

6.3 Proposed Model

This section presents the proposed dynamic model. The objective of the model is to

simulate and match long-term variation of indices such as the number of solar PV

installations and solar PV generation capacity. This model properly accounts for the
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dynamic coupling between different variables of the system, for example, between the FiT

price and the number of PV installations.

The remainder of this section describes the mathematical formulation of the proposed

solar PV energy policy model. For clarity, the description of all variables is given in

Table A.4 of Appendix A.3.

PV Installation Costs

In this chapter, we use the learning-by-doing concept to model solar PV system costs [125].

It is well-known that as the cumulative output of a product increases, its cost decreases

due to gained experience. For example, the learnings earned from the solar PV panel unit

production process accumulate and, over time, lead to a cheaper production of future

units.

In mathematical terms, this can be expressed as follows [79]:

ϑ(t) = ϑo ·
(

Φ(t)

Φo

)−β
, (6.1)

where ϑ(t) is the cost of installing a MW unit (EUR/MW); ϑo is the initial cost at t = 0;

Φo and Φ(t) are the initial and cumulative MW installed to the system, respectively; and

β is the learning parameter. Equation (6.1) means that production costs will decrease

exponentially and tend to zero in the long run [119].

The rate of the cost reduction can be quantified by referring to the learning rate

(expressed as a percentage), which is calculated as follows:

LR = 1− 2−β . (6.2)

For example, a value of β = 0.322 means that doubling solar PV installations will lead to

approximately a 20% reduction to the PV panel production cost.

Cumulative PV Installations

This study assumes that three main factors decide the number of PV installations, namely

FiT budget, PV cost and willingness of the people to install PVs. The factors represent

economic indicators that motivate people to install solar PVs. Note that these are common
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assumptions made in the literature as it is shown in practice that the national or regional

installation of solar PV systems depends on factors such as solar PV cost, FiT price,

and the installation subsidies provided [53].

In this context, the cumulative PV installations are calculated through the following

differential equation:

TΦ · Φ̇(t) =
w(t) · ε(t)
ϑ(t)

, (6.3)

ε represents the cumulative revenue of the FiT scheme (EUR) (see Eq. (6.10) below);

and w(t) represents the willingness of people to install PVs (see Eq. (6.6)). It is worth

noticing that Eq. (6.3) allows relating FiT policy parameters (e.g., FiT price through

w(t), see Eq. (6.6) below) to actual PV deployment (i.e., Φ(t)).

Feed-in Tariff Price Dynamics

The evolution of the FiT price is described by the following equation:

Θ(t) = φ(t− τ) , (6.4)

where Θ(t) represents the FiT price (equal to the delayed value of φ(t)); τ is a time delay

that models the time that has elapsed when the FiT starts decreasing; and φ(t) is a

proper decreasing function, defined as follows:

Tφ · φ̇(t) = φ(t− τ)− φo , (6.5)

with Tφ being its time constant and φo representing an input disturbance. To model

the decrease of the FiT price by the governments over time, we assume that the value

of φo is 20% greater than the initial value of φ(t), say φ(t0). Therefore, there will be a

negative balance in Eq. (6.5) which means that φ(t) will start decreasing after a time that

is equal to the delay τ . Note that in practice, the governments cannot decrease the FiT

price indefinitely. Hence, in order to prevent that Eq. (6.5) becomes lower than a certain

minimum value, we implement a limit on the value of Θ(t) and φ(t), respectively (see

Eqs. (A.4)-(A.5) in Appendix A.3).
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Willingness of People to Install PVs

People’s willingness is a crucial factor to increase the solar PV capacity [53, 81]. It is

well-known that people are more willing to do something if the incentive is high. For

this reason, in this chapter, we assume that the willingness of people to install PVs is

proportional to the FiT price, as follows:

w(t) =
Θ(t)

Θo

, (6.6)

where Θo is the initial FiT price. Thus, the model assumes that people’s behavior to

install PVs follows a strategy that is based on pure economic return [53]. Furthermore,

it is assumed that when Θ hits the lower limit, say Θmin, w(t) will still decrease. This

implies that even though the FiT price is constant, people’s willingness will continue to

decrease since the FiT price is too low.

The assumption that the willingness of people to install PVs is proportional to the

FiT price (Eq. (6.6)) is widely accepted in the literature [53].

Contribution of Solar PV in the Energy Mix

The contribution of solar PVs in the energy mix is modeled through the following algebraic

equation [104]:

ϕpv(t) = Φ(t) · I · PR , (6.7)

where ϕpv(t) represents the energy produced by PV generation (MWh); Φ represents the

number of PV plants/MW installed in the system (in this chapter, we assume 1 PV plant

= 1 MW); I is the reference PV yield (MWh/MW) e.g. in a year; PR is the performance

ratio (e.g. 85%).

In general, it is useful to estimate the cumulative solar PV generation. With this aim,

the following differential equation is introduced:

Tυ · υ̇pv(t) = Φ(t) · I · PR , (6.8)

where υpv represents the cumulative PV generation and Tυ represents its time constant.
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Cumulative Expenses to Support Solar PV Generation

As mentioned above, under the FiT program, investors are paid using a fixed price (Θ) for

the electricity generated and fed into the grid from the solar power plant. The cumulative

expenses to support solar PV generation can be calculated using the following differential

equation [98]:

Tχ · χ̇(t) = Θ(t) · ϕpv(t) , (6.9)

where χ represents the cumulative expenses to support the solar PV production and Tχ

represents its time constant.

Cumulative Revenue of the FiT Fund

Incentives such as FiT are generally paid by the consumers through a surcharge on the

electricity bill [7]. In this context, the cumulative revenue of the FiT fund can be modeled

through the following differential equation [98]:

Tε · ε̇(t) = ρ · LP · EC · u , (6.10)

where Tε represents the time constant of ε(t); ρ represents the electricity price; LP is

the constant levy given as a percentage of the electricity price; EC is the total energy

consumption (assumed constant in this chapter unless stated otherwise); and u = 1 if:

ε(t) > χ(t) ,∀t , (6.11)

holds. Otherwise u = 0. Equation (6.11) represents the viability condition of the FiT

scheme [98]. In other words, the condition for the FiT viability is that the cumulative

revenue of the FiT fund (ε(t)) should be greater at any time than the cumulative expenses

(χ(t)).

125



Variable Limits

In practice, there are limits on certain variables of the system. For example, the FiT

budget is not infinite, or the FiT price cannot decrease indefinitely. Appendix A.3 presents

the implementation of the limiters for the variables of the proposed model.

6.4 Model Validation

The accuracy of the model is validated based on two of the most important PV markets

in Europe and globally, namely Italy for the period 2008-2014 and Germany for the period

2000-2014. With this aim, simulation results produced with the proposed model are

compared against historical data. Six key and highly uncertain variables of the model

are selected for illustration. These are: (1) cumulative PV capacity; (2) cumulative PV

generation; (3) PV cost; (4) cumulative FiT budget; (5) FiT price; and (6) people’s

willingness.

For completeness and reproducibility of the results, the input data of the model are

given in Appendix A. In particular, the parameter values and historical data are given in

Tables A.5-A.6 for Italy, and in Tables A.7-A.8 for Germany. It is relevant to note that

some of the parameters can be obtained by conducting surveys [15].

Solar PV Development in Italy 2008-2014

Figures 6.1-6.5 compare the historical PV installed capacity, generation, fund, costs, and

FiT price values with their respective simulated values, while Fig. 6.6 shows the evolution

of the willingness of the people.

Results indicate that, if the parameters are properly chosen, the model can accurately

reproduce the historical data. In particular, the model is able to match the relatively slow

response of the installed PV capacity to the policy during the first years (see Fig. 6.1).

This slow response implies that during the first years there is a high inertia mainly due to

high initial PV costs (Fig. 6.4), even though the willingness of the people to install PV is

high (Fig. 6.6). Note that the current model does not account for other factors that may

impact the PV installation in the first years, e.g. such as large development times and/or

administrative procedures.
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Figure 6.1: Italian case: Cumulative solar PV installations.
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Figure 6.2: Italian case: Cumulative solar PV generation.

It is also worth observing that the model almost perfectly matches the cumulative

solar PV generation over the years (Fig. 6.2) and forecasts reasonably well the FiT fund

(Fig. 6.3). Furthermore, the validation of the learning-by-doing model against real data

from the Italian market (Eq. (6.1)) is shown in Fig. 6.4. In particular, it can be observed

that in the first few years the model underestimates the cost reductions, while in the last

two years the model overestimates the PV costs (Fig. 6.4).However, it appears that these

differences in the cost do not significantly impact the PV installed capacity (Fig. 6.1).
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Figure 6.3: Italian case: Cumulative FiT fund.
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Figure 6.4: Italian case: Solar PV cost.

With regard to the FiT price, Fig. 6.5 shows that the model forecasts very well its

evolution in the considered period of analysis. Therefore, the use of Eq. (6.4) appears

to be useful in reproducing the change of FiT price over time. The willingness of the

people to install solar PVs is shown in Fig. 6.6. As expected, evolution of the willingness

is proportional to the FiT price (Fig. 6.5). However, it is interesting to note that people’s

willingness reaches the limit (210−5 considered in this chapter) at around 2012 when the
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Figure 6.5: Italian case: Solar PV FiT price.
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Figure 6.6: Italian case: Willingness of people to install solar PVs.

FiT price was fixed and the lowest of the policy. These results explain the small increase

of the solar PV installations after 2013 (see Fig. 6.1). Thus, keeping high FiT prices is

crucial to increase the willingness of people to install PVs.

Solar PV Development in Germany 2000-2014

This second example validates the model against historical data of the solar PV systems

in Germany in the period 2000-2014. This is needed to check if the model is general
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enough to match different PV markets. With this aim, and similar to the Italian case,

Figs. 6.7-6.11 show the comparison between historical values and simulated ones. Moreover,

Fig. 6.12 shows the evolution of the willingness of the people to install PVs. In general,
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Figure 6.7: German case: Cumulative solar PV installed.
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Figure 6.8: German case: Cumulative solar PV generation.

the proposed model is able to match the development of the PV market in Germany

between 2000-2014. However, compared to the Italian case, the differences between

historical and simulated values are slightly more evident. Specifically, while the model is

able to accurately reproduce the historical data of the PV installations (Fig. 6.7) and

130



generation (Fig. 6.8), PV costs (Fig. 6.9), FiT budget (Fig. 6.10) and FiT price (Fig. 6.11)

are calculated with less accuracy. The main reason for these deviations is that several
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Figure 6.9: German case: Solar PV cost.

parameters, e.g. the electricity price ρ and the levy constant LP , are time-dependent

and change significantly over the years. This is however unpredictable and cannot be

properly modelled a priori. For example, at the beginning, the electricity price ρ and

the levy constant were small [7]. The government then realised that to incentivize the

PV market further, they needed to increase the burden on the consumer electricity bill.

As a result, the FiT budget does not increase linearly, as calculated by the proposed

model (see Fig. 6.10). It is relevant to note, however, that while the proposed model

cannot anticipate the changes in the policy, it provides a tool to estimate what happens

if some of the parameters are varied. This feature is discussed in detail in Section 6.5.

Fig. 6.12 shows the evolution of the willingness of the public to install PV panels. While

the willingness has generally the same trend as the FiT price (Fig. 6.11), its behavior

changes when it reaches its lowest value. Specifically, Fig. 6.12 shows that at the end of

the period of analysis (i.e. the year 2014), the willingness has a value of more than 0.4.

This value is significantly higher compared to that obtained in Italy (210−5). This means

that, compared to Italy, the willingness of people in Germany was relatively high. These

results can explain the development of solar PV installations in Germany, where there is
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Figure 6.10: German case: Cumulative FiT fund.
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Figure 6.11: German case: Solar PV feed-in tariff price.

still a strong increase in the number of PVs installed [41]. In contrast, Italy’s PV market

has seen a prolonged rise in the number of PVs after 2014 [112].

While the German case has idiosyncrasies that cannot be fully captured, the proposed

model is still able to give the correct trend in all cases. Therefore, it is fair to say that,

overall, the proposed model passes the validation test.
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Figure 6.12: German case: Willingness of people to install solar PVs.

6.5 Sensitivity Analysis

This section presents a sensitivity analysis of the model using the Italian case for the

period 2008-2014. Using adequate parameters is, in fact, crucial to accurately reproduce

the historical PV data [98].Unless stated otherwise, for all scenarios, we show two variables

of the system, namely the cumulative solar PV capacity and generation.

Effect of Different Cost Modelling

This section compares different PV cost modelling and their impact on the PV capacity

and generation. As discussed in Section 6.3, we have proposed the utilization of the

learning-by-doing model, which is based on Eq. (6.1). While this model is heuristic, we

show in this section that it is actually quite accurate. For illustration, we compare the

proposed learning-by-doing and a simple linear cost modelling and show their effect on

the evolution of the PV capacity and generation.

Figures 6.13-6.14 show the evolution of the PV capacity and generation during the

period 2008-2014 for different PV cost modelling. The learning-by-doing approach leads

to a better forecast compared to the linear one, i.e. the linear cost modelling leads to an

underestimate of the PV capacity. These results support the utilization of Eq. (6.1).

133



2008 2009 2010 2011 2012 2013 2014
Time [Year]

0

2500

5000

7500

10000

12500

15000

17500

P
V

In
st

al
le

d
C

ap
ac

it
y

[M
W

]

Learning-by-doing

Linear

Actual

Figure 6.13: Italian case: Cumulative solar PV installed.
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Figure 6.14: Italian case: Cumulative solar PV generation.

Effect of β

In this section, we compare the effect of different learning coefficients β in the evolution of

the PV technology. Such analysis is relevant because the value of the parameter β is not

always obvious [36]. For example, different values of β are indicated for Germany in [53]

and [104]. For this reason, the sensitivity analysis is carried out using three values of β,

namely, 0.2, 0.322, and 0.4 [104].
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Figure 6.15: Italian case: Cumulative solar PV installed.
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Figure 6.16: Italian case: Cumulative solar PV generation.

Figures 6.15-6.16 show that results are sensitive to the value of the learning parameter

β. Moreover, it can be seen that larger values of β lead to higher PV installed capacity

and generation. This was to be expected. Larger values of β mean a higher accumulation

of experience as well as a faster decrease of the PV system costs.
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Effect of Load Consumption

Another relevant but uncertain parameter of the model is the load power consumption.

Three scenarios are assumed namely 1% consumption increase per year, constant load

consumption, and 1% decrease per year. The results of the sensitivity analysis are shown

in Figs. 6.17-6.18. These figures show that different levels of load power consumption
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Figure 6.17: Italian case: Cumulative solar PV installed.
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Figure 6.18: Italian case: Cumulative solar PV generation.

lead to similar trends in the evolution of PV capacity. It appears, thus, that the load
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power consumption is not a highly sensitive parameter of the model. However, it is worth

observing that the higher the load consumption, the bigger the increase of the PV capacity

and generation. In other words, the increase of EC impacts positively on the development

of the PV market.

Effect of Levy

In this section, we perform a sensitivity analysis with respect to different levy constant

values LP . This parameter defines the level of financial support from the governments

to support the development of different energy technologies (see Eq. (6.10)). It has been

observed that over time this parameter changes significantly (i.e. very uncertain) [7]. With

this aim, three scenarios are considered, namely LP = 10%, LP = 15%, and LP = 20%,

respectively. These values are realistic and are consistent with what happened in Italy [101].

Figures 6.19-6.20 show that the levy constant is a highly sensitive parameter. This was to
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Figure 6.19: Italian case: Cumulative solar PV installed.

be expected as this parameter defines the amount of money (budget) that the government

puts in place to support the PV technology. These results confirm the previous conclusion

that government financial support is crucial for successfully integrating and fostering the

solar PV market.
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Figure 6.20: Italian case: Cumulative solar PV generation.

Effect of the Electricity Price

This section discusses the impact of the electricity price ρ on the evolution of the PV

market. Similar to the previous sections, a sensitivity analysis is carried out considering

three values of ρ, namely 100, 200, and 300 EUR/MWh, respectively. Figures 6.19-6.20
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Figure 6.21: Italian case: Cumulative solar PV installed.

show that with the increase of ρ there is an increase in the solar PV installations and

generation. This has also to be expected because increasing ρ means that there is more
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Figure 6.22: Italian case: Cumulative solar PV generation.

money to support the development of the PV market (Eq. (6.10)). It can be concluded

that the electricity price ρ is a highly sensitive parameter of the model.

Effect of εmax

The Italian government closed the FiT program in July 2013 when the budget limit was

reached (i.e. 6,700 MEUR) [72]. It is relevant to study the impact of such a cap on the

evolution of the PV market. In the proposed model, this information is given by εmax.

With this aim, we vary the value of εmax and observe its impact on the PV capacity and

generation. Three values are used, namely 4,700, 6,700, and 8,700 MEUR, respectively.

Figures 6.23-6.26 show the relevant results of the sensitivity analysis. Interestingly, there

are no significant differences with respect to the PV installed capacity and generation.

This can be explained by the fact that in 2012 the FiT price is too low (104 EUR/MWh)

to incentivize people to install solar PVs (see Fig. 6.26). This negatively affects the

people’s willingness, which hits the lower limit considered in this work, i.e. 210−5, as shown

in Fig. 6.6. It descends that keeping high FiT prices is vital if an energy policy is to be

successful. By doing that, governments can increase the willingness of people to install

solar PVs. However, high FiT rates may lead to economic instability [21]. Therefore

governments should find a trade-off between compensation for investors and a reasonable

burden for the energy consumers [98].
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Figure 6.23: Italian case: Cumulative solar PV installed.
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Figure 6.24: Italian case: Cumulative solar PV generation.

Effect of TΦ

Since we are using a dynamic model based on differential equations, it is relevant to

perform a sensitivity analysis with respect to the time constants of the main state variables

of the system, namely TΦ, Tφ and Tε. In this first scenario, we discuss the effect of the time

constant of the cumulative solar PV capacity, TΦ. Figures 6.27-6.28 plot the relevant

results. It can be seen that TΦ is a highly sensitive parameter of the system and greatly

impacts the number of PV installations and the cumulative PV generation. For example,
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Figure 6.25: Italian case: Cumulative FiT fund.
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Figure 6.26: Italian case: Solar PV FiT.

decreasing TΦ from 70 days (which is the base case) to 46 days leads to an increase of

more than 1 GW installed capacity.

Effect of Tφ

Another relevant time constant of the model is Tφ, which defines the dynamics of the

FiT price and willingness of the people (Eq. (6.5)). In this context, and similar to the

previous scenario, a sensitivity analysis is performed and the relevant results are shown
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Figure 6.27: Italian case: Cumulative solar PV installed.
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Figure 6.28: Italian case: Cumulative solar PV generation.

in Figs. 6.29-6.30. Both figures indicate that the evolution of the PV capacity and

generation over the years is highly sensitive to Tφ.

Effect of Tε

This scenario discusses the sensitivity analysis with respect to the time constant of the

FiT budget, Tε (Eq. (6.10)). Figures 6.31-6.32 show relevant results.
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Figure 6.29: Italian case: Cumulative solar PV installed.
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Figure 6.30: Italian case: Cumulative solar PV generation.

Decreasing the time constant Tε from 8 hours (base case) to 3 hours leads to an

increase with more than 3 GW of PV installed capacity (see Fig. 6.31).

6.6 Conclusions and Policy Implications

This chapter presents the last contribution of this thesis, namely a long-term dynamic

model to assess energy policies promoting solar PV through FiT schemes. The proposed

model appears to be general enough to reproduce with good accuracy the long-term
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Figure 6.31: Italian case: Cumulative solar PV installed.
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Figure 6.32: Italian case: Cumulative solar PV generation.

development of the solar PV market in both countries (see Figs. 6.1-6.12). We believe

that the model is a useful tool for policy-making institutions to study the long-term

behavior of an energy technology such as that of PV. The study is facilitated by the fact

that one can easily implement the proposed model and reproduce the results in any of

the many software packages designed to integrate a set of differential equations. This

is an advantage compared to other complex methods presented in the literature that

require specific software tools [48, 53, 55]. The model provides valuable information to
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policymakers by relating, for example, FiT policy parameters (e.g., FiT price) to actual

PV deployment.

The development of the PV markets in Italy and Germany is directly related to FiT

levels. For example, low tariffs in Italy contributed to discouraging people from installing

solar PVs (i.e. very low willingness). When comparing the two countries considered in

this work, the model validation test showed that people in Germany had a much higher

willingness (18,000 times higher than people in Italy according to this work) at the end of

the period of analysis. These results support the idea that despite declining investment

costs, incentive policies are still required to increase the share of alternative technologies

such as solar PV [55]. This is especially the case of Italy, where the FiT scheme was

replaced with other policy mechanisms [72].

The parametric sensitivity analysis of the model in Section 6.5 for the solar PV market

in Italy revealed that the learning-by-doing approach is accurate enough to match the

PV cost and capacity evolution. Furthermore, it is shown that the learning parameter

β, the levy constant LP , the electricity price ρ as well as the time constants of the state

variables of the system are highly sensitive parameters of the model, and as such, they

have to be carefully chosen in order to obtain a realistic forecast of the PV capacity. In

particular, while the first three parameters can be predicted reasonably well, that is not

the case with the time constants. Specifically, one of the most critical time constant to

predict is TΦ and subsequently, the most difficult data to fit is the cumulative solar PV

capacity. Indeed, most of the time constants have to be first guessed and then tuned by

trial-and-error by the user and thus can be considered a current limitation of the model.

Finally, the sensitivity of the parameters of the load consumption and the system total

budget do not change the effect of the incentives significantly.
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Chapter 7

Conclusions and Future Work

The research presented in this thesis addresses the modelling and simulation of long

and very long-term dynamics in modern power systems. The thesis proposes various

tools to evaluate the impact of different short-term electricity markets formulations on

power system stability, and the evolution of solar PVs driven by FiT policy. The aim of

this chapter is to summarize the main conclusions of the thesis and outline future work

directions.

• Automatic Generation Control : Chapters 2 and 3 investigate the effect of discrete

secondary controllers on the dynamic response of the system. The research highlights

that increasing too much the time interval at which the AGC updates the power

set-points of TGs leads to a limit cycle. The only effective solution to remove this

issue is to keep as short as possible the AGC time interval. This is not a major

constraint as, in practice, the AGC installed in the control centers of TSOs uses

execution cycles that vary in the range of 2 to 6 s, which do not create instability

issues. However, Chapter 2 shows that if real-time electricity markets or MAGC

use the power imbalance to update the electricity price and use dispatch periods

that range from some tens of seconds up to a few minutes, these markets might lead

to some sort of limit-cycles. There are two ways to avoid the limit cycle. One is

to use “short” MAGC time periods, for example, 5 s and the other one is to use

“long” MAGC time periods, for example, 10 minutes.

Furthermore, the first case study highlights that ESSs can successfully remove the

long-term frequency deviations caused by the MAGC. However, the capacities of
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the ESSs as well as the deadband and droop coefficient of the ESS controllers have

to be carefully designed to avoid the outbreak of unexpected dynamic behaviors.

The second case study shows that an AGC-based approach yields better dynamic

performance than a MILP-based VPP approach. However, despite this advantage,

TSOs should consider possible dynamic couplings between the conventional AGC

and the AGC-based VPP. Moreover, Chapter 3 demonstrates that accounting

for the memory effect of suppliers make the latter adopt a conservative behavior.

Therefore, power system operators should consider taking into account such an

aspect of market participants in current and future electricity markets. In contrast,

the second example shows that the memory of market participants has a negligible

impact on power system dynamics due to its intrinsic long timescale.

Future work on this topic can expand in many directions. For example, it would

be interesting to study the impact of other relevant discrete secondary controllers

of power systems, e.g. the secondary voltage control and hierarchical controllers of

microgrids. It is also interesting to further investigate long-term dynamics driven

by ESS controllers, e.g. load levelling and shifting and applying the proposed VPP

methods to microgrids with a high penetration of DERs. We also aim to study the

stability of the equilibriums of the short-term electricity market model with memory,

and construct optimization techniques to obtain optimal solutions for the case of

existence but not uniqueness of solutions for this system.

• Unit Commitment : Chapters 4 and 5 focus on the impact interactions between the

sub-hourly d-UC and s-UC and the actual response of the grid. TDSs on the IEEE

39-bus system indicate that shorter scheduling periods of the d-UC and s-UC are to

be preferred from the system’s dynamic behaviour. This is because they help reduce

frequency variations and the electricity price and mitigate the impact of volatility

and contingencies. The results of Chapter 5 also show that different s-UC strategies

lead to very similar long-term frequency deviations of the system. Then, if the

system is scheduled frequently, there are no significant differences between d-UC and

s-UC formulations. This is an important information for system operators since they

currently mostly rely on deterministic approaches. Moreover, it is demonstrated that

in the case of 50% wind penetration, the sub-hourly s-UC leads to a better transient
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response of the system compared to the sub-hourly d-UC. Another interesting result

is that different formulations of the s-UC can have different impact on long-term

power system dynamics. Hence, the formulation of the s-UC has to be carefully

chosen. The sensitivity analysis concerning different frequency controllers/machine

parameters revealed that the gain of the AGC is the main parameter impacting the

long-term frequency deviation. For this reason, such a parameter has to be carefully

chosen by TSOs. In contrast, the synchronous machine inertia has a negligible

effect on the standard deviation of the frequency.

Future work envisages the design of a feedback control that will take a signal from

the system and send it to the UC. Other works will also consider the interaction

between UC, microgrids and DAEs. Also, a study on the impact of sub-hourly UC

with inclusion of voltage constraints on long-term dynamic behaviour of the system

will be considered.

• PV Energy Policy : Chapter 6 proposes a dynamic model based on nonlinear delay

DAEs to predict the evolution of the solar PVs. The accuracy of the model is

validated again historical data of two of the biggest PV markets in the world driven

by FiT, namely Italy and Germany. It is shown that the model is able to reproduce

with good accuracy the PV data of both countries. In particular, the validation test

and the sensitivity analysis shows that the development of the PV markets in Italy

and Germany is directly related to FiT levels. Further, it is found that people in

Germany had a much higher willingness to install PVs than people in Italy. These

results, in fact, support the idea that despite declining investment costs, incentive

policies are still required to increase the share of alternative technologies such as

solar PV.

A promising direction for future work is validating the model against other energy

technologies, such as wind power and electric vehicles. This is particularly relevant

considering the uptake of both technologies in recent years. It is also worth comparing

the proposed model with the Volterra equations which are well-known to describe the

evolution of different system variables such as energy production and consumption

[116]. In fact, these equations define S shaped curves similar to the one shown in

Fig. 6.1.
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Appendix A

Data

A.1 Chapters 2 and 3

This section provides chapters 2 and 3 data. Specifically, DERs data for the MILP-based

VPP are given in Tab. A.1. While other relevant data are given in Tab. A.2. In particular,

Table A.1: DERs data for the MILP-based VPP. Based on [14].

Generator Capacity Response time Ramping time
MW minute minute

1 0.68 2.73 13.17
2 3.16 6.13 49.61
3 3.74 10.71 39.00
4 1.68 6.91 34.51
5 4.32 1.78 35.49
6 3.89 11.34 28.52
7 1.74 11.23 43.04
8 4.92 9.00 15.14
9 1.02 1.51 4.17
10 4.80 9.48 33.20

the value of initial electricity price ρo is assumed equal to 40 $/MWh. Moreover, the gain

of the AGC and the TG droop parameters are assumed equal to 2 and 0.05 pu(MW),

respectively.
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Table A.2: Parameters for AGC and MAGC. Based on [6].

Parameter Description Unit Value

ρo Initial electricity price $/MWh 40
Tρ Time constant of ρ(t) s 50
R TG droops pu(MW) 0.05
Ko AGC feedback gain - 2
KE MAGC feedback gain - 15
Tg1 Time constant of ∆pg1(t) s 35
Tg2 Time constant of ∆pg2(t) s 30
Tg3 Time constant of ∆pg3(t) s 25
Rd Deviation with respect to a perfect tracking integrator - 0
bg1 Parameter of the marginal cost of the 1 generator $/MWh 34
bg2 Parameter of the marginal cost of the 2 generator $/MWh 35.99
bg3 Parameter of the marginal cost of the 3 generator $/MWh 35.45
cg1 Parameter of the marginal cost of the 1 generator $/MW2h 0.6
cg2 Parameter of the marginal cost of the 2 generator $/MW2h 0.7
cg3 Parameter of the marginal cost of the 3 generator $/MW2h 0.7

A.2 Chapters 4 and 5

This section provides d-UC and s-UC data in Tab. A.3 [19]. Since these data do not

correspond with that of the dynamic IEEE 39-bus system [57] (e.g. different loading

levels), we adapted (scaled) the relevant dynamic data to that of 10-machine UC. Further,

the value of load curtailment (present in the reference model of s-UC) is taken equal to

$1000/MWh [23]; the cost of wind is assumed zero; and the value of the fixed (CF
g ) and

variable (CV
g ) cost coefficients is taken equal to the fixed and proportional cost coefficients

a ($/h) and b ($/MWh), respectively, in [18].

Table A.3: d-UC and s-UC parameters. Based on [18,19].

Unit Pmax
g Pmin

g CF
g CV

g CSU
g CSD

g

MW MW $/h $/MWh $ $

1 455 150 1,000 16.19 9,000 9,000
2 455 150 970 17.26 10,000 10,000
3 130 20 700 16.60 1,100 1,100
4 130 20 680 16.50 1,120 1,120
5 162 25 450 19.70 1,800 1,800
6 80 20 370 22.26 349 349
7 85 25 480 22.74 520 520
8 55 10 660 25.92 60 60
9 55 10 665 27.27 60 60
10 55 10 670 27.79 60 60
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A.3 Chapter 6

This section provides the information concerning the variables, parameters and data

of the model used in the simulation for two countries, namely Italy and Germany in

Tables A.4-A.8.

Table A.4: Variables

Variable Description Unit Reference

ϕ(t) PV production MWh [104]
υ(t) Cumulative solar PV production MWh [104]
ϑ(t) PV cost EUR/MW [79]
Φ(t) Cumulative PV installations MW This work
Θ(t) FiT price EUR/MWh This work
w(t) Willingness of people to install PVs - This work
φ(t) Function that models FiT price evolution EUR/MWh This work
χ(t) Cumulative expenses to support PV production EUR [98]
ε(t) Cumulative revenue of the FiT fund EUR [98]

Variable Limits

This section presents the limits of the relevant variables of the model.

ϕpv(t) ≤ EG , (A.1)

where EG represents the total energy generation (assumed to be constant in this work).

if ε(t) ≥ εmax : ε(t) = εmax

if ε(t) ≤ εmin : ε(t) = εmin

otherwise : Eq. (6.3) ,

(A.2)

where εmin and εmax represent the minimum and maximum FiT fund, respectively.

if Φ(t) ≥ Φmax : Φ(t) = Φmax

if Φ(t) ≤ Φmin : Φ(t) = Φmin

otherwise : Eq. (6.3) ,

(A.3)

where Φmin and Φmax represent the minimum and maximum PV installed capacity,

respectively.
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Table A.5: Parameter values, Italy. Based on this work and [1, 104,112].

Parameter Description Unit Value

Period of analysis 2008-2014 Year 6
EG Total energy generation MWh 40,000
EC Total energy consumption MWh 39,200
I Reference PV yield MWh/MW 1,250,000
PR Performance ratio % 85
β Learning coefficient 0.322
ϑo PV initial cost MEUR/MW 5
Φo Initial PV MW installed MW 496

Φmax Maximum cumulative PV installations MW 103,000
Φmin Minimum cumulative PV installations MW 496
εmax Maximum PV fund MEUR 6,700
εmin Minimum PV fund MEUR 0
φmax Maximum value of φ(t) EUR/MWh 450
φmin Minimum value of φ(t) EUR/MWh 0.01
φ(t0) Initial value of φ(t) EUR/MWh 450
φo Disturbance of φ(t) EUR/MWh 1.2φ(t0)
wmax Maximum value of w(t) 1
wmin Minimum value of w(t) 2 · 10−5

Tυ Time constant of Eq. (6.8) h 0.25
TΦ Time constant of Eq. (6.3) h 1,667
Tφ Time constant of Eq. (6.5) h 14,139
Tχ Time constant of Eq. (6.9) h 8
Tε Time constant of Eq. (6.10) h 8
ρ Electricity price EUR/MWh 200
LP Levy constant % 15
Θo Initial FiT price EUR/MWh 450
τ Time delay of variable φ(t) h 13,333

if Θ(t) ≥ Θmax : Θ(t) = Θmax

if Θ(t) ≤ Θmin : Θ(t) = Θmin

otherwise : Eq. (6.4) ,

(A.4)

where Θmin and Θmax represent the minimum and maximum FiT price, respectively.

if φ(t) ≥ φmax : φ(t) = φmax

if φ(t) ≤ φmin : φ(t) = φmin

otherwise : Eq. (6.5) ,

(A.5)

where φmin and φmax represent the minimum and maximum value of φ(t), respectively.
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Table A.6: PV historical data, Italy. Based on this work and [59,80,112].

Year Capacity Generation Cost Fund FiT price
MW GWh MEUR/MW MEUR EUR/MWh

2008 496 200 5 0 450
2009 1,277 877 4.1 1,340 440
2010 3,605 2,751 2.8 2,680 411
2011 13,141 13,419 2.2 4,020 350
2012 16,796 32,050 1.2 5,360 250
2013 18,197 53,279 0.920 6,700 104
2014 18,606 76,578 0.8 6,700 104

if w(t) ≥ wmax : w(t) = wmax

if w(t) ≤ wmin : w(t) = wmin

otherwise : Eq. (6.6) ,

(A.6)

where wmin and wmax represent the minimum and maximum value of w(t), respectively.
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Table A.7: Parameter values, Germany. Based on this work and [41,53,103].

Parameter Description Unit Value

Period of analysis 2000-2014 Year 14
EG Total energy generation MWh 60,000
EC Total energy consumption MWh 58,800
I Reference PV yield MWh/MW 875,000
PR Performance ratio % 85
β Learning coefficient 0.322
ϑo PV initial cost MEUR/MW 6.5
Φo Initial PV MW installed MW 114

Φmax Maximum cumulative PV installations MW 200,000
Φmin Minimum cumulative PV installations MW 114
εmax Maximum PV fund MEUR -
εmin Minimum PV fund MEUR 0
φmax Maximum value of φ(t) EUR/MWh 500
φmin Minimum value of φ(t) EUR/MWh 0.01
φ(t0) Initial value of φ(t) EUR/MWh 500
φo Disturbance of φ(t) EUR/MWh 1.2φ(t0)
wmax Maximum value of w(t) 1
wmin Minimum value of w(t) 2 · 10−5

Tυ Time constant of Eq. (6.8) h 0.28
TΦ Time constant of Eq. (6.3) h 15,972
Tφ Time constant of Eq. (6.5) h 83,333
Tχ Time constant of Eq. (6.9) h 8
Tε Time constant of Eq. (6.10) h 5
ρ Electricity price EUR/MWh 150
LP Levy constant % 5
Θo Initial FiT price EUR/MWh 500
τ Time delay of variable φ(t) h 8,760
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Table A.8: PV historical data, Germany. Based on this work and [7, 10,103].

Year Capacity Generation Cost Fund FiT price
MW GWh MEUR/MW MEUR EUR/MWh

2000 114 60 6.5 14 500
2001 176 136 5.0 51 506
2002 296 292 5.0 129 481
2003 435 611 5.0 274 457
2004 1,105 1,168 5.0 540 574
2005 2,056 2,450 5.0 1,176 545
2006 2,899 4,670 5.0 2,266 518
2007 4,170 7,745 5.0 3,729 492
2008 6,120 12,165 5.0 5,689 467
2009 10,556 18,748 4.1 8,365 430
2010 17,994 30,477 2.8 12,830 391
2011 25,429 50,076 2.2 19,468 287
2012 33,033 76,456 1.2 27,407 244
2013 36,337 107,466 0.92 35,683 170
2014 38,236 143,522 0.8 44,849 136
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